摘要
厚朴酚及其异构体厚朴酚是从木兰中分离得到的多酚化合物,可通过多种机制发挥心血管调节作用。 它们在中药中用作制止血液和祛瘀药,并被证实在动脉粥样硬化,血栓形成,高血压和心脏肥大中具有治疗潜力。 这份全面的综述总结了有关这些化合物的心脏保护机制的最新数据,并确定了需要进一步研究的领域。
关键词: 厚朴酚,厚朴酚,心脏保护,抗炎,抗氧化,抗增殖,抗凋亡。
图形摘要
[1]
Willis, A.I.; Pierre-Paul, D.; Sumpio, B.E.; Gahtan, V. Vascular smooth muscle cell migration: current research and clinical implications. Vasc. Endovascular Surg., 2004, 38(1), 11-23.
[http://dx.doi.org/10.1177/153857440403800102] [PMID: 14760473]
[http://dx.doi.org/10.1177/153857440403800102] [PMID: 14760473]
[2]
Félétou, M.; Vanhoutte, P.M. Endothelial dysfunction: a multifaceted disorder (The Wiggers Award Lecture). Am. J. Physiol. Heart Circ. Physiol., 2006, 291(3), H985-H1002.
[http://dx.doi.org/10.1152/ajpheart.00292.2006] [PMID: 16632549]
[http://dx.doi.org/10.1152/ajpheart.00292.2006] [PMID: 16632549]
[3]
Bertin, R; Chen, Z; Marin, R; Donati, M; Feltrinelli, A; Montopoli, M Activity of myricetin and other plant-derived polyhydroxyl compounds in human LDL and human vascular endothelial cells against oxidative stress. Biomedicine & pharmacotherapy = Biomedecine
& pharmacotherapie, 2016, 82, 472-8.
[4]
Youn, U.J.; Fatima, N.; Chen, Q.C.; Chae, S.; Hung, T.M.; Min, B.S. Apoptosis-inducing and antitumor activity of neolignans isolated from Magnolia officinalis in HeLa cancer cells. Phytother. Res., 2013, 27(9), 1419-1422.
[http://dx.doi.org/10.1002/ptr.4893] [PMID: 23192855]
[http://dx.doi.org/10.1002/ptr.4893] [PMID: 23192855]
[5]
Yu, S.X.; Yan, R.Y.; Liang, R.X.; Wang, W.; Yang, B. Bioactive polar compounds from stem bark of Magnolia officinalis. Fitoterapia, 2012, 83(2), 356-361.
[http://dx.doi.org/10.1016/j.fitote.2011.11.020] [PMID: 22155594]
[http://dx.doi.org/10.1016/j.fitote.2011.11.020] [PMID: 22155594]
[6]
Li, C.; Li, C.J.; Ma, J. Magterpenoids A-C, Three Polycyclic Meroterpenoids with PTP1B Inhibitory Activity from the Bark of Magnolia officinalis var. biloba. Org. Lett., 2018, 20(12), 3682-3686.
[http://dx.doi.org/10.1021/acs.orglett.8b01476] [PMID: 29863363]
[http://dx.doi.org/10.1021/acs.orglett.8b01476] [PMID: 29863363]
[7]
Shen, C.C.; Ni, C.L.; Shen, Y.C. Phenolic constituents from the stem bark of Magnolia officinalis. J. Nat. Prod., 2009, 72(1), 168-171.
[http://dx.doi.org/10.1021/np800494e] [PMID: 19086868]
[http://dx.doi.org/10.1021/np800494e] [PMID: 19086868]
[8]
Amorati, R.; Zotova, J.; Baschieri, A.; Valgimigli, L. Antioxidant Activity of Magnolol and Honokiol: Kinetic and Mechanistic Investigations of Their Reaction with Peroxyl Radicals. J. Org. Chem., 2015, 80(21), 10651-10659.
[http://dx.doi.org/10.1021/acs.joc.5b01772] [PMID: 26447942]
[http://dx.doi.org/10.1021/acs.joc.5b01772] [PMID: 26447942]
[9]
Lee, Y.M.; Hsiao, G.; Chen, H.R.; Chen, Y.C.; Sheu, J.R.; Yen, M.H. Magnolol reduces myocardial ischemia/reperfusion injury via neutrophil inhibition in rats. Eur. J. Pharmacol., 2001, 422(1-3), 159-167.
[http://dx.doi.org/10.1016/S0014-2999(01)01069-X] [PMID: 11430926]
[http://dx.doi.org/10.1016/S0014-2999(01)01069-X] [PMID: 11430926]
[10]
Kim, H.M.; Bae, S.J.; Kim, D.W. Inhibitory role of magnolol on proliferative capacity and matrix metalloproteinase-9 expression in TNF-alpha-induced vascular smooth muscle cells. Int. Immunopharmacol., 2007, 7(8), 1083-1091.
[http://dx.doi.org/10.1016/j.intimp.2007.04.004] [PMID: 17570325]
[http://dx.doi.org/10.1016/j.intimp.2007.04.004] [PMID: 17570325]
[11]
Lo, Y.C.; Teng, C.M.; Chen, C.F.; Chen, C.C.; Hong, C.Y. Magnolol and honokiol isolated from Magnolia officinalis protect rat heart mitochondria against lipid peroxidation. Biochem. Pharmacol., 1994, 47(3), 549-553.
[http://dx.doi.org/10.1016/0006-2952(94)90187-2] [PMID: 8117323]
[http://dx.doi.org/10.1016/0006-2952(94)90187-2] [PMID: 8117323]
[12]
Hong, C.Y.; Huang, S.S.; Tsai, S.K. Magnolol reduces infarct size and suppresses ventricular arrhythmia in rats subjected to coronary ligation. Clin. Exp. Pharmacol. Physiol., 1996, 23(8), 660-664.
[http://dx.doi.org/10.1111/j.1440-1681.1996.tb01753.x] [PMID: 8886485]
[http://dx.doi.org/10.1111/j.1440-1681.1996.tb01753.x] [PMID: 8886485]
[13]
Tsai, S.K.; Huang, S.S.; Hong, C.Y. Myocardial protective effect of honokiol: an active component in Magnolia officinalis. Planta Med., 1996, 62(6), 503-506.
[http://dx.doi.org/10.1055/s-2006-957957] [PMID: 9000881]
[http://dx.doi.org/10.1055/s-2006-957957] [PMID: 9000881]
[14]
Huang, CH; Hong, CY; Tsai, SK; Lai, ST Effect of magnolol on coronary vascular resistance in rabbits: measurement with pulsed Doppler velocimetry., Taiwan yi zhi 2000; 99(7): 554-8.
[15]
Teng, C.M.; Chen, C.C.; Ko, F.N. Two antiplatelet agents from Magnolia officinalis. Thromb. Res., 1988, 50(6), 757-765.
[http://dx.doi.org/10.1016/0049-3848(88)90336-2] [PMID: 3413728]
[http://dx.doi.org/10.1016/0049-3848(88)90336-2] [PMID: 3413728]
[16]
Teng, C.M.; Yu, S.M.; Chen, C.C.; Huang, Y.L.; Huang, T.F. EDRF-release and Ca+(+)-channel blockade by magnolol, an antiplatelet agent isolated from Chinese herb Magnolia officinalis, in rat thoracic aorta. Life Sci., 1990, 47(13), 1153-1161.
[http://dx.doi.org/10.1016/0024-3205(90)90176-R] [PMID: 2172682]
[http://dx.doi.org/10.1016/0024-3205(90)90176-R] [PMID: 2172682]
[17]
Yang, B; Xu, Y; Yu, S; Huang, Y; Lu, L; Liang, X. Anti-angiogenic and anti-inflammatory effect of Magnolol in the oxygen-induced retinopathy model., Inflammation research : official journal of the
European Histamine Research Society [et al] 2016; 65(1): 81-93.
[http://dx.doi.org/10.1007/s00011-015-0894-x]
[http://dx.doi.org/10.1007/s00011-015-0894-x]
[18]
Tsai, S.K.; Huang, C.H.; Huang, S.S.; Hung, L.M.; Hong, C.Y. Antiarrhythmic effect of magnolol and honokiol during acute phase of coronary occlusion in anesthetized rats: influence of L-NAME and aspirin. Pharmacology, 1999, 59(5), 227-233.
[http://dx.doi.org/10.1159/000028324] [PMID: 10529654]
[http://dx.doi.org/10.1159/000028324] [PMID: 10529654]
[19]
Wang, Y.; Zhang, Z.Z.; Wu, Y.; Zhan, J.; He, X.H.; Wang, Y.L. Honokiol protects rat hearts against myocardial ischemia reperfusion injury by reducing oxidative stress and inflammation. Exp. Ther. Med., 2013, 5(1), 315-319.
[http://dx.doi.org/10.3892/etm.2012.766] [PMID: 23251290]
[http://dx.doi.org/10.3892/etm.2012.766] [PMID: 23251290]
[20]
Wei, X.Q.; Zhang, H.S.; Wei, G.H. Honokiol Protects against Anti-β1-Adrenergic Receptor Autoantibody-Induced Myocardial Dysfunction via Activation of Autophagy. Oxid. Med. Cell. Longev., 2018, •••20181640804
[http://dx.doi.org/10.1155/2018/1640804] [PMID: 30116474]
[http://dx.doi.org/10.1155/2018/1640804] [PMID: 30116474]
[21]
Wang, J.; Qi, Q.; Feng, Z. Berberine induces autophagy in glioblastoma by targeting the AMPK/mTOR/ULK1-pathway. Oncotarget, 2016, 7(41), 66944-66958.
[http://dx.doi.org/10.18632/oncotarget.11396] [PMID: 27557493]
[http://dx.doi.org/10.18632/oncotarget.11396] [PMID: 27557493]
[22]
Chatterjee, K.; Zhang, J.; Honbo, N.; Karliner, J.S. Doxorubicin cardiomyopathy. Cardiology, 2010, 115(2), 155-162.
[http://dx.doi.org/10.1159/000265166] [PMID: 20016174]
[http://dx.doi.org/10.1159/000265166] [PMID: 20016174]
[23]
Huang, L.; Zhang, K.; Guo, Y. Honokiol protects against doxorubicin cardiotoxicity via improving mitochondrial function in mouse hearts. Sci. Rep., 2017, 7(1), 11989.
[http://dx.doi.org/10.1038/s41598-017-12095-y] [PMID: 28931882]
[http://dx.doi.org/10.1038/s41598-017-12095-y] [PMID: 28931882]
[24]
Treviño-Saldaña, N.; García-Rivas, G. Regulation of Sirtuin-Mediated Protein Deacetylation by Cardioprotective Phytochemicals. Oxid. Med. Cell. Longev., 2017.20171750306
[http://dx.doi.org/10.1155/2017/1750306] [PMID: 29234485]
[http://dx.doi.org/10.1155/2017/1750306] [PMID: 29234485]
[25]
Pillai, V.B.; Samant, S.; Sundaresan, N.R. Honokiol blocks and reverses cardiac hypertrophy in mice by activating mitochondrial Sirt3. Nat. Commun., 2015, 6, 6656.
[http://dx.doi.org/10.1038/ncomms7656] [PMID: 25871545]
[http://dx.doi.org/10.1038/ncomms7656] [PMID: 25871545]
[26]
Turner, N.A.; O’regan, D.J.; Ball, S.G.; Porter, K.E. Endothelin-1 is an essential co-factor for beta2-adrenergic receptor-induced proliferation of human cardiac fibroblasts. FEBS Lett., 2004, 576(1-2), 156-160.
[http://dx.doi.org/10.1016/j.febslet.2004.08.080] [PMID: 15474029]
[http://dx.doi.org/10.1016/j.febslet.2004.08.080] [PMID: 15474029]
[27]
Liou, J.Y.; Chen, Y.L.; Loh, S.H. Magnolol depresses urotensin-II-induced cell proliferation in rat cardiac fibroblasts. Clin. Exp. Pharmacol. Physiol., 2009, 36(7), 711-716.
[http://dx.doi.org/10.1111/j.1440-1681.2009.05144.x] [PMID: 19207719]
[http://dx.doi.org/10.1111/j.1440-1681.2009.05144.x] [PMID: 19207719]
[28]
Pillai, V.B.; Kanwal, A.; Fang, Y.H. Honokiol, an activator of Sirtuin-3 (SIRT3) preserves mitochondria and protects the heart from doxorubicin-induced cardiomyopathy in mice. Oncotarget, 2017, 8(21), 34082-34098.
[http://dx.doi.org/10.18632/oncotarget.16133] [PMID: 28423723]
[http://dx.doi.org/10.18632/oncotarget.16133] [PMID: 28423723]
[29]
Zhang, B.; Zhai, M.; Li, B. Honokiol ameliorates myocardial ischemia/reperfusion injury in type 1 diabetic rats by reducing oxidative stress and apoptosis through activating the sirt1-nrf2 signaling pathway. Oxid. Med. Cell. Longev., 2018, •••20183159801
[http://dx.doi.org/10.1155/2018/3159801] [PMID: 29675132]
[http://dx.doi.org/10.1155/2018/3159801] [PMID: 29675132]
[30]
Kokubo, Y.; Kamide, K. High-normal blood pressure and the risk of cardiovascular disease. Circ. J., 2009, 73(8), 1381-1385.
[http://dx.doi.org/10.1253/circj.CJ-09-0336]
[http://dx.doi.org/10.1253/circj.CJ-09-0336]
[31]
Zhang, G.S.; Wang, R.J.; Zhang, H.N.; Zhang, G.P.; Luo, M.S.; Luo, J.D. Effects of chronic treatment with honokiol in spontaneously hypertensive rats. Biol. Pharm. Bull., 2010, 33(3), 427-431.
[http://dx.doi.org/10.1248/bpb.33.427] [PMID: 20190404]
[http://dx.doi.org/10.1248/bpb.33.427] [PMID: 20190404]
[32]
Li, R.; Zhang, H.; Wang, W. Vascular insulin resistance in prehypertensive rats: role of PI3-kinase/Akt/eNOS signaling. Eur. J. Pharmacol., 2010, 628(1-3), 140-147.
[http://dx.doi.org/10.1016/j.ejphar.2009.11.038] [PMID: 19944677]
[http://dx.doi.org/10.1016/j.ejphar.2009.11.038] [PMID: 19944677]
[33]
Kim, Y.J.; Choi, M.S.; Cha, B.Y. Long-term supplementation of honokiol and magnolol ameliorates body fat accumulation, insulin resistance, and adipose inflammation in high-fat fed mice. Mol. Nutr. Food Res., 2013, 57(11), 1988-1998.
[http://dx.doi.org/10.1002/mnfr.201300113] [PMID: 23901038]
[http://dx.doi.org/10.1002/mnfr.201300113] [PMID: 23901038]
[34]
Choi, S.S.; Cha, B.Y.; Lee, Y.S. Honokiol and magnolol stimulate glucose uptake by activating PI3K-dependent Akt in L6 myotubes. Biofactors, 2012, 38(5), 372-377.
[http://dx.doi.org/10.1002/biof.1029] [PMID: 22674833]
[http://dx.doi.org/10.1002/biof.1029] [PMID: 22674833]
[35]
Liang, X.; Xing, W.; He, J. Magnolol administration in normotensive young spontaneously hypertensive rats postpones the development of hypertension: role of increased PPAR gamma, reduced TRB3 and resultant alleviative vascular insulin resistance. PLoS One, 2015, 10(3)e0120366
[http://dx.doi.org/10.1371/journal.pone.0120366] [PMID: 25793876]
[http://dx.doi.org/10.1371/journal.pone.0120366] [PMID: 25793876]
[36]
Xia, Y; Entman, ML; Wang, Y Critical role of CXCL16 in hypertensive kidney injury and fibrosis., Hypertension (Dallas, Tex : 1979)
2013; 62(6): 1129-37.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.113.01837]
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.113.01837]
[37]
Li, N.; Zhang, J.; Yan, X. SIRT3-KLF15 signaling ameliorates kidney injury induced by hypertension. Oncotarget, 2017, 8(24), 39592-39604.
[http://dx.doi.org/10.18632/oncotarget.17165] [PMID: 28465484]
[http://dx.doi.org/10.18632/oncotarget.17165] [PMID: 28465484]
[38]
Seok, Y.M.; Cho, H.J.; Cha, B.Y.; Woo, J.T.; Kim, I.K. Honokiol attenuates vascular contraction through the inhibition of the RhoA/Rho-kinase signalling pathway in rat aortic rings. J. Pharm. Pharmacol., 2011, 63(9), 1244-1251.
[http://dx.doi.org/10.1111/j.2042-7158.2011.01332.x] [PMID: 21827498]
[http://dx.doi.org/10.1111/j.2042-7158.2011.01332.x] [PMID: 21827498]
[39]
Seok, Y.M.; Kim, H.Y.; Garmaa, O.; Cha, B.Y.; Woo, J.T.; Kim, I.K. Effects of magnolol on vascular contraction in rat aortic rings. Clin. Exp. Pharmacol. Physiol., 2012, 39(1), 28-36.
[http://dx.doi.org/10.1111/j.1440-1681.2011.05629.x] [PMID: 22004427]
[http://dx.doi.org/10.1111/j.1440-1681.2011.05629.x] [PMID: 22004427]
[40]
Hirooka, Y.; Shimokawa, H.; Takeshita, A. Rho-kinase, a potential therapeutic target for the treatment of hypertension. Drug News Perspect., 2004, 17(8), 523-527.
[http://dx.doi.org/10.1358/dnp.2004.17.8.863696] [PMID: 15605112]
[http://dx.doi.org/10.1358/dnp.2004.17.8.863696] [PMID: 15605112]
[41]
Budzyn, K.; Marley, P.D.; Sobey, C.G. Targeting Rho and Rho-kinase in the treatment of cardiovascular disease. Trends Pharmacol. Sci., 2006, 27(2), 97-104.
[http://dx.doi.org/10.1016/j.tips.2005.12.002] [PMID: 16376997]
[http://dx.doi.org/10.1016/j.tips.2005.12.002] [PMID: 16376997]
[42]
Kuk, H.; Arnold, C.; Meyer, R.; Hecker, M.; Korff, T. Magnolol inhibits venous remodeling in mice. Sci. Rep., 2017, 7(1), 17820.
[http://dx.doi.org/10.1038/s41598-017-17910-0] [PMID: 29259201]
[http://dx.doi.org/10.1038/s41598-017-17910-0] [PMID: 29259201]
[43]
Yu, R.; Kim, C.S.; Kawada, T. Involvement of leukotactin-1, a novel CC chemokine, in human atherosclerosis. Atherosclerosis, 2004, 174(1), 35-42.
[http://dx.doi.org/10.1016/j.atherosclerosis.2003.11.024] [PMID: 15135248]
[http://dx.doi.org/10.1016/j.atherosclerosis.2003.11.024] [PMID: 15135248]
[44]
Wang, Y.; Zhao, D.; Sheng, J.; Lu, P. Local honokiol application inhibits intimal thickening in rabbits following carotid artery balloon injury. Mol. Med. Rep., 2018, 17(1), 1683-1689.
[PMID: 29257208]
[PMID: 29257208]
[45]
Kwon, B.M.; Kim, M.K.; Lee, S.H. Acyl-CoA: cholesterol acyltransferase inhibitors from Magnolia obovata. Planta Med., 1997, 63(6), 550-551.
[http://dx.doi.org/10.1055/s-2006-957762] [PMID: 9434609]
[http://dx.doi.org/10.1055/s-2006-957762] [PMID: 9434609]
[46]
Chen, Y.H.; Lin, S.J.; Chen, J.W.; Ku, H.H.; Chen, Y.L. Magnolol attenuates VCAM-1 expression in vitro in TNF-alpha-treated human aortic endothelial cells and in vivo in the aorta of cholesterol-fed rabbits. Br. J. Pharmacol., 2002, 135(1), 37-47.
[http://dx.doi.org/10.1038/sj.bjp.0704458] [PMID: 11786478]
[http://dx.doi.org/10.1038/sj.bjp.0704458] [PMID: 11786478]
[47]
Lee, C.W.; Hu, S.C.; Yen, F.L. Magnolol nanoparticles exhibit improved water solubility and suppress tnf-α-induced vcam-1 expression in endothelial cells. J. Biomed. Nanotechnol., 2017, 13(3), 255-268.
[http://dx.doi.org/10.1166/jbn.2017.2342] [PMID: 29381027]
[http://dx.doi.org/10.1166/jbn.2017.2342] [PMID: 29381027]
[48]
Schuringa, J.J.; Timmer, H.; Luttickhuizen, D.; Vellenga, E.; Kruijer, W. c-Jun and c-Fos cooperate with STAT3 in IL-6-induced transactivation of the IL-6 respone element (IRE). Cytokine, 2001, 14(2), 78-87.
[http://dx.doi.org/10.1006/cyto.2001.0856] [PMID: 11356008]
[http://dx.doi.org/10.1006/cyto.2001.0856] [PMID: 11356008]
[49]
Chen, S.C.; Chang, Y.L.; Wang, D.L.; Cheng, J.J. Herbal remedy magnolol suppresses IL-6-induced STAT3 activation and gene expression in endothelial cells. Br. J. Pharmacol., 2006, 148(2), 226-232.
[http://dx.doi.org/10.1038/sj.bjp.0706647] [PMID: 16520748]
[http://dx.doi.org/10.1038/sj.bjp.0706647] [PMID: 16520748]
[50]
Napoli, C. Oxidation of LDL, atherogenesis, and apoptosis. Ann. N. Y. Acad. Sci., 2003, 1010, 698-709.
[http://dx.doi.org/10.1196/annals.1299.127] [PMID: 15033814]
[http://dx.doi.org/10.1196/annals.1299.127] [PMID: 15033814]
[51]
Ou, H.C.; Chou, F.P.; Sheu, W.H.; Hsu, S.L.; Lee, W.J. Protective effects of magnolol against oxidized LDL-induced apoptosis in endothelial cells. Arch. Toxicol., 2007, 81(6), 421-432.
[http://dx.doi.org/10.1007/s00204-006-0172-3] [PMID: 17216433]
[http://dx.doi.org/10.1007/s00204-006-0172-3] [PMID: 17216433]
[52]
Ou, H.C.; Chou, F.P.; Lin, T.M.; Yang, C.H.; Sheu, W.H. Protective effects of honokiol against oxidized LDL-induced cytotoxicity and adhesion molecule expression in endothelial cells. Chem. Biol. Interact., 2006, 161(1), 1-13.
[http://dx.doi.org/10.1016/j.cbi.2006.02.006] [PMID: 16580656]
[http://dx.doi.org/10.1016/j.cbi.2006.02.006] [PMID: 16580656]
[53]
Sheu, M.L.; Chiang, C.K.; Tsai, K.S. Inhibition of NADPH oxidase-related oxidative stress-triggered signaling by honokiol suppresses high glucose-induced human endothelial cell apoptosis. Free Radic. Biol. Med., 2008, 44(12), 2043-2050.
[http://dx.doi.org/10.1016/j.freeradbiomed.2008.03.014] [PMID: 18423412]
[http://dx.doi.org/10.1016/j.freeradbiomed.2008.03.014] [PMID: 18423412]
[54]
WHO D. nutrition and the prevention of chronic diseases-
Introduction. Diet, Nutrition and the Prevention of Chronic Diseases 2003; 1-149.
[55]
Hu, J.W.; Wang, Y.; Chu, C. The responses of the inflammatory marker, pentraxin 3, to dietary sodium and potassium interventions. J. Clin. Hypertens. (Greenwich), 2018, 20(5), 925-931.
[http://dx.doi.org/10.1111/jch.13273] [PMID: 29700922]
[http://dx.doi.org/10.1111/jch.13273] [PMID: 29700922]
[56]
Qiu, L; Xu, R; Wang, S et al. Honokiol ameliorates endothelial
dysfunction through suppression of PTX3 expression, a key mediator
of IKK/IκB/NF-κB, in atherosclerotic cell model. Exp Mol Med
2015; 47e171
[http://dx.doi.org/10.1038/emm.2015.37] [PMID: 26138903]
[http://dx.doi.org/10.1038/emm.2015.37] [PMID: 26138903]
[57]
Pickering, J.G.; Weir, L.; Jekanowski, J.; Kearney, M.A.; Isner, J.M. Proliferative activity in peripheral and coronary atherosclerotic plaque among patients undergoing percutaneous revascularization. J. Clin. Invest., 1993, 91(4), 1469-1480.
[http://dx.doi.org/10.1172/JCI116352] [PMID: 8097207]
[http://dx.doi.org/10.1172/JCI116352] [PMID: 8097207]
[58]
Taleb, S. Inflammation in atherosclerosis. Arch. Cardiovasc. Dis., 2016, 109(12), 708-715.
[http://dx.doi.org/10.1016/j.acvd.2016.04.002] [PMID: 27595467]
[http://dx.doi.org/10.1016/j.acvd.2016.04.002] [PMID: 27595467]
[59]
Yamamoto, M.; Yamamoto, K.; Noumura, T. Type I collagen promotes modulation of cultured rabbit arterial smooth muscle cells from a contractile to a synthetic phenotype. Exp. Cell Res., 1993, 204(1), 121-129.
[http://dx.doi.org/10.1006/excr.1993.1016] [PMID: 8416790]
[http://dx.doi.org/10.1006/excr.1993.1016] [PMID: 8416790]
[60]
Chen, J.H.; Wu, C.C.; Hsiao, G.; Yen, M.H. Magnolol induces apoptosis in vascular smooth muscle. Naunyn Schmiedebergs Arch. Pharmacol., 2003, 368(2), 127-133.
[http://dx.doi.org/10.1007/s00210-003-0779-3] [PMID: 12898128]
[http://dx.doi.org/10.1007/s00210-003-0779-3] [PMID: 12898128]
[61]
Fan, S.; Li, X.; Lin, J.; Chen, S.; Shan, J.; Qi, G. Honokiol inhibits tumor necrosis factor-α-stimulated rat aortic smooth muscle cell proliferation via caspase- and mitochondrial-dependent apoptosis. Inflammation, 2014, 37(1), 17-26.
[http://dx.doi.org/10.1007/s10753-013-9707-y] [PMID: 23933846]
[http://dx.doi.org/10.1007/s10753-013-9707-y] [PMID: 23933846]
[62]
Wu, C.H.; Chen, C.W.; Chen, H.C.; Chang, W.C.; Shu, M.J.; Hung, J.S. Elucidating the inhibitory mechanisms of magnolol on rat smooth muscle cell proliferation. J. Pharmacol. Sci., 2005, 99(4), 392-399.
[http://dx.doi.org/10.1254/jphs.FP0050473] [PMID: 16340156]
[http://dx.doi.org/10.1254/jphs.FP0050473] [PMID: 16340156]
[63]
Wu, L.; Zou, H.; Xia, W.; Dong, Q.; Wang, L. Role of magnolol in the proliferation of vascular smooth muscle cells. Herz, 2015, 40(3), 542-548.
[http://dx.doi.org/10.1007/s00059-014-4051-z] [PMID: 24595318]
[http://dx.doi.org/10.1007/s00059-014-4051-z] [PMID: 24595318]
[64]
Karki, R.; Ho, O.M.; Kim, D.W. Magnolol attenuates neointima formation by inducing cell cycle arrest via inhibition of ERK1/2 and NF-kappaB activation in vascular smooth muscle cells. Biochim. Biophys. Acta, 2013, 1830(3), 2619-2628.
[http://dx.doi.org/10.1016/j.bbagen.2012.12.015] [PMID: 23274740]
[http://dx.doi.org/10.1016/j.bbagen.2012.12.015] [PMID: 23274740]
[65]
Chen, Q.; Jin, M.; Yang, F.; Zhu, J.; Xiao, Q.; Zhang, L. Matrix metalloproteinases: inflammatory regulators of cell behaviors in vascular formation and remodeling. Mediators Inflamm., 2013, •••2013928315
[http://dx.doi.org/10.1155/2013/928315] [PMID: 23840100]
[http://dx.doi.org/10.1155/2013/928315] [PMID: 23840100]
[66]
Visse, R.; Nagase, H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ. Res., 2003, 92(8), 827-839.
[http://dx.doi.org/10.1161/01.RES.0000070112.80711.3D] [PMID: 12730128]
[http://dx.doi.org/10.1161/01.RES.0000070112.80711.3D] [PMID: 12730128]
[67]
Zhu, X.; Wang, Z.; Hu, C.; Li, Z.; Hu, J. Honokiol suppresses TNF-α-induced migration and matrix metalloproteinase expression by blocking NF-κB activation via the ERK signaling pathway in rat aortic smooth muscle cells. Acta Histochem., 2014, 116(4), 588-595.
[http://dx.doi.org/10.1016/j.acthis.2013.11.005] [PMID: 24360976]
[http://dx.doi.org/10.1016/j.acthis.2013.11.005] [PMID: 24360976]
[68]
Menezes, G.C.; Miron-Mendoza, M.; Ho, C.H.; Jiang, H.; Grinnell, F. Oncogenic Ras-transformed human fibroblasts exhibit differential changes in contraction and migration in 3D collagen matrices. Exp. Cell Res., 2008, 314(16), 3081-3091.
[http://dx.doi.org/10.1016/j.yexcr.2008.07.018] [PMID: 18708049]
[http://dx.doi.org/10.1016/j.yexcr.2008.07.018] [PMID: 18708049]
[69]
Karki, R.; Kim, S.B.; Kim, D.W. Magnolol inhibits migration of vascular smooth muscle cells via cytoskeletal remodeling pathway to attenuate neointima formation. Exp. Cell Res., 2013, 319(20), 3238-3250.
[http://dx.doi.org/10.1016/j.yexcr.2013.07.016] [PMID: 23906924]
[http://dx.doi.org/10.1016/j.yexcr.2013.07.016] [PMID: 23906924]
[70]
Masaki, T.; Foti, R.; Hill, P.A.; Ikezumi, Y.; Atkins, R.C.; Nikolic-Paterson, D.J. Activation of the ERK pathway precedes tubular proliferation in the obstructed rat kidney. Kidney Int., 2003, 63(4), 1256-1264.
[http://dx.doi.org/10.1046/j.1523-1755.2003.00874.x] [PMID: 12631342]
[http://dx.doi.org/10.1046/j.1523-1755.2003.00874.x] [PMID: 12631342]
[71]
Yoo, A.R.; Koh, S.H.; Cho, G.W.; Kim, S.H. Inhibitory effects of cilostazol on proliferation of vascular smooth muscle cells (VSMCs) through suppression of the ERK1/2 pathway. J. Atheroscler. Thromb., 2010, 17(10), 1009-1018.
[http://dx.doi.org/10.5551/jat.4309] [PMID: 20720374]
[http://dx.doi.org/10.5551/jat.4309] [PMID: 20720374]
[72]
Chang, L.; Karin, M. Mammalian MAP kinase signalling cascades. Nature, 2001, 410(6824), 37-40.
[http://dx.doi.org/10.1038/35065000] [PMID: 11242034]
[http://dx.doi.org/10.1038/35065000] [PMID: 11242034]
[73]
Lee, B.; Kim, C.H.; Moon, S.K. Honokiol causes the p21WAF1-mediated G(1)-phase arrest of the cell cycle through inducing p38 mitogen activated protein kinase in vascular smooth muscle cells. FEBS Lett., 2006, 580(22), 5177-5184.
[http://dx.doi.org/10.1016/j.febslet.2006.08.064] [PMID: 16962592]
[http://dx.doi.org/10.1016/j.febslet.2006.08.064] [PMID: 16962592]
[74]
Venturinelli, M.L.; Hovnan, A.; Soeiro Ade, M. Platelet activation in different clinical forms of the coronary artery disease (role of P-selectin and others platelet markers in stable and unstable angina). Arq. Bras. Cardiol., 2006, 87(4), 446-450.
[http://dx.doi.org/10.1590/S0066-782X2006001700008] [PMID: 17128313]
[http://dx.doi.org/10.1590/S0066-782X2006001700008] [PMID: 17128313]
[75]
Gimbrone, M.A., Jr; García-Cardeña, G. Endothelial Cell Dysfunction and the Pathobiology of Atherosclerosis. Circ. Res., 2016, 118(4), 620-636.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.306301] [PMID: 26892962]
[http://dx.doi.org/10.1161/CIRCRESAHA.115.306301] [PMID: 26892962]
[76]
Teng, C.M.; Ko, F.N.; Wang, J.P. Antihaemostatic and antithrombotic effect of some antiplatelet agents isolated from Chinese herbs. J. Pharm. Pharmacol., 1991, 43(9), 667-669.
[http://dx.doi.org/10.1111/j.2042-7158.1991.tb03561.x] [PMID: 1685529]
[http://dx.doi.org/10.1111/j.2042-7158.1991.tb03561.x] [PMID: 1685529]
[77]
Tsai, T.H.; Tsai, W.J.; Chou, C.J.; Chen, C.F. Magnolol inhibits collagen-induced platelet serotonin release. Thromb. Res., 1995, 78(3), 265-270.
[http://dx.doi.org/10.1016/0049-3848(95)90878-J] [PMID: 7543220]
[http://dx.doi.org/10.1016/0049-3848(95)90878-J] [PMID: 7543220]
[78]
Coughlin, S.R.; Moskowitz, M.A.; Zetter, B.R.; Antoniades, H.N.; Levine, L. Platelet-dependent stimulation of prostacyclin synthesis by platelet-derived growth factor. Nature, 1980, 288(5791), 600-602.
[http://dx.doi.org/10.1038/288600a0] [PMID: 7003399]
[http://dx.doi.org/10.1038/288600a0] [PMID: 7003399]
[79]
Hu, H.; Zhang, X.X.; Wang, Y.Y.; Chen, S.Z. Honokiol inhibits arterial thrombosis through endothelial cell protection and stimulation of prostacyclin. Acta Pharmacol. Sin., 2005, 26(9), 1063-1068.
[http://dx.doi.org/10.1111/j.1745-7254.2005.00164.x] [PMID: 16115372]
[http://dx.doi.org/10.1111/j.1745-7254.2005.00164.x] [PMID: 16115372]
[80]
Zhang, X.; Chen, S.; Wang, Y. Honokiol up-regulates prostacyclin synthease protein expression and inhibits endothelial cell apoptosis. Eur. J. Pharmacol., 2007, 554(1), 1-7.
[http://dx.doi.org/10.1016/j.ejphar.2006.09.065] [PMID: 17109844]
[http://dx.doi.org/10.1016/j.ejphar.2006.09.065] [PMID: 17109844]
[81]
Jennings, L.K. Mechanisms of platelet activation: need for new strategies to protect against platelet-mediated atherothrombosis. Thromb. Haemost., 2009, 102(2), 248-257.
[http://dx.doi.org/10.1160/TH09-03-0192] [PMID: 19652875]
[http://dx.doi.org/10.1160/TH09-03-0192] [PMID: 19652875]
[82]
Shih, C.Y.; Chou, T.C. The antiplatelet activity of magnolol is mediated by PPAR-β/γ. Biochem. Pharmacol., 2012, 84(6), 793-803.
[http://dx.doi.org/10.1016/j.bcp.2012.06.022] [PMID: 22750553]
[http://dx.doi.org/10.1016/j.bcp.2012.06.022] [PMID: 22750553]
[83]
Chang, C.H.; Chung, C.H.; Kuo, H.L.; Hsu, C.C.; Huang, T.F. The highly specific platelet glycoprotein (GP) VI agonist trowaglerix impaired collagen-induced platelet aggregation ex vivo through matrix metalloproteinase-dependent GPVI shedding. J. Thromb. Haemost., 2008, 6(4), 669-676.
[http://dx.doi.org/10.1111/j.1538-7836.2008.02914.x] [PMID: 18221359]
[http://dx.doi.org/10.1111/j.1538-7836.2008.02914.x] [PMID: 18221359]
[84]
Lee, T.Y.; Chang, C.C.; Lu, W.J. Honokiol as a specific collagen receptor glycoprotein VI antagonist on human platelets: Functional ex vivo and in vivo studies. Sci. Rep., 2017, 7, 40002.
[http://dx.doi.org/10.1038/srep40002] [PMID: 28054640]
[http://dx.doi.org/10.1038/srep40002] [PMID: 28054640]
[85]
Kim, J.G.; Islam, R.; Cho, J.Y. Regulation of RhoA GTPase and various transcription factors in the RhoA pathway. J. Cell. Physiol., 2018, 233(9), 6381-6392.
[http://dx.doi.org/10.1002/jcp.26487] [PMID: 29377108]
[http://dx.doi.org/10.1002/jcp.26487] [PMID: 29377108]