Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Natural Polymers Based Hydrogels for Cell Culture Applications

Author(s): Gils Jose, K.T. Shalumon* and Jyh-Ping Chen*

Volume 27, Issue 16, 2020

Page: [2734 - 2776] Pages: 43

DOI: 10.2174/0929867326666190903113004

Price: $65

Abstract

It is well known that the extracellular matrix (ECM) plays a vital role in the growth, survival and differentiation of cells. Though two-dimensional (2D) materials are generally used as substrates for the standard in vitro experiments, their mechanical, structural, and compositional characteristics can alter cell functions drastically. Many scientists reported that cells behave more natively when cultured in three-dimensional (3D) environments than on 2D substrates, due to the more in vivo-like 3D cell culture environment that can better mimic the biochemical and mechanical properties of the ECM. In this regard, water-swollen network polymer-based materials called hydrogels are highly attractive for developing 3D ECM analogs due to their biocompatibility and hydrophilicity. Since hydrogels can be tuned and altered systematically, these materials can function actively in a defined culture medium to support long-term self-renewal of various cells. The physico-chemical and biological properties of the materials used for developing hydrogel should be tunable in accordance with culture needs. Various types of hydrogels derived either from natural or synthetic origins are currently being used for cell culture applications. In this review, we present an overview of various hydrogels based on natural polymers that can be used for cell culture, irrespective of types of applications. We also explain how each hydrogel is made, its source, pros and cons in biological applications with a special focus on regenerative engineering.

Keywords: Hydrogels, natural polymers, cell culture, extracellular matrix, three-dimensional culture, regeneration, tissue engineering.

« Previous
[1]
Kopecek, J. Polymer chemistry: swell gels. Nature, 2002, 417(6887), 388-389, 391.
[http://dx.doi.org/10.1038/417388a] [PMID: 12024197]
[2]
Peppas, N.A.; Bures, P.; Leobandung, W.; Ichikawa, H. Hydrogels in pharmaceutical formulations. Eur. J. Pharm. Biopharm., 2000, 50(1), 27-46.
[http://dx.doi.org/10.1016/S0939-6411(00)00090-4] [PMID: 10840191]
[3]
Ahmed, E.M. Hydrogel: Preparation, characterization, and applications: A review. J. Adv. Res., 2015, 6(2), 105-121.
[http://dx.doi.org/10.1016/j.jare.2013.07.006] [PMID: 25750745]
[4]
Hoffman, A.S. Hydrogels for biomedical applications. Adv. Drug Deliv. Rev., 2002, 54(1), 3-12.
[http://dx.doi.org/10.1016/S0169-409X(01)00239-3] [PMID: 11755703]
[5]
Hennink, W.E.; van Nostrum, C.F. Novel crosslinking methods to design hydrogels. Adv. Drug Deliv. Rev., 2002, 54(1), 13-36.
[http://dx.doi.org/10.1016/S0169-409X(01)00240-X] [PMID: 11755704]
[6]
Shi, Z.; Gao, X.; Ullah, M.W.; Li, S.; Wang, Q.; Yang, G. Electroconductive natural polymer-based hydrogels. Biomaterials, 2016, 111, 40-54.
[http://dx.doi.org/10.1016/j.biomaterials.2016.09.020] [PMID: 27721086]
[7]
Chang, C.; Zhang, L. Cellulose-based hydrogels: present status and application prospects. Carbohydr. Polym., 2011, 84(1), 40-53.
[http://dx.doi.org/10.1016/j.carbpol.2010.12.023]
[8]
Calvert, P. Hydrogels for soft machines. Adv. Mater., 2009, 21(7), 743-756.
[http://dx.doi.org/10.1002/adma.200800534]
[9]
Li, J.; Mooney, D.J. Designing hydrogels for controlled drug delivery. Nat. Rev. Mater., 2016, 1(12), 16071.
[http://dx.doi.org/10.1038/natrevmats.2016.71] [PMID: 29657852]
[10]
Wichterle, O.; Lim, D. Hydrophilic gels for biological use. Nature, 1960, 185, 117.
[http://dx.doi.org/10.1038/185117a0]
[11]
Lim, F.; Sun, A.M. Microencapsulated islets as bioartificial endocrine pancreas. Science, 1980, 210(4472), 908-910.
[http://dx.doi.org/10.1126/science.6776628] [PMID: 6776628]
[12]
Yannas, I.V.; Lee, E.; Orgill, D.P.; Skrabut, E.M.; Murphy, G.F. Synthesis and characterization of a model extracellular matrix that induces partial regeneration of adult mammalian skin. Proc. Natl. Acad. Sci. USA, 1989, 86(3), 933-937.
[http://dx.doi.org/10.1073/pnas.86.3.933] [PMID: 2915988]
[13]
Bajpai, A.K.; Shukla, S.K.; Bhanu, S.; Kankane, S. Responsive polymers in controlled drug delivery. Prog. Polym. Sci., 2008, 33(11), 1088-1118.
[http://dx.doi.org/10.1016/j.progpolymsci.2008.07.005]
[14]
Wu, D-Q.; Wang, T.; Lu, B.; Xu, X-D.; Cheng, S-X.; Jiang, X-J.; Zhang, X-Z.; Zhuo, R-X. Fabrication of supramolecular hydrogels for drug delivery and stem cell encapsulation. Langmuir, 2008, 24(18), 10306-10312.
[http://dx.doi.org/10.1021/la8006876] [PMID: 18680318]
[15]
Nugent, M.J.D.; Higginbotham, C.L. Preparation of a novel freeze thawed poly(vinyl alcohol) composite hydrogel for drug delivery applications. Eur. J. Pharm. Biopharm., 2007, 67(2), 377-386.
[http://dx.doi.org/10.1016/j.ejpb.2007.02.014] [PMID: 17398082]
[16]
Lee, Y-J.; Braun, P.V. Tunable inverse opal hydrogel pH sensors. Adv. Mater., 2003, 15(7‐8), 563-566.
[http://dx.doi.org/10.1002/adma.200304588]
[17]
Sorber, J.; Steiner, G.; Schulz, V.; Guenther, M.; Gerlach, G.; Salzer, R.; Arndt, K-F. Hydrogel-based piezoresistive pH sensors: investigations using FT-IR attenuated total reflection spectroscopic imaging. Anal. Chem., 2008, 80(8), 2957-2962.
[http://dx.doi.org/10.1021/ac702598n] [PMID: 18303919]
[18]
Katsoulos, C.; Karageorgiadis, L.; Vasileiou, N.; Mousafeiropoulos, T.; Asimellis, G. Customized hydrogel contact lenses for keratoconus incorporating correction for vertical coma aberration. Ophthalmic Physiol. Opt., 2009, 29(3), 321-329.
[http://dx.doi.org/10.1111/j.1475-1313.2009.00645.x] [PMID: 19422564]
[19]
Yasuda, H. Biocompatibility of nanofilm-encapsulated silicone and silicone-hydrogel contact lenses. Macromol. Biosci., 2006, 6(2), 121-138.
[http://dx.doi.org/10.1002/mabi.200500153] [PMID: 16416462]
[20]
Ha, E-J.; Kim, Y-J.; An, S.S.A.; Kim, Y-R.; Lee, J-O.; Lee, S-G.; Paik, H.J. Purification of His-tagged proteins using Ni2+-poly(2-acetamidoacrylic acid) hydrogel. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2008, 876(1), 8-12.
[http://dx.doi.org/10.1016/j.jchromb.2008.10.020] [PMID: 18980866]
[21]
Singh, A.; Peppas, N.A. Hydrogels and scaffolds for immunomodulation. Adv. Mater., 2014, 26(38), 6530-6541.
[http://dx.doi.org/10.1002/adma.201402105] [PMID: 25155610]
[22]
Wang, C.; Varshney, R.R.; Wang, D.A. Therapeutic cell delivery and fate control in hydrogels and hydrogel hybrids. Adv. Drug Deliv. Rev., 2010, 62(7-8), 699-710.
[http://dx.doi.org/10.1016/j.addr.2010.02.001] [PMID: 20138940]
[23]
Oh, E.J.; Park, K.; Kim, K.S.; Kim, J.; Yang, J.A.; Kong, J.H.; Lee, M.Y.; Hoffman, A.S.; Hahn, S.K. Target specific and long-acting delivery of protein, peptide, and nucleotide therapeutics using hyaluronic acid derivatives. J. Control. Release, 2010, 141(1), 2-12.
[http://dx.doi.org/10.1016/j.jconrel.2009.09.010] [PMID: 19758573]
[24]
Singh, M.R.; Patel, S.; Singh, D. Nanobiomaterials in Soft Tissue Engineering; Grumezescu, A.M., Ed.; William Andrew Publishing, 2016, pp. 231-260.
[http://dx.doi.org/10.1016/B978-0-323-42865-1.00009-X]
[25]
Jin, R.; Moreira Teixeira, L.S.; Dijkstra, P.J.; Karperien, M.; van Blitterswijk, C.A.; Zhong, Z.Y.; Feijen, J. Injectable chitosan-based hydrogels for cartilage tissue engineering. Biomaterials, 2009, 30(13), 2544-2551.
[http://dx.doi.org/10.1016/j.biomaterials.2009.01.020] [PMID: 19176242]
[26]
Moura, M.J.; Figueiredo, M.M.; Gil, M.H. Rheological study of genipin cross-linked chitosan hydrogels. Biomacromolecules, 2007, 8(12), 3823-3829.
[http://dx.doi.org/10.1021/bm700762w] [PMID: 18004810]
[27]
Qu, X.; Wirsén, A.; Albertsson, A.C. Novel pH-sensitive chitosan hydrogels: swelling behavior and states of water. Polymer (Guildf.), 2000, 41(12), 4589-4598.
[http://dx.doi.org/10.1016/S0032-3861(99)00685-0]
[28]
Vrana, N.E.; Liu, Y.; McGuinness, G.B.; Cahill, P.A. Characterization of poly(vinyl alcohol)/chitosan hydrogels as vascular tissue engineering scaffolds. Macromol. Symp., 2008, 269(1), 106-110.
[http://dx.doi.org/10.1002/masy.200850913]
[29]
Shen, Z-S.; Cui, X.; Hou, R-X.; Li, Q.; Deng, H-X.; Fu, J. Tough biodegradable chitosan–gelatin hydrogels via in situ precipitation for potential cartilage tissue engineering. RSC Advances, 2015, 5(69), 55640-55647.
[http://dx.doi.org/10.1039/C5RA06835E]
[30]
Bidarra, S.J.; Barrias, C.C.; Granja, P.L. Injectable alginate hydrogels for cell delivery in tissue engineering. Acta Biomater., 2014, 10(4), 1646-1662.
[http://dx.doi.org/10.1016/j.actbio.2013.12.006] [PMID: 24334143]
[31]
Chan, A.W.; Whitney, R.A.; Neufeld, R.J. Semisynthesis of a controlled stimuli-responsive alginate hydrogel. Biomacromolecules, 2009, 10(3), 609-616.
[http://dx.doi.org/10.1021/bm801316z] [PMID: 19196004]
[32]
Dorsey, S.M.; McGarvey, J.R.; Wang, H.; Nikou, A.; Arama, L.; Koomalsingh, K.J.; Kondo, N.; Gorman, J.H., III; Pilla, J.J.; Gorman, R.C.; Wenk, J.F.; Burdick, J.A. MRI evaluation of injectable hyaluronic acid-based hydrogel therapy to limit ventricular remodeling after myocardial infarction. Biomaterials, 2015, 69, 65-75.
[http://dx.doi.org/10.1016/j.biomaterials.2015.08.011] [PMID: 26280951]
[33]
Bhattacharyya, S.; Guillot, S.; Dabboue, H.; Tranchant, J-F.; Salvetat, J-P. Carbon nanotubes as structural nanofibers for hyaluronic acid hydrogel scaffolds. Biomacromolecules, 2008, 9(2), 505-509.
[http://dx.doi.org/10.1021/bm7009976] [PMID: 18186607]
[34]
Sim, H.J.; Thambi, T.; Lee, D.S. Heparin-based temperature-sensitive injectable hydrogels for protein delivery. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(45), 8892-8901.
[http://dx.doi.org/10.1039/C5TB01399B]
[35]
Wang, F.; Li, Z.; Khan, M.; Tamama, K.; Kuppusamy, P.; Wagner, W.R.; Sen, C.K.; Guan, J. Injectable, rapid gelling and highly flexible hydrogel composites as growth factor and cell carriers. Acta Biomater., 2010, 6(6), 1978-1991.
[http://dx.doi.org/10.1016/j.actbio.2009.12.011] [PMID: 20004745]
[36]
Van Tomme, S.R.; Hennink, W.E. Biodegradable dextran hydrogels for protein delivery applications. Expert Rev. Med. Devices, 2007, 4(2), 147-164.
[http://dx.doi.org/10.1586/17434440.4.2.147] [PMID: 17359222]
[37]
Li, X.; Xu, S.; Pen, Y.; Wang, J. The swelling behaviors and network parameters of cationic starch-g-acrylic acid/poly(dimethyldiallylammonium chloride) semi-interpenetrating polymer networks hydrogels. J. Appl. Polym. Sci., 2008, 110(3), 1828-1836.
[http://dx.doi.org/10.1002/app.28581]
[38]
Gattás-Asfura, K.M.; Weisman, E.; Andreopoulos, F.M.; Micic, M.; Muller, B.; Sirpal, S.; Pham, S.M.; Leblanc, R.M. Nitrocinnamate-functionalized gelatin: synthesis and “smart”hydrogel formation via photo-cross-linking. Biomacromolecules, 2005, 6(3), 1503-1509.
[http://dx.doi.org/10.1021/bm049238w] [PMID: 15877371]
[39]
Chang, C.; Duan, B.; Cai, J.; Zhang, L. Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery. Eur. Polym. J., 2010, 46(1), 92-100.
[http://dx.doi.org/10.1016/j.eurpolymj.2009.04.033]
[40]
Ma, Y.; Mao, Y.; An, Y.; Tian, T.; Zhang, H.; Yan, J.; Zhu, Z.; Yang, C.J. Target-responsive DNA hydrogel for non-enzymatic and visual detection of glucose. Analyst (Lond.), 2018, 143(7), 1679-1684.
[http://dx.doi.org/10.1039/C8AN00010G] [PMID: 29512663]
[41]
Boudriot, U.; Dersch, R.; Greiner, A.; Wendorff, J.H. Electrospinning approaches toward scaffold engineering--a brief overview. Artif. Organs, 2006, 30(10), 785-792.
[http://dx.doi.org/10.1111/j.1525-1594.2006.00301.x] [PMID: 17026578]
[42]
Dhandayuthapani, B.; Yoshida, Y.; Maekawa, T.; Kumar, D.S. Polymeric scaffolds in tissue engineering application. A review. International Journal of Polymer. Science., 2011, 2011, 19.
[http://dx.doi.org/10.1155/2011/290602]
[43]
Frisch, H.L. Diffusion in polymers. In: Journal of Applied Polymer Science; Crank, J.; G. S., Park, Eds.. Academic Press, London and New York, 1970; 14, p. (6)1657.
[http://dx.doi.org/10.1002/pol.1969.160071204]
[44]
Ehrenhofer, A.; Elstner, M.; Wallmersperger, T. Normalization of hydrogel swelling behavior for sensoric and actuatoric applications. Sens. Actuators B Chem., 2018, 255, 1343-1353.
[http://dx.doi.org/10.1016/j.snb.2017.08.120]
[45]
Achilleos, E.C.; Prud’Homme, R.K.; Christodoulou, K.N.; Gee, K.R.; Kevrekidis, I.G. Dynamic deformation visualization in swelling of polymer gels. Chem. Eng. Sci., 2000, 55(17), 3335-3340.
[http://dx.doi.org/10.1016/S0009-2509(00)00002-6] [PMID: 1600031]
[46]
Anseth, K.S.; Bowman, C.N.; Brannon-Peppas, L. Mechanical properties of hydrogels and their experimental determination. Biomaterials, 1996, 17(17), 1647-1657.
[http://dx.doi.org/10.1016/0142-9612(96)87644-7] [PMID: 8866026]
[47]
Slaughter, B.V.; Khurshid, S.S.; Fisher, O.Z.; Khademhosseini, A.; Peppas, N.A. Hydrogels in regenerative medicine. Adv. Mater., 2009, 21(32-33), 3307-3329.
[http://dx.doi.org/10.1002/adma.200802106] [PMID: 20882499]
[48]
Jeong, B.; Kim, S.W.; Bae, Y.H. Thermosensitive sol-gel reversible hydrogels. Adv. Drug Deliv. Rev., 2002, 54(1), 37-51.
[http://dx.doi.org/10.1016/S0169-409X(01)00242-3] [PMID: 11755705]
[49]
Bekturov, E.A. Speciality Polymers; Springer Berlin Heidelberg: Berlin, Heidelberg, 1981, pp. 99-147.
[http://dx.doi.org/10.1007/3-540-10554-9_11]
[50]
Alimirzaei, F.; Farahani, E.V.; Ghiaseddin, A. M, S.; Pouri, Gharavi, N. Z. pH-sensitive chitosan hydrogel with instant gelation for myocardial regeneration. J. Tissue Sci. Eng., 2017, 8(3), 212.
[http://dx.doi.org/10.4172/2157-7552.1000212]
[51]
Yao, H.; Wang, J.; Mi, S. Photo processing for biomedical hydrogels design and functionality: a review. Polymers (Basel), 2017, 10(1), 11.
[http://dx.doi.org/10.3390/polym10010011] [PMID: 30966045]
[52]
Nichol, J.; Koshy, S.; Bae, H.; Hwang, C.; Yamanlar, S.; Khademhosseini, A. Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials, 2010, 31(21), 5536-5544.
[http://dx.doi.org/10.1016/j.biomaterials.2010.03.064] [PMID: 20417964]
[53]
Fournier, E.; Passirani, C.; Montero-Menei, C.N.; Benoit, J.P. Biocompatibility of implantable synthetic polymeric drug carriers: focus on brain biocompatibility. Biomaterials, 2003, 24(19), 3311-3331.
[http://dx.doi.org/10.1016/S0142-9612(03)00161-3] [PMID: 12763459]
[54]
He, X.; Wei, B.; Mi, Y. Aptamer based reversible DNA induced hydrogel system for molecular recognition and separation. Chem. Commun. (Camb.), 2010, 46(34), 6308-6310.
[http://dx.doi.org/10.1039/c0cc01392g] [PMID: 20672164]
[55]
Trappmann, B.; Baker, B.M.; Polacheck, W.J.; Choi, C.K.; Burdick, J.A.; Chen, C.S. Matrix degradability controls multicellularity of 3D cell migration. Nat. Commun., 2017, 8(1), 371.
[http://dx.doi.org/10.1038/s41467-017-00418-6] [PMID: 28851858]
[56]
Saez, A.; Ghibaudo, M.; Buguin, A.; Silberzan, P.; Ladoux, B. Rigidity-driven growth and migration of epithelial cells on microstructured anisotropic substrates. Proc. Natl. Acad. Sci. USA, 2007, 104(20), 8281-8286.
[http://dx.doi.org/10.1073/pnas.0702259104] [PMID: 17488828]
[57]
Engler, A.J.; Sen, S.; Sweeney, H.L.; Discher, D.E. Matrix elasticity directs stem cell lineage specification. Cell, 2006, 126(4), 677-689.
[http://dx.doi.org/10.1016/j.cell.2006.06.044] [PMID: 16923388]
[58]
Eckert, R.L.; Rorke, E.A. Molecular biology of keratinocyte differentiation. Environ. Health Perspect., 1989, 80, 109-116.
[http://dx.doi.org/10.1289/ehp.8980109] [PMID: 2466639]
[59]
Fan, C.; Wang, D.A. macroporous hydrogel scaffolds for three-dimensional cell culture and tissue engineering. Tissue Eng. Part B Rev., 2017, 23(5), 451-461.
[http://dx.doi.org/10.1089/ten.teb.2016.0465] [PMID: 28067115]
[60]
Sokic, S.; Christenson, M.; Larson, J.; Papavasiliou, G. In situ generation of cell-laden porous MMP-sensitive PEGDA hydrogels by gelatin leaching. Macromol. Biosci., 2014, 14(5), 731-739.
[http://dx.doi.org/10.1002/mabi.201300406] [PMID: 24443002]
[61]
Annabi, N.; Nichol, J.W.; Zhong, X.; Ji, C.; Koshy, S.; Khademhosseini, A.; Dehghani, F. Controlling the porosity and microarchitecture of hydrogels for tissue engineering. Tissue Eng. Part B Rev., 2010, 16(4), 371-383.
[http://dx.doi.org/10.1089/ten.teb.2009.0639] [PMID: 20121414]
[62]
Norris, S.C.P.; Delgado, S.M.; Kasko, A.M. Mechanically robust photodegradable gelatin hydrogels for 3D cell culture and in situ mechanical modification. Polym. Chem., 2019, 10(23), 3180-3193.
[http://dx.doi.org/10.1039/C9PY00308H]
[63]
Lei, Y.; Gojgini, S.; Lam, J.; Segura, T. The spreading, migration and proliferation of mouse mesenchymal stem cells cultured inside hyaluronic acid hydrogels. Biomaterials, 2011, 32(1), 39-47.
[http://dx.doi.org/10.1016/j.biomaterials.2010.08.103] [PMID: 20933268]
[64]
Bryant, S.J.; Bender, R.J.; Durand, K.L.; Anseth, K.S. Encapsulating chondrocytes in degrading PEG hydrogels with high modulus: engineering gel structural changes to facilitate cartilaginous tissue production. Biotechnol. Bioeng., 2004, 86(7), 747-755.
[http://dx.doi.org/10.1002/bit.20160] [PMID: 15162450]
[65]
Foley, J.D.; Grunwald, E.W.; Nealey, P.F.; Murphy, C.J. Cooperative modulation of neuritogenesis by PC12 cells by topography and nerve growth factor. Biomaterials, 2005, 26(17), 3639-3644.
[http://dx.doi.org/10.1016/j.biomaterials.2004.09.048] [PMID: 15621254]
[66]
Kim, Y.; Abuelfilat, A.Y.; Hoo, S.P.; Al-Abboodi, A.; Liu, B.; Ng, T.; Chan, P.; Fu, J. Tuning the surface properties of hydrogel at the nanoscale with focused ion irradiation. Soft Matter, 2014, 10(42), 8448-8456.
[http://dx.doi.org/10.1039/C4SM01061B] [PMID: 25225831]
[67]
Larsson, C.; Thomsen, P.; Lausmaa, J.; Rodahl, M.; Kasemo, B.; Ericson, L.E. Bone response to surface modified titanium implants: studies on electropolished implants with different oxide thicknesses and morphology. Biomaterials, 1994, 15(13), 1062-1074.
[http://dx.doi.org/10.1016/0142-9612(94)90092-2] [PMID: 7888577]
[68]
Camci-Unal, G.; Nichol, J.W.; Bae, H.; Tekin, H.; Bischoff, J.; Khademhosseini, A. Hydrogel surfaces to promote attachment and spreading of endothelial progenitor cells. J. Tissue Eng. Regen. Med., 2013, 7(5), 337-347.
[http://dx.doi.org/10.1002/term.517] [PMID: 22223475]
[69]
Baier, R.E.; Meyer, A.E.; Natiella, J.R.; Natiella, R.R.; Carter, J.M. Surface properties determine bioadhesive outcomes: methods and results. J. Biomed. Mater. Res., 1984, 18(4), 337-355.
[http://dx.doi.org/10.1002/jbm.820180404] [PMID: 6736072]
[70]
Seliktar, D. Designing cell-compatible hydrogels for biomedical applications. Science, 2012, 336(6085), 1124-1128.
[http://dx.doi.org/10.1126/science.1214804] [PMID: 22654050]
[71]
Carmeliet, P.; Jain, R.K. Angiogenesis in cancer and other diseases. Nature, 2000, 407(6801), 249-257.
[http://dx.doi.org/10.1038/35025220] [PMID: 11001068]
[72]
Druecke, D.; Langer, S.; Lamme, E.; Pieper, J.; Ugarkovic, M.; Steinau, H.U.; Homann, H.H. Neovascularization of poly(ether ester) block-copolymer scaffolds in vivo: long-term investigations using intravital fluorescent microscopy. J. Biomed. Mater. Res. A, 2004, 68(1), 10-18.
[http://dx.doi.org/10.1002/jbm.a.20016] [PMID: 14661244]
[73]
Marshall, A.J.; Ratner, B.D. Quantitative characterization of sphere-templated porous biomaterials. AIChE J., 2005, 51(4), 1221-1232.
[http://dx.doi.org/10.1002/aic.10390]
[74]
Unger, R.E.; Sartoris, A.; Peters, K.; Motta, A.; Migliaresi, C.; Kunkel, M.; Bulnheim, U.; Rychly, J.; Kirkpatrick, C.J. Tissue-like self-assembly in cocultures of endothelial cells and osteoblasts and the formation of microcapillary-like structures on three-dimensional porous biomaterials. Biomaterials, 2007, 28(27), 3965-3976.
[http://dx.doi.org/10.1016/j.biomaterials.2007.05.032] [PMID: 17582491]
[75]
Zhang, L.; Webster, T.J. Nanotechnology and nanomaterials: Promises for improved tissue regeneration. Nano Today, 2009, 4(1), 66-80.
[http://dx.doi.org/10.1016/j.nantod.2008.10.014]
[76]
Liu, H.; Roy, K. Biomimetic three-dimensional cultures significantly increase hematopoietic differentiation efficacy of embryonic stem cells. Tissue Eng., 2005, 11(1-2), 319-330.
[http://dx.doi.org/10.1089/ten.2005.11.319] [PMID: 15738685]
[77]
Reis, L.A.; Chiu, L.L.Y.; Liang, Y.; Hyunh, K.; Momen, A.; Radisic, M. A peptide-modified chitosan-collagen hydrogel for cardiac cell culture and delivery. Acta Biomater., 2012, 8(3), 1022-1036.
[http://dx.doi.org/10.1016/j.actbio.2011.11.030] [PMID: 22155066]
[78]
El-Sherbiny, I.M.; Yacoub, M.H. Hydrogel scaffolds for tissue engineering: Progress and challenges. Glob. Cardiol. Sci. Pract., 2013, 2013(3), 316-342.
[http://dx.doi.org/10.5339/gcsp.2013.38] [PMID: 24689032]
[79]
Kuijpers, A.J.; van Wachem, P.B.; van Luyn, M.J.A.; Engbers, G.H.M.; Krijgsveld, J.; Zaat, S.A.J.; Dankert, J.; Feijen, J. In vivo and in vitro release of lysozyme from cross-linked gelatin hydrogels: a model system for the delivery of antibacterial proteins from prosthetic heart valves. J. Control. Release, 2000, 67(2-3), 323-336.
[http://dx.doi.org/10.1016/S0168-3659(00)00221-2] [PMID: 10825564]
[80]
Kim, T.K.; Yoon, J.J.; Lee, D.S.; Park, T.G. Gas foamed open porous biodegradable polymeric microspheres. Biomaterials, 2006, 27(2), 152-159.
[http://dx.doi.org/10.1016/j.biomaterials.2005.05.081] [PMID: 16023197]
[81]
Kumar, A.; Mishra, R.; Reinwald, Y.; Bhat, S. Cryogels: freezing unveiled by thawing. Mater. Today, 2010, 13(11), 42-44.
[http://dx.doi.org/10.1016/S1369-7021(10)70202-9]
[82]
Wade, R.J.; Bassin, E.J.; Rodell, C.B.; Burdick, J.A. Protease-degradable electrospun fibrous hydrogels. Nat. Commun., 2015, 6, 6639.
[http://dx.doi.org/10.1038/ncomms7639] [PMID: 25799370]
[83]
McDonnell, G.E.; Sheard, D. Sheard D.In A Practical Guide to Decontamination in Healthcare; Wiley-Blackwell, 2015, p. 460.
[84]
Singh, R.; Singh, D.; Singh, A. Radiation sterilization of tissue allografts: A review. World J. Radiol., 2016, 8(4), 355-369.
[http://dx.doi.org/10.4329/wjr.v8.i4.355] [PMID: 27158422]
[85]
Karajanagi, S.S.; Yoganathan, R.; Mammucari, R.; Park, H.; Cox, J.; Zeitels, S.M.; Langer, R.; Foster, N.R. Application of a dense gas technique for sterilizing soft biomaterials. Biotechnol. Bioeng., 2011, 108(7), 1716-1725.
[http://dx.doi.org/10.1002/bit.23105] [PMID: 21337339]
[86]
Bačáková, L.; Novotná, K.; Pařízek, M. Polysaccharides as cell carriers for tissue engineering: the use of cellulose in vascular wall reconstruction. Physiol. Res., 2014, 63(Suppl. 1), S29-S47.
[PMID: 24564664]
[87]
Slock, J.A.; Stahly, D.P. Polysaccharide that may serve as a carbon and energy storage compound for sporulation in Bacillus cereus. J. Bacteriol., 1974, 120(1), 399-406.
[http://dx.doi.org/10.1128/JB.120.1.399-406.1974] [PMID: 4214355]
[88]
Ge, Z.; Baguenard, S.; Lim, L.Y.; Wee, A.; Khor, E. Hydroxyapatite-chitin materials as potential tissue engineered bone substitutes. Biomaterials, 2004, 25(6), 1049-1058.
[http://dx.doi.org/10.1016/S0142-9612(03)00612-4] [PMID: 14615170]
[89]
Sudheesh Kumar, P.T.; Srinivasan, S.; Lakshmanan, V-K.; Tamura, H.; Nair, S.V.; Jayakumar, R. β-Chitin hydrogel/nano hydroxyapatite composite scaffolds for tissue engineering applications. Carbohydr. Polym., 2011, 85(3), 584-591.
[http://dx.doi.org/10.1016/j.carbpol.2011.03.018]
[90]
Liu, H.; Liu, J.; Qi, C.; Fang, Y.; Zhang, L.; Zhuo, R.; Jiang, X. Thermosensitive injectable in-situ forming carboxymethyl chitin hydrogel for three-dimensional cell culture. Acta Biomater., 2016, 35, 228-237.
[http://dx.doi.org/10.1016/j.actbio.2016.02.028] [PMID: 26911882]
[91]
Chang, C.; Peng, N.; He, M.; Teramoto, Y.; Nishio, Y.; Zhang, L. Fabrication and properties of chitin/hydroxyapatite hybrid hydrogels as scaffold nano-materials. Carbohydr. Polym., 2013, 91(1), 7-13.
[http://dx.doi.org/10.1016/j.carbpol.2012.07.070] [PMID: 23044099]
[92]
Kumar, P.T.S.; Srinivasan, S.; Lakshmanan, V-K.; Tamura, H.; Nair, S.V.; Jayakumar, R. Synthesis, characterization and cytocompatibility studies of α-chitin hydrogel/nano hydroxyapatite composite scaffolds. Int. J. Biol. Macromol., 2011, 49(1), 20-31.
[http://dx.doi.org/10.1016/j.ijbiomac.2011.03.006] [PMID: 21435350]
[93]
Suzuki, D.; Takahashi, M.; Abe, M.; Sarukawa, J.; Tamura, H.; Tokura, S.; Kurahashi, Y.; Nagano, A. Comparison of various mixtures of β-chitin and chitosan as a scaffold for three-dimensional culture of rabbit chondrocytes. J. Mater. Sci. Mater. Med., 2008, 19(3), 1307-1315.
[http://dx.doi.org/10.1007/s10856-007-3245-9] [PMID: 17851736]
[94]
Bi, B.; Ma, M.; Lv, S.; Zhuo, R.; Jiang, X. In-situ forming thermosensitive hydroxypropyl chitin-based hydrogel crosslinked by Diels-Alder reaction for three dimensional cell culture. Carbohydr. Polym., 2019, 212, 368-377.
[http://dx.doi.org/10.1016/j.carbpol.2019.02.058] [PMID: 30832869]
[95]
Ji, C.; Khademhosseini, A.; Dehghani, F. Enhancing cell penetration and proliferation in chitosan hydrogels for tissue engineering applications. Biomaterials, 2011, 32(36), 9719-9729.
[http://dx.doi.org/10.1016/j.biomaterials.2011.09.003] [PMID: 21925727]
[96]
Bhattarai, N.; Gunn, J.; Zhang, M. Chitosan-based hydrogels for controlled, localized drug delivery. Adv. Drug Deliv. Rev., 2010, 62(1), 83-99.
[http://dx.doi.org/10.1016/j.addr.2009.07.019] [PMID: 19799949]
[97]
Han, H.D.; Song, C.K.; Park, Y.S.; Noh, K.H.; Kim, J.H.; Hwang, T.; Kim, T.W.; Shin, B.C. A chitosan hydrogel-based cancer drug delivery system exhibits synergistic antitumor effects by combining with a vaccinia viral vaccine. Int. J. Pharm., 2008, 350(1-2), 27-34.
[http://dx.doi.org/10.1016/j.ijpharm.2007.08.014] [PMID: 17897800]
[98]
Chiu, Y.L.; Chen, S.C.; Su, C.J.; Hsiao, C.W.; Chen, Y.M.; Chen, H.L.; Sung, H.W. pH-triggered injectable hydrogels prepared from aqueous N-palmitoyl chitosan: in vitro characteristics and in vivo biocompatibility. Biomaterials, 2009, 30(28), 4877-4888.
[http://dx.doi.org/10.1016/j.biomaterials.2009.05.052] [PMID: 19527916]
[99]
Richardson, S.M.; Hughes, N.; Hunt, J.A.; Freemont, A.J.; Hoyland, J.A. Human mesenchymal stem cell differentiation to NP-like cells in chitosan-glycerophosphate hydrogels. Biomaterials, 2008, 29(1), 85-93.
[http://dx.doi.org/10.1016/j.biomaterials.2007.09.018] [PMID: 17920676]
[100]
Ngoenkam, J.; Faikrua, A.; Yasothornsrikul, S.; Viyoch, J. Potential of an injectable chitosan/starch/beta-glycerol phosphate hydrogel for sustaining normal chondrocyte function. Int. J. Pharm., 2010, 391(1-2), 115-124.
[http://dx.doi.org/10.1016/j.ijpharm.2010.02.028] [PMID: 20206248]
[101]
Ho, M.H.; Wang, D.M.; Hsieh, H.J.; Liu, H.C.; Hsien, T.Y.; Lai, J.Y.; Hou, L.T. Preparation and characterization of RGD-immobilized chitosan scaffolds. Biomaterials, 2005, 26(16), 3197-3206.
[http://dx.doi.org/10.1016/j.biomaterials.2004.08.032] [PMID: 15603814]
[102]
Ono, K.; Saito, Y.; Yura, H.; Ishikawa, K.; Kurita, A.; Akaike, T.; Ishihara, M. Photocrosslinkable chitosan as a biological adhesive. J. Biomed. Mater. Res., 2000, 49(2), 289-295.
[http://dx.doi.org/10.1002/(SICI)1097-4636(200002)49:2<289:AID-JBM18>3.0.CO;2-M] [PMID: 10571917]
[103]
Cheng, Y.; Luo, X.; Payne, G.F.; Rubloff, G.W. Biofabrication: programmable assembly of polysaccharide hydrogels in microfluidics as biocompatible scaffolds. J. Mater. Chem., 2012, 22(16), 7659-7666.
[http://dx.doi.org/10.1039/c2jm16215f]
[104]
Contessi, N.; Altomare, L.; Filipponi, A.; Farè, S. Thermo-responsive properties of methylcellulose hydrogels for cell sheet engineering. Mater. Lett., 2017, 207, 157-160.
[http://dx.doi.org/10.1016/j.matlet.2017.07.023]
[105]
Bhattacharya, M.; Malinen, M.M.; Lauren, P.; Lou, Y.R.; Kuisma, S.W.; Kanninen, L.; Lille, M.; Corlu, A. Nanofibrillar cellulose hydrogel promotes three-dimensional liver cell culture. J. Control. Release, 2012, 164(3), 291-298.
[http://dx.doi.org/10.1016/j.jconrel.2012.06.039] [PMID: 22776290]
[106]
Svensson, A.; Nicklasson, E.; Harrah, T.; Panilaitis, B.; Kaplan, D.L.; Brittberg, M.; Gatenholm, P. Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials, 2005, 26(4), 419-431.
[http://dx.doi.org/10.1016/j.biomaterials.2004.02.049] [PMID: 15275816]
[107]
Führmann, T.; Tam, R.Y.; Ballarin, B.; Coles, B.; Elliott Donaghue, I.; van der Kooy, D.; Nagy, A.; Tator, C.H.; Morshead, C.M.; Shoichet, M.S. Injectable hydrogel promotes early survival of induced pluripotent stem cell-derived oligodendrocytes and attenuates longterm teratoma formation in a spinal cord injury model. Biomaterials, 2016, 83, 23-36.
[http://dx.doi.org/10.1016/j.biomaterials.2015.12.032] [PMID: 26773663]
[108]
Loh, E.Y.X.; Mohamad, N.; Fauzi, M.B.; Ng, M.H.; Ng, S.F.; Mohd Amin, M.C.I. Development of a bacterial cellulose-based hydrogel cell carrier containing keratinocytes and fibroblasts for full-thickness wound healing. Sci. Rep., 2018, 8(1), 2875.
[http://dx.doi.org/10.1038/s41598-018-21174-7] [PMID: 29440678]
[109]
Raucci, M.G.; Alvarez-Perez, M.A.; Demitri, C.; Sannino, A.; Ambrosio, L. Proliferation and osteoblastic differentiation of hMSCs on cellulose-based hydrogels. J. Appl. Biomater. Funct. Mater., 2012, 10(3), 302-307.
[http://dx.doi.org/10.5301/JABFM.2012.10366] [PMID: 23242882]
[110]
Zhuo, F.; Liu, X.; Gao, Q.; Wang, Y.; Hu, K.; Cai, Q. Injectable hyaluronan-methylcellulose composite hydrogel crosslinked by polyethylene glycol for central nervous system tissue engineering. Mater. Sci. Eng. C, 2017, 81, 1-7.
[http://dx.doi.org/10.1016/j.msec.2017.07.029] [PMID: 28887951]
[111]
Lou, Y.R.; Kanninen, L.; Kuisma, T.; Niklander, J.; Noon, L.A.; Burks, D.; Urtti, A.; Yliperttula, M. The use of nanofibrillar cellulose hydrogel as a flexible three-dimensional model to culture human pluripotent stem cells. Stem Cells Dev., 2014, 23(4), 380-392.
[http://dx.doi.org/10.1089/scd.2013.0314] [PMID: 24188453]
[112]
Rowley, J.A.; Madlambayan, G.; Mooney, D.J. Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials, 1999, 20(1), 45-53.
[http://dx.doi.org/10.1016/S0142-9612(98)00107-0] [PMID: 9916770]
[113]
Augst, A.D.; Kong, H.J.; Mooney, D.J. Alginate hydrogels as biomaterials. Macromol. Biosci., 2006, 6(8), 623-633.
[http://dx.doi.org/10.1002/mabi.200600069] [PMID: 16881042]
[114]
Hong, S.; Sycks, D.; Chan, H.F.; Lin, S.; Lopez, G.P.; Guilak, F.; Leong, K.W.; Zhao, X. 3D printing of highly stretchable and tough hydrogels into complex, cellularized structures. Adv. Mater., 2015, 27(27), 4035-4040.
[http://dx.doi.org/10.1002/adma.201501099] [PMID: 26033288]
[115]
Hunt, N.C.; Hallam, D.; Karimi, A.; Mellough, C.B.; Chen, J.; Steel, D.H.W.; Lako, M. 3D culture of human pluripotent stem cells in RGD-alginate hydrogel improves retinal tissue development. Acta Biomater., 2017, 49, 329-343.
[http://dx.doi.org/10.1016/j.actbio.2016.11.016] [PMID: 27826002]
[116]
Hsiong, S.X.; Huebsch, N.; Fischbach, C.; Kong, H.J.; Mooney, D.J. Integrin-adhesion ligand bond formation of preosteoblasts and stem cells in three-dimensional RGD presenting matrices. Biomacromolecules, 2008, 9(7), 1843-1851.
[http://dx.doi.org/10.1021/bm8000606] [PMID: 18540674]
[117]
Andersen, T.; Auk-Emblem, P.; Dornish, M. 3d cell culture in alginate hydrogels. Microarrays (Basel), 2015, 4(2), 133-161.
[http://dx.doi.org/10.3390/microarrays4020133] [PMID: 27600217]
[118]
Grimmer, J.F.; Gunnlaugsson, C.B.; Alsberg, E.; Murphy, H.S.; Kong, H.J.; Mooney, D.J.; Weatherly, R.A. Tracheal reconstruction using tissue-engineered cartilage. Arch. Otolaryngol. Head Neck Surg., 2004, 130(10), 1191-1196.
[http://dx.doi.org/10.1001/archotol.130.10.1191] [PMID: 15492167]
[119]
Alsberg, E.; Anderson, K.W.; Albeiruti, A.; Franceschi, R.T.; Mooney, D.J. Cell-interactive alginate hydrogels for bone tissue engineering. J. Dent. Res., 2001, 80(11), 2025-2029.
[http://dx.doi.org/10.1177/00220345010800111501] [PMID: 11759015]
[120]
Alsberg, E.; Anderson, K.W.; Albeiruti, A.; Rowley, J.A.; Mooney, D.J. Engineering growing tissues. Proc. Natl. Acad. Sci. USA, 2002, 99(19), 12025-12030.
[http://dx.doi.org/10.1073/pnas.192291499] [PMID: 12218178]
[121]
Normand, V.; Lootens, D.L.; Amici, E.; Plucknett, K.P.; Aymard, P. New insight into agarose gel mechanical properties. Biomacromolecules, 2000, 1(4), 730-738.
[http://dx.doi.org/10.1021/bm005583j] [PMID: 11710204]
[122]
Sánchez-Salcedo, S.; Nieto, A.; Vallet-Regí, M. Hydroxyapatite/β-tricalcium phosphate/agarose macroporous scaffolds for bone tissue engineering. Chem. Eng. J., 2008, 137(1), 62-71.
[http://dx.doi.org/10.1016/j.cej.2007.09.011]
[123]
Yamada, Y.; Hozumi, K.; Aso, A.; Hotta, A.; Toma, K.; Katagiri, F.; Kikkawa, Y.; Nomizu, M. Laminin active peptide/agarose matrices as multifunctional biomaterials for tissue engineering. Biomaterials, 2012, 33(16), 4118-4125.
[http://dx.doi.org/10.1016/j.biomaterials.2012.02.044] [PMID: 22410171]
[124]
Campos, F.; Bonhome-Espinosa, A.B.; García-Martínez, L.; Durán, J.D.; López-López, M.T.; Alaminos, M.; Sánchez-Quevedo, M.C.; Carriel, V. Ex vivo characterization of a novel tissue-like cross-linked fibrin-agarose hydrogel for tissue engineering applications. Biomed. Mater., 2016, 11(5), 055004
[http://dx.doi.org/10.1088/1748-6041/11/5/055004] [PMID: 27680194]
[125]
Huang, C.Y.; Reuben, P.M.; D’Ippolito, G.; Schiller, P.C.; Cheung, H.S. Chondrogenesis of human bone marrow-derived mesenchymal stem cells in agarose culture. Anat. Rec. A Discov. Mol. Cell. Evol. Biol., 2004, 278(1), 428-436.
[http://dx.doi.org/10.1002/ar.a.20010] [PMID: 15103737]
[126]
Li, T.; Song, X.; Weng, C.; Wang, X.; Sun, L.; Gong, X.; Yang, L.; Chen, C. Self-crosslinking and injectable chondroitin sulfate/pullulan hydrogel for cartilage tissue engineering. Applied Materials Today, 2018, 10, 173-183.
[http://dx.doi.org/10.1016/j.apmt.2017.12.002]
[127]
Varghese, S.; Hwang, N.S.; Canver, A.C.; Theprungsirikul, P.; Lin, D.W.; Elisseeff, J. Chondroitin sulfate based niches for chondrogenic differentiation of mesenchymal stem cells. Matrix Biol., 2008, 27(1), 12-21.
[http://dx.doi.org/10.1016/j.matbio.2007.07.002] [PMID: 17689060]
[128]
Sechriest, V.F.; Miao, Y.J.; Niyibizi, C.; Westerhausen-Larson, A.; Matthew, H.W.; Evans, C.H.; Fu, F.H.; Suh, J.K. GAG-augmented polysaccharide hydrogel: a novel biocompatible and biodegradable material to support chondrogenesis. J. Biomed. Mater. Res., 2000, 49(4), 534-541.
[http://dx.doi.org/10.1002/(SICI)1097-4636(20000315)49:4<534:AID-JBM12>3.0.CO;2-#] [PMID: 10602087]
[129]
Park, Y.J.; Lee, Y.M.; Lee, J.Y.; Seol, Y.J.; Chung, C.P.; Lee, S.J. Controlled release of platelet-derived growth factor-BB from chondroitin sulfate-chitosan sponge for guided bone regeneration. J. Control. Release, 2000, 67(2-3), 385-394.
[http://dx.doi.org/10.1016/S0168-3659(00)00232-7] [PMID: 10825569]
[130]
Li, Y.; Rodrigues, J.; Tomás, H. Injectable and biodegradable hydrogels: gelation, biodegradation and biomedical applications. Chem. Soc. Rev., 2012, 41(6), 2193-2221.
[http://dx.doi.org/10.1039/C1CS15203C] [PMID: 22116474]
[131]
Domingues, R.M.A.; Silva, M.; Gershovich, P.; Betta, S.; Babo, P.; Caridade, S.G.; Mano, J.F.; Motta, A.; Reis, R.L.; Gomes, M.E. Development of injectable hyaluronic acid/cellulose nanocrystals bionanocomposite hydrogels for tissue engineering applications. Bioconjug. Chem., 2015, 26(8), 1571-1581.
[http://dx.doi.org/10.1021/acs.bioconjchem.5b00209] [PMID: 26106949]
[132]
Jin, R.; Moreira Teixeira, L.S.; Krouwels, A.; Dijkstra, P.J.; van Blitterswijk, C.A.; Karperien, M.; Feijen, J. Synthesis and characterization of hyaluronic acid-poly(ethylene glycol) hydrogels via Michael addition: An injectable biomaterial for cartilage repair. Acta Biomater., 2010, 6(6), 1968-1977.
[http://dx.doi.org/10.1016/j.actbio.2009.12.024] [PMID: 20025999]
[133]
Kim, J.; Kim, I.S.; Cho, T.H.; Lee, K.B.; Hwang, S.J.; Tae, G.; Noh, I.; Lee, S.H.; Park, Y.; Sun, K. Bone regeneration using hyaluronic acid-based hydrogel with bone morphogenic protein-2 and human mesenchymal stem cells. Biomaterials, 2007, 28(10), 1830-1837.
[http://dx.doi.org/10.1016/j.biomaterials.2006.11.050] [PMID: 17208295]
[134]
Zacchi, V.; Soranzo, C.; Cortivo, R.; Radice, M.; Brun, P.; Abatangelo, G. In vitro engineering of human skin-like tissue. J. Biomed. Mater. Res., 1998, 40(2), 187-194.
[http://dx.doi.org/10.1002/(SICI)1097-4636(199805)40:2<187:AID-JBM3>3.0.CO;2-H] [PMID: 9549613]
[135]
Noh, I.; Kim, N.; Tran, H.N.; Lee, J.; Lee, C. 3D printable hyaluronic acid-based hydrogel for its potential application as a bioink in tissue engineering. Biomater. Res., 2019, 23(1), 3.
[http://dx.doi.org/10.1186/s40824-018-0152-8] [PMID: 30774971]
[136]
Gopinath, V.; Saravanan, S.; Al-Maleki, A.R.; Ramesh, M.; Vadivelu, J. A review of natural polysaccharides for drug delivery applications: Special focus on cellulose, starch and glycogen. Biomed. Pharmacother., 2018, 107, 96-108.
[http://dx.doi.org/10.1016/j.biopha.2018.07.136] [PMID: 30086465]
[137]
Perrone, M.; Lopalco, A.; Lopedota, A.; Cutrignelli, A.; Laquintana, V.; Douglas, J.; Franco, M.; Liberati, E.; Russo, V.; Tongiani, S.; Denora, N.; Bernkop-Schnürch, A. Preactivated thiolated glycogen as mucoadhesive polymer for drug delivery. Eur. J. Pharm. Biopharm., 2017, 119, 161-169.
[http://dx.doi.org/10.1016/j.ejpb.2017.06.011] [PMID: 28610879]
[138]
Engelberth, S.A.; Hempel, N.; Bergkvist, M. Cationic dendritic starch as a vehicle for photodynamic therapy and siRNA co-delivery. J. Photochem. Photobiol. B, 2017, 168, 185-192.
[http://dx.doi.org/10.1016/j.jphotobiol.2017.02.013] [PMID: 28237436]
[139]
Patra, P.; Seesala, V.S.; Das, D.; Panda, A.B.; Dhara, S.; Pal, S. Biopolymeric nanogel derived from functionalized glycogen towards targeted delivery of 5-fluorouracil. Polymer (Guildf.), 2018, 140, 122-130.
[http://dx.doi.org/10.1016/j.polymer.2018.02.015]
[140]
Rousseau, C.F.; Gagnieu, C.H. In vitro cytocompatibility of porcine type I atelocollagen crosslinked by oxidized glycogen. Biomaterials, 2002, 23(6), 1503-1510.
[http://dx.doi.org/10.1016/S0142-9612(01)00276-9] [PMID: 11829447]
[141]
Rabyk, M.; Hruby, M.; Vetrik, M.; Kucka, J.; Proks, V.; Parizek, M.; Konefal, R.; Krist, P.; Chvatil, D.; Bacakova, L.; Slouf, M.; Stepanek, P. Modified glycogen as construction material for functional biomimetic microfibers. Carbohydr. Polym., 2016, 152, 271-279.
[http://dx.doi.org/10.1016/j.carbpol.2016.06.107] [PMID: 27516273]
[142]
Oliveira, J.T.; Crawford, A.; Mundy, J.M.; Moreira, A.R.; Gomes, M.E.; Hatton, P.V.; Reis, R.L. A cartilage tissue engineering approach combining starch-polycaprolactone fibre mesh scaffolds with bovine articular chondrocytes. J. Mater. Sci. Mater. Med., 2007, 18(2), 295-302.
[http://dx.doi.org/10.1007/s10856-006-0692-7] [PMID: 17323161]
[143]
Elvira, C.; Mano, J.F.; San Román, J.; Reis, R.L. Starch-based biodegradable hydrogels with potential biomedical applications as drug delivery systems. Biomaterials, 2002, 23(9), 1955-1966.
[http://dx.doi.org/10.1016/S0142-9612(01)00322-2] [PMID: 11996036]
[144]
Gomes, M.E.; Godinho, J.S.; Tchalamov, D.; Cunha, A.M.; Reis, R.L. Alternative tissue engineering scaffolds based on starch: processing methodologies, morphology, degradation and mechanical properties. Mater. Sci. Eng. C, 2002, 20(1), 19-26.
[http://dx.doi.org/10.1016/S0928-4931(02)00008-5]
[145]
Salgado, A.J.; Gomes, M.E.; Chou, A.; Coutinho, O.P.; Reis, R.L.; Hutmacher, D.W. Preliminary study on the adhesion and proliferation of human osteoblasts on starch-based scaffolds. Mater. Sci. Eng. C, 2002, 20(1), 27-33.
[http://dx.doi.org/10.1016/S0928-4931(02)00009-7]
[146]
Van Nieuwenhove, I.; Salamon, A.; Adam, S.; Dubruel, P.; Van Vlierberghe, S.; Peters, K. Gelatin- and starch-based hydrogels. Part B: In vitro mesenchymal stem cell behavior on the hydrogels. Carbohydr. Polym., 2017, 161, 295-305.
[http://dx.doi.org/10.1016/j.carbpol.2017.01.010] [PMID: 28189242]
[147]
Dong, D.; Hao, T.; Wang, C.; Zhang, Y.; Qin, Z.; Yang, B.; Fang, W.; Ye, L.; Yao, F.; Li, J. Zwitterionic starch-based hydrogel for the expansion and “stemness” maintenance of brown adipose derived stem cells. Biomaterials, 2018, 157, 149-160.
[http://dx.doi.org/10.1016/j.biomaterials.2017.12.011] [PMID: 29272722]
[148]
Kamoun, E.A. N-succinyl chitosan-dialdehyde starch hybrid hydrogels for biomedical applications. J. Adv. Res., 2016, 7(1), 69-77.
[http://dx.doi.org/10.1016/j.jare.2015.02.002] [PMID: 26843972]
[149]
Gomes, M.E.; Ribeiro, A.S.; Malafaya, P.B.; Reis, R.L.; Cunha, A.M. A new approach based on injection moulding to produce biodegradable starch-based polymeric scaffolds: morphology, mechanical and degradation behaviour. Biomaterials, 2001, 22(9), 883-889.
[http://dx.doi.org/10.1016/S0142-9612(00)00211-8] [PMID: 11311006]
[150]
Amrita, ; Arora, A.; Sharma, P.; Katti, D.S. Pullulan-based composite scaffolds for bone tissue engineering: Improved osteoconductivity by pore wall mineralization. Carbohydr. Polym., 2015, 123, 180-189.
[http://dx.doi.org/10.1016/j.carbpol.2015.01.038] [PMID: 25843850]
[151]
Wong, V.W.; Rustad, K.C.; Galvez, M.G.; Neofytou, E.; Glotzbach, J.P.; Januszyk, M.; Major, M.R.; Sorkin, M.; Longaker, M.T.; Rajadas, J.; Gurtner, G.C. Engineered pullulan-collagen composite dermal hydrogels improve early cutaneous wound healing. Tissue Eng. Part A, 2011, 17(5-6), 631-644.
[http://dx.doi.org/10.1089/ten.tea.2010.0298] [PMID: 20919949]
[152]
S, I.; A. V, B.; Velswamy, P.; T. S, U.; Perumal, P.T., Design and development of a piscine collagen blended pullulan hydrogel for skin tissue engineering. RSC Advances, 2016, 6(63), 57863-57871.
[http://dx.doi.org/10.1039/C6RA03578G]
[153]
Chen, F.; Yu, S.; Liu, B.; Ni, Y.; Yu, C.; Su, Y.; Zhu, X.; Yu, X.; Zhou, Y.; Yan, D. An injectable enzymatically crosslinked carboxymethylated pullulan/chondroitin sulfate hydrogel for cartilage tissue engineering. Sci. Rep., 2016, 6, 20014.
[http://dx.doi.org/10.1038/srep20014] [PMID: 26817622]
[154]
Henry, N.; Clouet, J.; Fragale, A.; Griveau, L.; Chédeville, C.; Véziers, J.; Weiss, P.; Le Bideau, J.; Guicheux, J.; Le Visage, C. Pullulan microbeads/Si-HPMC hydrogel injectable system for the sustained delivery of GDF-5 and TGF-β1: new insight into intervertebral disc regenerative medicine. Drug Deliv., 2017, 24(1), 999-1010.
[http://dx.doi.org/10.1080/10717544.2017.1340362] [PMID: 28645219]
[155]
Zhang, L.; Liu, J.; Zheng, X.; Zhang, A.; Zhang, X.; Tang, K. Pullulan dialdehyde crosslinked gelatin hydrogels with high strength for biomedical applications. Carbohydr. Polym., 2019, 216, 45-53.
[http://dx.doi.org/10.1016/j.carbpol.2019.04.004] [PMID: 31047081]
[156]
Feng, W.; Feng, S.; Tang, K.; He, X.; Jing, A.; Liang, G. A novel composite of collagen-hydroxyapatite/kappa-carrageenan. J. Alloys Compd., 2017, 693, 482-489.
[http://dx.doi.org/10.1016/j.jallcom.2016.09.234]
[157]
González, J.I.; Ossa, C.P.O. Injectability Evaluation of Bone-Graft Substitutes Based on Carrageenan and Hydroxyapatite Nanorods. In: The Minerals, Metals & Materials Series; Springer: Cham, 2017, pp. 33-46.
[http://dx.doi.org/10.1007/978-3-319-52132-9_4]
[158]
Li, J.; Yang, B.; Qian, Y.; Wang, Q.; Han, R.; Hao, T.; Shu, Y.; Zhang, Y.; Yao, F.; Wang, C. Iota-carrageenan/chitosan/gelatin scaffold for the osteogenic differentiation of adipose-derived MSCs in vitro. J. Biomed. Mater. Res. B Appl. Biomater., 2015, 103(7), 1498-1510.
[http://dx.doi.org/10.1002/jbm.b.33339] [PMID: 25449538]
[159]
Popa, E.G.; Santo, V.E.; Rodrigues, M.T.; Gomes, M.E. Magnetically-responsive hydrogels for modulation of chondrogenic commitment of human adipose-derived stem cells. Polymers (Basel), 2016, 8(2), 28.
[http://dx.doi.org/10.3390/polym8020028] [PMID: 30979122]
[160]
DeLise, A.M.; Fischer, L.; Tuan, R.S. Cellular interactions and signaling in cartilage development. Osteoarthritis Cartilage, 2000, 8(5), 309-334.
[http://dx.doi.org/10.1053/joca.1999.0306] [PMID: 10966838]
[161]
Thébaud, N-B.; Pierron, D.; Bareille, R.; Le Visage, C.; Letourneur, D.; Bordenave, L. Human endothelial progenitor cell attachment to polysaccharide-based hydrogels: a pre-requisite for vascular tissue engineering. J. Mater. Sci. Mater. Med., 2007, 18(2), 339-345.
[http://dx.doi.org/10.1007/s10856-006-0698-1] [PMID: 17323167]
[162]
Dash, M.; Samal, S.K.; Bartoli, C.; Morelli, A.; Smet, P.F.; Dubruel, P.; Chiellini, F. Biofunctionalization of ulvan scaffolds for bone tissue engineering. ACS Appl. Mater. Interfaces, 2014, 6(5), 3211-3218.
[http://dx.doi.org/10.1021/am404912c] [PMID: 24494863]
[163]
Liang, Y.; Kiick, K.L. Heparin-functionalized polymeric biomaterials in tissue engineering and drug delivery applications. Acta Biomater., 2014, 10(4), 1588-1600.
[http://dx.doi.org/10.1016/j.actbio.2013.07.031] [PMID: 23911941]
[164]
Linhardt, R.J. Heparin-induced cancer cell death. Chem. Biol., 2004, 11(4), 420-422.
[http://dx.doi.org/10.1016/j.chembiol.2004.04.001] [PMID: 15123235]
[165]
García-Fernández, L.; Halstenberg, S.; Unger, R.E.; Aguilar, M.R.; Kirkpatrick, C.J.; San Román, J. Anti-angiogenic activity of heparin-like polysulfonated polymeric drugs in 3D human cell culture. Biomaterials, 2010, 31(31), 7863-7872.
[http://dx.doi.org/10.1016/j.biomaterials.2010.07.022] [PMID: 20674006]
[166]
Rohman, G.; Baker, S.C.; Southgate, J.; Cameron, N.R. Heparin functionalisation of porous PLGA scaffolds for controlled, biologically relevant delivery of growth factors for soft tissue engineering. J. Mater. Chem., 2009, 19(48), 9265-9273.
[http://dx.doi.org/10.1039/b911625g]
[167]
Willerth, S.M.; Rader, A.; Sakiyama-Elbert, S.E. The effect of controlled growth factor delivery on embryonic stem cell differentiation inside fibrin scaffolds. Stem Cell Res. (Amst.), 2008, 1(3), 205-218.
[http://dx.doi.org/10.1016/j.scr.2008.05.006] [PMID: 19383401]
[168]
Johnson, P.J.; Tatara, A.; Shiu, A.; Sakiyama-Elbert, S.E. Controlled release of neurotrophin-3 and platelet-derived growth factor from fibrin scaffolds containing neural progenitor cells enhances survival and differentiation into neurons in a subacute model of SCI. Cell Transplant., 2010, 19(1), 89-101.
[http://dx.doi.org/10.3727/096368909X477273] [PMID: 19818206]
[169]
Tae, G.; Kim, Y-J.; Choi, W-I.; Kim, M.; Stayton, P.S.; Hoffman, A.S. Formation of a novel heparin-based hydrogel in the presence of heparin-binding biomolecules. Biomacromolecules, 2007, 8(6), 1979-1986.
[http://dx.doi.org/10.1021/bm0701189] [PMID: 17511500]
[170]
Kim, M.; Shin, Y.; Hong, B.H.; Kim, Y.J.; Chun, J.S.; Tae, G.; Kim, Y.H. In vitro chondrocyte culture in a heparin-based hydrogel for cartilage regeneration. Tissue Eng. Part C Methods, 2010, 16(1), 1-10.
[http://dx.doi.org/10.1089/ten.tec.2008.0548] [PMID: 19327003]
[171]
Liu, M.; Zeng, X.; Ma, C.; Yi, H.; Ali, Z.; Mou, X.; Li, S.; Deng, Y.; He, N. Injectable hydrogels for cartilage and bone tissue engineering. Bone Res., 2017, 5, 17014.
[http://dx.doi.org/10.1038/boneres.2017.14] [PMID: 28584674]
[172]
Lee, Y.B.; Polio, S.; Lee, W.; Dai, G.; Menon, L.; Carroll, R.S.; Yoo, S.S. Bio-printing of collagen and VEGF-releasing fibrin gel scaffolds for neural stem cell culture. Exp. Neurol., 2010, 223(2), 645-652.
[http://dx.doi.org/10.1016/j.expneurol.2010.02.014] [PMID: 20211178]
[173]
Nguyen, B.B.; Moriarty, R.A.; Kamalitdinov, T.; Etheridge, J.M.; Fisher, J.P. Collagen hydrogel scaffold promotes mesenchymal stem cell and endothelial cell coculture for bone tissue engineering. J. Biomed. Mater. Res. A, 2017, 105(4), 1123-1131.
[http://dx.doi.org/10.1002/jbm.a.36008] [PMID: 28093887]
[174]
Buitrago, J.O.; Patel, K.D.; El-Fiqi, A.; Lee, J-H.; Kundu, B.; Lee, H-H.; Kim, H-W. Silk fibroin/collagen protein hybrid cell-encapsulating hydrogels with tunable gelation and improved physical and biological properties. Acta Biomater., 2018, 69, 218-233.
[http://dx.doi.org/10.1016/j.actbio.2017.12.026] [PMID: 29410166]
[175]
Moraes, P.R.F.S.; Saska, S.; Barud, H.; Lima, L.R.d.; Martins, V.C.A.; Plepis, A.M.G.; Ribeiro, S.J.L.; Gaspar, A.M.M. bacterial cellulose/collagen hydrogel for wound healing. Mater. Res., 2016, 19, 106-116.
[http://dx.doi.org/10.1590/1980-5373-MR-2015-0249]
[176]
Yang, Z.; Cao, H.; Gao, S.; Yang, M.; Lyu, J.; Tang, K. effect of tendon stem cells in chitosan/β-glycerophosphate/collagen hydrogel on achilles tendon healing in a rat model. Med. Sci. Monit., 2017, 23, 4633-4643.
[http://dx.doi.org/10.12659/MSM.906747] [PMID: 28951538]
[177]
Fu, Y.; Xu, K.; Zheng, X.; Giacomin, A.J.; Mix, A.W.; Kao, W.J. 3D cell entrapment in crosslinked thiolated gelatin-poly(ethylene glycol) diacrylate hydrogels. Biomaterials, 2012, 33(1), 48-58.
[http://dx.doi.org/10.1016/j.biomaterials.2011.09.031] [PMID: 21955690]
[178]
Nikkhah, M.; Eshak, N.; Zorlutuna, P.; Annabi, N.; Castello, M.; Kim, K.; Dolatshahi-Pirouz, A.; Edalat, F.; Bae, H.; Yang, Y.; Khademhosseini, A. Directed endothelial cell morphogenesis in micropatterned gelatin methacrylate hydrogels. Biomaterials, 2012, 33(35), 9009-9018.
[http://dx.doi.org/10.1016/j.biomaterials.2012.08.068] [PMID: 23018132]
[179]
Das, S.; Pati, F.; Choi, Y.J.; Rijal, G.; Shim, J.H.; Kim, S.W.; Ray, A.R.; Cho, D.W.; Ghosh, S. Bioprintable, cell-laden silk fibroin-gelatin hydrogel supporting multilineage differentiation of stem cells for fabrication of three-dimensional tissue constructs. Acta Biomater., 2015, 11, 233-246.
[http://dx.doi.org/10.1016/j.actbio.2014.09.023] [PMID: 25242654]
[180]
Liu, Y.; Chan-Park, M.B. A biomimetic hydrogel based on methacrylated dextran-graft-lysine and gelatin for 3D smooth muscle cell culture. Biomaterials, 2010, 31(6), 1158-1170.
[http://dx.doi.org/10.1016/j.biomaterials.2009.10.040] [PMID: 19897239]
[181]
D’Urso, E.M.; Jean-François, J.; Doillon, C.J.; Fortier, G. Poly(ethylene glycol)-serum albumin hydrogel as matrix for enzyme immobilization: biomedical applications. Artif. Cells Blood Substit. Immobil. Biotechnol., 1995, 23(5), 587-595.
[http://dx.doi.org/10.3109/10731199509117973] [PMID: 8528452]
[182]
Reece, T.B.; Maxey, T.S.; Kron, I.L. A prospectus on tissue adhesives. Am. J. Surg., 2001, 182(2)(Suppl.), 40S-44S.
[http://dx.doi.org/10.1016/S0002-9610(01)00742-5] [PMID: 11566476]
[183]
Subia, B.; Kundu, S.C. Drug loading and release on tumor cells using silk fibroin-albumin nanoparticles as carriers. Nanotechnology, 2013, 24(3), 035103
[http://dx.doi.org/10.1088/0957-4484/24/3/035103] [PMID: 23262833]
[184]
Raja, S.T.K.; Thiruselvi, T.; Mandal, A.B.; Gnanamani, A. pH and redox sensitive albumin hydrogel: A self-derived biomaterial. Sci. Rep., 2015, 5, 15977.
[http://dx.doi.org/10.1038/srep15977] [PMID: 26527296]
[185]
Schmoekel, H.G.; Weber, F.E.; Schense, J.C.; Grätz, K.W.; Schawalder, P.; Hubbell, J.A. Bone repair with a form of BMP-2 engineered for incorporation into fibrin cell ingrowth matrices. Biotechnol. Bioeng., 2005, 89(3), 253-262.
[http://dx.doi.org/10.1002/bit.20168] [PMID: 15619323]
[186]
Liu, J.; Tan, Y.; Zhang, H.; Zhang, Y.; Xu, P.; Chen, J.; Poh, Y.C.; Tang, K.; Wang, N.; Huang, B. Soft fibrin gels promote selection and growth of tumorigenic cells. Nat. Mater., 2012, 11(8), 734-741.
[http://dx.doi.org/10.1038/nmat3361] [PMID: 22751180]
[187]
Schmoekel, H.; Schense, J.C.; Weber, F.E.; Grätz, K.W.; Gnägi, D.; Müller, R.; Hubbell, J.A. Bone healing in the rat and dog with nonglycosylated BMP-2 demonstrating low solubility in fibrin matrices. J. Orthop. Res., 2004, 22(2), 376-381.
[http://dx.doi.org/10.1016/S0736-0266(03)00188-8] [PMID: 15013099]
[188]
Janmey, P.A.; Winer, J.P.; Weisel, J.W. Fibrin gels and their clinical and bioengineering applications. J. R. Soc. Interface, 2009, 6(30), 1-10.
[http://dx.doi.org/10.1098/rsif.2008.0327] [PMID: 18801715]
[189]
Boublik, J.; Park, H.; Radisic, M.; Tognana, E.; Chen, F.; Pei, M.; Vunjak-Novakovic, G.; Freed, L.E. Mechanical properties and remodeling of hybrid cardiac constructs made from heart cells, fibrin, and biodegradable, elastomeric knitted fabric. Tissue Eng., 2005, 11(7-8), 1122-1132.
[http://dx.doi.org/10.1089/ten.2005.11.1122] [PMID: 16144448]
[190]
Passaretti, D.; Silverman, R.P.; Huang, W.; Kirchhoff, C.H.; Ashiku, S.; Randolph, M.A.; Yaremchuk, M.J. Cultured chondrocytes produce injectable tissue-engineered cartilage in hydrogel polymer. Tissue Eng., 2001, 7(6), 805-815.
[http://dx.doi.org/10.1089/107632701753337744] [PMID: 11749736]
[191]
Rowe, S.L.; Stegemann, J.P. Interpenetrating collagen-fibrin composite matrices with varying protein contents and ratios. Biomacromolecules, 2006, 7(11), 2942-2948.
[http://dx.doi.org/10.1021/bm0602233] [PMID: 17096517]
[192]
Fini, M.; Motta, A.; Torricelli, P.; Giavaresi, G.; Nicoli Aldini, N.; Tschon, M.; Giardino, R.; Migliaresi, C. The healing of confined critical size cancellous defects in the presence of silk fibroin hydrogel. Biomaterials, 2005, 26(17), 3527-3536.
[http://dx.doi.org/10.1016/j.biomaterials.2004.09.040] [PMID: 15621243]
[193]
Mitropoulos, A.N.; Marelli, B.; Ghezzi, C.E.; Applegate, M.B.; Partlow, B.P.; Kaplan, D.L.; Omenetto, F.G. transparent, nanostructured silk fibroin hydrogels with tunable mechanical properties. ACS Biomater. Sci. Eng., 2015, 1(10), 964-970.
[http://dx.doi.org/10.1021/acsbiomaterials.5b00215]
[194]
Motta, A.; Migliaresi, C.; Faccioni, F.; Torricelli, P.; Fini, M.; Giardino, R. Fibroin hydrogels for biomedical applications: preparation, characterization and in vitro cell culture studies. J. Biomater. Sci. Polym. Ed., 2004, 15(7), 851-864.
[http://dx.doi.org/10.1163/1568562041271075] [PMID: 15318796]
[195]
Aoki, H.; Tomita, N.; Morita, Y.; Hattori, K.; Harada, Y.; Sonobe, M.; Wakitani, S.; Tamada, Y. Culture of chondrocytes in fibroin-hydrogel sponge. Biomed. Mater. Eng., 2003, 13(4), 309-316.
[PMID: 14646046]
[196]
Cavo, M.; Caria, M.; Pulsoni, I.; Beltrame, F.; Fato, M.; Scaglione, S. A new cell-laden 3D Alginate-Matrigel hydrogel resembles human breast cancer cell malignant morphology, spread and invasion capability observed “in vivo”. Sci. Rep., 2018, 8(1), 5333.
[http://dx.doi.org/10.1038/s41598-018-23250-4] [PMID: 29593247]
[197]
Miao, Z.; Lu, Z.; Wu, H.; Liu, H.; Li, M.; Lei, D.; Zheng, L.; Zhao, J. Collagen, agarose, alginate, and Matrigel hydrogels as cell substrates for culture of chondrocytes in vitro: A comparative study. J. Cell. Biochem., 2018, 119(10), 7924-7933.
[http://dx.doi.org/10.1002/jcb.26411] [PMID: 28941304]
[198]
Maxian, S.H.; Di Stefano, T.; Melican, M.C.; Tiku, M.L.; Zawadsky, J.P. Bone cell behavior on Matrigel-coated Ca/P coatings of varying crystallinities. J. Biomed. Mater. Res., 1998, 40(2), 171-179.
[http://dx.doi.org/10.1002/(SICI)1097-4636(199805)40:2<171:AID-JBM1>3.0.CO;2-I] [PMID: 9549611]
[199]
Ramos-Hryb, A.B.; Da-Costa, M.C.; Trentin, A.G.; Calloni, G.W. Matrigel supports neural, melanocytic and chondrogenic differentiation of trunk neural crest cells. Int. J. Dev. Biol., 2013, 57(11-12), 885-890.
[http://dx.doi.org/10.1387/ijdb.130206gw] [PMID: 24623080]
[200]
Chien, K.B.; Chung, E.J.; Shah, R.N. Investigation of soy protein hydrogels for biomedical applications: materials characterization, drug release, and biocompatibility. J. Biomater. Appl., 2014, 28(7), 1085-1096.
[http://dx.doi.org/10.1177/0885328213497413] [PMID: 23900448]
[201]
Demir, M.; Ramos-Rivera, L.; Silva, R.; Nazhat, S.N.; Boccaccini, A.R. Zein-based composites in biomedical applications. J. Biomed. Mater. Res. A, 2017, 105(6), 1656-1665.
[http://dx.doi.org/10.1002/jbm.a.36040] [PMID: 28205372]
[202]
Zinn, M.; Witholt, B.; Egli, T. Occurrence, synthesis and medical application of bacterial polyhydroxyalkanoate. Adv. Drug Deliv. Rev., 2001, 53(1), 5-21.
[http://dx.doi.org/10.1016/S0169-409X(01)00218-6] [PMID: 11733115]
[203]
Chen, W.; Tong, Y.W. PHBV microspheres as neural tissue engineering scaffold support neuronal cell growth and axon-dendrite polarization. Acta Biomater., 2012, 8(2), 540-548.
[http://dx.doi.org/10.1016/j.actbio.2011.09.026] [PMID: 22005329]
[204]
Sultana, N.; Khan, T.H. In vitro degradation of PHBV scaffolds and nHA/PHBV composite scaffolds containing hydroxyapatite nanoparticles for bone tissue engineering. J. Nanomater., 2012, 2012, 12.
[http://dx.doi.org/10.1155/2012/190950]
[205]
Nebe, B.; Forster, C.; Pommerenke, H.; Fulda, G.; Behrend, D.; Bernewski, U.; Schmitz, K-P.; Rychly, J. Structural alterations of adhesion mediating components in cells cultured on poly-β-hydroxy butyric acid. Biomaterials, 2001, 22(17), 2425-2434.
[http://dx.doi.org/10.1016/S0142-9612(00)00430-0] [PMID: 11511040]
[206]
Chang, H.M.; Wang, Z.H.; Luo, H.N.; Xu, M.; Ren, X.Y.; Zheng, G.X.; Wu, B.J.; Zhang, X.H.; Lu, X.Y.; Chen, F.; Jing, X.H.; Wang, L. Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)-based scaffolds for tissue engineering. Braz. J. Med. Biol. Res., 2014, 47(7), 533-539.
[http://dx.doi.org/10.1590/1414-431X20143930] [PMID: 25003631]
[207]
Tamm, I.; Heinämäki, J.; Laidmäe, I.; Rammo, L.; Paaver, U.; Ingebrigtsen, S.G.; Škalko-Basnet, N.; Halenius, A.; Yliruusi, J.; Pitkänen, P.; Alakurtti, S.; Kogermann, K. Development of suberin fatty acids and chloramphenicol-loaded antimicrobial electrospun nanofibrous mats intended for wound therapy. J. Pharm. Sci., 2016, 105(3), 1239-1247.
[http://dx.doi.org/10.1016/j.xphs.2015.12.025] [PMID: 26886306]
[208]
Jansson, P-E.; Lindberg, B.; Sandford, P.A. Structural studies of gellan gum, an extracellular polysaccharide elaborated by Pseudomonas elodea. Carbohydr. Res., 1983, 124(1), 135-139.
[http://dx.doi.org/10.1016/0008-6215(83)88361-X]
[209]
Carlfors, J.; Edsman, K.; Petersson, R.; Jörnving, K. Rheological evaluation of Gelrite in situ gels for ophthalmic use. Eur. J. Pharm. Sci., 1998, 6(2), 113-119.
[http://dx.doi.org/10.1016/S0928-0987(97)00074-2] [PMID: 9795027]
[210]
Kani, K.; Horinaka, J-I.; Maeda, S. Effects of monovalent cation and anion species on the conformation of gellan chains in aqueous systems. Carbohydr. Polym., 2005, 61(2), 168-173.
[http://dx.doi.org/10.1016/j.carbpol.2005.04.011]
[211]
Matsukawa, S.; Huang, Z.; Watanabe, T. Structural change of polymer chains of gellan monitored by circular dichroism. In: Physical Chemistry and Industrial Application of Gellan Gum. Progress in Colloid and Polymer Science; Nishinari, K., Ed.; Springer Berlin Heidelberg: Berlin, Heidelberg, 1999, Vol. 114, pp. 92-97.
[http://dx.doi.org/10.1007/3-540-48349-7_13]
[212]
Moxon, S.R.; Smith, A.M. Controlling the rheology of gellan gum hydrogels in cell culture conditions. Int. J. Biol. Macromol., 2016, 84, 79-86.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.12.007] [PMID: 26683878]
[213]
Koivisto, J.T.; Joki, T.; Parraga, J.E.; Pääkkönen, R.; Ylä-Outinen, L.; Salonen, L.; Jönkkäri, I.; Peltola, M.; Ihalainen, T.O.; Narkilahti, S.; Kellomäki, M. Bioamine-crosslinked gellan gum hydrogel for neural tissue engineering. Biomed. Mater., 2017, 12(2), 025014
[http://dx.doi.org/10.1088/1748-605X/aa62b0] [PMID: 28233757]
[214]
Ahmed, R.Z.; Siddiqui, K.; Arman, M.; Ahmed, N. Characterization of high molecular weight dextran produced by Weissella cibaria CMGDEX3. Carbohydr. Polym., 2012, 90(1), 441-446.
[http://dx.doi.org/10.1016/j.carbpol.2012.05.063] [PMID: 24751063]
[215]
Stenekes, R.J.H.; Talsma, H.; Hennink, W.E. Formation of dextran hydrogels by crystallization. Biomaterials, 2001, 22(13), 1891-1898.
[http://dx.doi.org/10.1016/S0142-9612(00)00375-6] [PMID: 11396895]
[216]
Jin, R.; Moreira Teixeira, L.S.; Dijkstra, P.J.; van Blitterswijk, C.A.; Karperien, M.; Feijen, J. Chondrogenesis in injectable enzymatically crosslinked heparin/dextran hydrogels. J. Control. Release, 2011, 152(1), 186-195.
[http://dx.doi.org/10.1016/j.jconrel.2011.01.031] [PMID: 21291927]
[217]
Hennink, W.E.; Talsma, H.; Borchert, J.C.H.; De Smedt, S.C.; Demeester, J. Controlled release of proteins from dextran hydrogels. J. Control. Release, 1996, 39(1), 47-55.
[http://dx.doi.org/10.1016/0168-3659(95)00132-8]
[218]
Bueno, V.B.; Bentini, R.; Catalani, L.H.; Petri, D.F.S. Synthesis and swelling behavior of xanthan-based hydrogels. Carbohydr. Polym., 2013, 92(2), 1091-1099.
[http://dx.doi.org/10.1016/j.carbpol.2012.10.062] [PMID: 23399133]
[219]
Kumar, A.; Rao, K.M.; Han, S.S. Application of xanthan gum as polysaccharide in tissue engineering: A review. Carbohydr. Polym., 2018, 180, 128-144.
[http://dx.doi.org/10.1016/j.carbpol.2017.10.009] [PMID: 29103488]
[220]
Liu, Z.; Yao, P. Injectable shear-thinning xanthan gum hydrogel reinforced by mussel-inspired secondary crosslinking. RSC Advances, 2015, 5(125), 103292-103301.
[http://dx.doi.org/10.1039/C5RA17246B]
[221]
Sehgal, R.R.; Roohani-Esfahani, S.I.; Zreiqat, H.; Banerjee, R. Nanostructured gellan and xanthan hydrogel depot integrated within a baghdadite scaffold augments bone regeneration. J. Tissue Eng. Regen. Med., 2017, 11(4), 1195-1211.
[http://dx.doi.org/10.1002/term.2023] [PMID: 25846217]
[222]
Baker, E.A.; Martin, J.T. Cutin of plant cuticles. Nature, 1963, 199, 1268.
[http://dx.doi.org/10.1038/1991268a0]
[223]
Petit, J.; Bres, C.; Mauxion, J.P.; Bakan, B.; Rothan, C. Breeding for cuticle-associated traits in crop species: traits, targets, and strategies. J. Exp. Bot., 2017, 68(19), 5369-5387.
[PMID: 29036305]
[224]
Tako, M.; Kiriaki, M. Rheological properties of welan gum in aqueous media. Agric. Biol. Chem., 1990, 54(12), 3079-3084.
[http://dx.doi.org/10.1080/00021369.1990.10870465]
[225]
Nagahara, S.; Matsuda, T. Hydrogel formation via hybridization of oligonucleotides derivatized in water-soluble vinyl polymers. Polym. Gels Netw., 1996, 4(2), 111-127.
[http://dx.doi.org/10.1016/0966-7822(96)00001-9]
[226]
Zhang, F.; Yan, H. DNA self-assembly scaled up. Nature, 2017, 552(7683), 34-35.
[http://dx.doi.org/10.1038/d41586-017-07690-y]
[227]
Um, S.H.; Lee, J.B.; Park, N.; Kwon, S.Y.; Umbach, C.C.; Luo, D. Enzyme-catalysed assembly of DNA hydrogel. Nat. Mater., 2006, 5(10), 797-801.
[http://dx.doi.org/10.1038/nmat1741] [PMID: 16998469]
[228]
Zhang, L.; Lei, J.; Liu, L.; Li, C.; Ju, H. Self-assembled DNA hydrogel as switchable material for aptamer-based fluorescent detection of protein. Anal. Chem., 2013, 85(22), 11077-11082.
[http://dx.doi.org/10.1021/ac4027725] [PMID: 24138007]
[229]
Li, C.; Faulkner-Jones, A.; Dun, A.R.; Jin, J.; Chen, P.; Xing, Y.; Yang, Z.; Li, Z.; Shu, W.; Liu, D.; Duncan, R.R. Rapid formation of a supramolecular polypeptide-DNA hydrogel for in situ three-dimensional multilayer bioprinting. Angew. Chem. Int. Ed. Engl., 2015, 54(13), 3957-3961.
[http://dx.doi.org/10.1002/anie.201411383] [PMID: 25656851]
[230]
Wu, Y.; Li, C.; Boldt, F.; Wang, Y.; Kuan, S.L.; Tran, T.T.; Mikhalevich, V.; Förtsch, C.; Barth, H.; Yang, Z.; Liu, D.; Weil, T. Programmable protein-DNA hybrid hydrogels for the immobilization and release of functional proteins. Chem. Commun. (Camb.), 2014, 50(93), 14620-14622.
[http://dx.doi.org/10.1039/C4CC07144A] [PMID: 25311614]
[231]
Wilkinson, K.A.; Vasa, S.M.; Deigan, K.E.; Mortimer, S.A.; Giddings, M.C.; Weeks, K.M. Influence of nucleotide identity on ribose 2′-hydroxyl reactivity in RNA. RNA, 2009, 15(7), 1314-1321.
[http://dx.doi.org/10.1261/rna.1536209] [PMID: 19458034]
[232]
Elangovan, S.; Khorsand, B.; Do, A.V.; Hong, L.; Dewerth, A.; Kormann, M.; Ross, R.D.; Sumner, D.R.; Allamargot, C.; Salem, A.K. Chemically modified RNA activated matrices enhance bone regeneration. J. Control. Release, 2015, 218, 22.
[http://dx.doi.org/10.1016/j.jconrel.2015.09.050] [PMID: 26415855]
[233]
Hong, C.A.; Kim, J.S.; Lee, S.H.; Kong, W.H.; Park, T.G.; Mok, H.; Nam, Y.S. Reductively dissociable siRNA-polymer hybrid nanogels for efficient targeted gene silencing. Adv. Funct. Mater., 2013, 23(3), 316-322.
[http://dx.doi.org/10.1002/adfm.201200780]
[234]
Conde, J.; Oliva, N.; Atilano, M.; Song, H.S.; Artzi, N. Self-assembled RNA-triple-helix hydrogel scaffold for microRNA modulation in the tumour microenvironment. Nat. Mater., 2016, 15(3), 353-363.
[http://dx.doi.org/10.1038/nmat4497] [PMID: 26641016]
[235]
Huang, H.; Ding, Y.; Sun, X.S.; Nguyen, T.A. Peptide hydrogelation and cell encapsulation for 3D culture of MCF-7 breast cancer cells. PLoS One, 2013, 8(3), e59482
[http://dx.doi.org/10.1371/journal.pone.0059482] [PMID: 23527204]
[236]
Ruan, J.L.; Tulloch, N.L.; Muskheli, V.; Genova, E.E.; Mariner, P.D.; Anseth, K.S.; Murry, C.E. An improved cryosection method for polyethylene glycol hydrogels used in tissue engineering. Tissue Eng. Part C Methods, 2013, 19(10), 794-801.
[http://dx.doi.org/10.1089/ten.tec.2012.0460] [PMID: 23448137]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy