Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Research Article

Using a Hybrid Radioenhancer to Discover Tumor Cell-targeted Treatment for Osteosarcoma: An In Vitro Study

Author(s): Fu-I Tung, Li-Chin Chen, Yu-Chi Wang, Ming-Hong Chen, Pei-Wei Shueng and Tse-Ying Liu*

Volume 28, Issue 19, 2021

Published on: 18 November, 2020

Page: [3877 - 3889] Pages: 13

DOI: 10.2174/0929867327666201118155216

Price: $65

Abstract

Osteosarcoma is insensitive to radiation. High-dose radiation is often used as a treatment but causes side effects in patients. Hence, it is important to develop tumor cell-- targeted radiotherapy that could improve radiotherapy efficiency on tumor cells and reduce the toxic effect on normal cells during radiation treatment. In this study, we developed an innovative method for treating osteosarcoma by using a novel radiation-enhancer (i.e., carboxymethyl-hexanoyl chitosan-coated self-assembled Au@Fe3O4 nanoparticles; CSAF NPs). CSAF NPs were employed together with 5-aminolevulinic acid (5- ALA) to achieve tumor cell-targeted radiotherapy. In this study, osteosarcoma cells (MG63) and normal cells (MC3T3-E1) were used for an in vitro investigation, in which reactive oxygen species (ROS) assay, cell viability assay, clonogenic assay, and western blot were used to confirm the treatment efficiency. The ROS assay showed that the combination of CSAF NPs and 5-ALA enhanced radiation-induced ROS production in tumor cells (MG63); however, this was not observed in normal cells (MC3T3-E1). The cell viability ratio of normal cells to tumor cells after treatment with CSAF NPs and 5-ALA reached 2.79. Moreover, the clonogenic assay showed that the radiosensitivity of MG63 cells was increased by the combination use of CSAF NPs and 5-ALA. This was supported by performing a western blot that confirmed the expression of cytochrome c (a marker of cell mitochondria damage) and caspase-3 (a marker of cell apoptosis). The results provide an essential basis for developing tumor-cell targeted radiotherapy by means of low-- dose radiation.

Keywords: Radiotherapy, low-dose radiation, carboxymethyl-hexanoyl chitosan, gold, iron oxide, 5-aminolevulinic acid.

« Previous
[1]
Dorfman, H.D.; Czerniak, B. Bone cancers. Cancer, 1995, 75(1 Suppl), 203-210.
[http://dx.doi.org/10.1002/1097-0142(19950101)75:1+<203::AID-CNCR2820751308>3.0.CO;2-V] [PMID: 8000997]
[2]
Mirabello, L.; Troisi, R.J.; Savage, S.A. Osteosarcoma incidence and survival rates from 1973 to 2004: data from the surveillance, epidemiology, and end results program. Cancer, 2009, 115(7), 1531-1543.
[http://dx.doi.org/10.1002/cncr.24121] [PMID: 19197972]
[3]
Ottaviani, G.; Jaffe, N. The epidemiology of osteosarcoma. Cancer Treat. Res., 2009, 152, 3-13.
[http://dx.doi.org/10.1007/978-1-4419-0284-9_1] [PMID: 20213383]
[4]
Ando, K.; Heymann, M.F.; Stresing, V.; Mori, K.; Rédini, F.; Heymann, D. Current therapeutic strategies and novel approaches in osteosarcoma. Cancers (Basel), 2013, 5(2), 591-616.
[http://dx.doi.org/10.3390/cancers5020591] [PMID: 24216993]
[5]
Schwarz, R.; Bruland, O.; Cassoni, A.; Schomberg, P.; Bielack, S. The role of radiotherapy in oseosarcoma. Cancer Treat. Res., 2009, 152, 147-164.
[http://dx.doi.org/10.1007/978-1-4419-0284-9_7] [PMID: 20213389]
[6]
Eriksson, D.; Stigbrand, T. Radiation-induced cell death mechanisms. Tumour Biol., 2010, 31(4), 363-372.
[http://dx.doi.org/10.1007/s13277-010-0042-8] [PMID: 20490962]
[7]
Nedunchezhian, K.; Aswath, N.; Thiruppathy, M.; Thirugnanamurthy, S. Boron neutron capture therapy-a literature review. J. Clin. Diagn. Res., 2016, 10(12), ZE01-ZE04.
[http://dx.doi.org/10.7860/jcdr/2016/19890.9024] [PMID: 28209015]
[8]
Chang, S.-F.; Yang, Y.-T.; Li, W.-L.; Lin, C.-T.; Tsai, T. Enhancement of 5-aminolevulinic acid-induced photodynamic therapy by a bioadhesive polymer. J. Dent. Sci., 2010, 5(1), 30-35.
[http://dx.doi.org/10.1016/S1991-7902(10)60005-0]
[9]
Kelty, C.J.; Brown, N.J.; Reed, M.W.R.; Ackroyd, R. The use of 5-aminolaevulinic acid as a photosensitiser in photodynamic therapy and photodiagnosis. Photochem. Photobiol. Sci., 2002, 1(3), 158-168.
[http://dx.doi.org/10.1039/b201027p] [PMID: 12659511]
[10]
Takahashi, J.; Misawa, M.; Murakami, M.; Mori, T.; Nomura, K.; Iwahashi, H. 5-Aminolevulinic acid enhances cancer radiotherapy in a mouse tumor model. Springerplus, 2013, 2, 602.
[http://dx.doi.org/10.1186/2193-1801-2-602] [PMID: 24324921]
[11]
Misawa, M.; Takahashi, J. Generation of reactive oxygen species induced by gold nanoparticles under x-ray and UV irradiations. Nanomedicine (Lond.), 2011, 7(5), 604-614.
[http://dx.doi.org/10.1016/j.nano.2011.01.014] [PMID: 21333754]
[12]
Al Zaki, A.; Joh, D.; Cheng, Z.; De Barros, A.L.B.; Kao, G.; Dorsey, J.; Tsourkas, A. Gold-loaded polymeric micelles for computed tomography-guided radiation therapy treatment and radiosensitization. ACS Nano, 2014, 8(1), 104-112.
[http://dx.doi.org/10.1021/nn405701q] [PMID: 24377302]
[13]
Klein, S.; Sommer, A.; Distel, L.V.; Hazemann, J.-L.; Kröner, W.; Neuhuber, W.; Müller, P.; Proux, O.; Kryschi, C. Superparamagnetic iron oxide nanoparticles as novel X-ray enhancer for low-dose radiation therapy. J. Phys. Chem. B, 2014, 118(23), 6159-6166.
[http://dx.doi.org/10.1021/jp5026224] [PMID: 24827589]
[14]
Chithrani, D.B.; Jelveh, S.; Jalali, F.; van Prooijen, M.; Allen, C.; Bristow, R.G.; Hill, R.P.; Jaffray, D.A. Gold nanoparticles as radiation sensitizers in cancer therapy. Radiat. Res., 2010, 173(6), 719-728.
[http://dx.doi.org/10.1667/RR1984.1] [PMID: 20518651]
[15]
Liu, T.-Y.; Chen, S.-Y.; Lin, Y.-L.; Liu, D.-M. Synthesis and characterization of amphiphatic carboxymethyl-hexanoyl chitosan hydrogel: water-retention ability and drug encapsulation. Langmuir, 2006, 22(23), 9740-9745.
[http://dx.doi.org/10.1021/la061471n] [PMID: 17073505]
[16]
Chen, H.-P.; Tung, F.-I.; Chen, M.-H.; Liu, T.-Y. A magnetic vehicle realized tumor cell-targeted radiotherapy using low-dose radiation. J. Control. Release, 2016, 226, 182-192.
[http://dx.doi.org/10.1016/j.jconrel.2016.02.025] [PMID: 26892750]
[17]
Shi, W.; Zeng, H.; Sahoo, Y.; Ohulchanskyy, T.Y.; Ding, Y.; Wang, Z.L.; Swihart, M.; Prasad, P.N. A general approach to binary and ternary hybrid nanocrystals. Nano Lett., 2006, 6(4), 875-881.
[http://dx.doi.org/10.1021/nl0600833] [PMID: 16608302]
[18]
Liu, T-Y.; Lin, Y-L. Novel pH-sensitive chitosan-based hydrogel for encapsulating poorly water-soluble drugs. Acta Biomater., 2010, 6(4), 1423-1429.
[http://dx.doi.org/10.1016/j.actbio.2009.10.010] [PMID: 19819354]
[19]
Lee, N.; Yoo, D.; Ling, D.; Cho, M.H.; Hyeon, T.; Cheon, J. Iron oxide based nanoparticles for multimodal imaging and magnetoresponsive therapy. Chem. Rev., 2015, 115(19), 10637-10689.
[http://dx.doi.org/10.1021/acs.chemrev.5b00112] [PMID: 26250431]
[20]
Hillemanns, P.; Weingandt, H.; Baumgartner, R.; Diebold, J.; Xiang, W.; Stepp, H. Photodetection of cervical intraepithelial neoplasia using 5-aminolevulinic acid-induced porphyrin fluorescence. Cancer, 2000, 88(10), 2275-2282.
[http://dx.doi.org/10.1002/(SICI)1097-0142(20000515)88:10<2275::AID-CNCR11>3.0.CO;2-B] [PMID: 10820349]
[21]
Yang, X.; Palasuberniam, P.; Kraus, D.; Chen, B. Aminolevulinic acid-based tumor detection and therapy: molecular mechanisms and strategies for enhancement. Int. J. Mol. Sci., 2015, 16(10), 25865-25880.
[http://dx.doi.org/10.3390/ijms161025865] [PMID: 26516850]
[22]
Wachowska, M.; Muchowicz, A.; Firczuk, M.; Gabrysiak, M.; Winiarska, M.; Wańczyk, M.; Bojarczuk, K.; Golab, J. Aminolevulinic Acid (ALA) as a prodrug in photodynamic therapy of cancer. Molecules, 2011, 16(5), 4140-4164.
[http://dx.doi.org/10.3390/molecules16054140]
[23]
Green, D.R.; Reed, J.C. Mitochondria and apoptosis. Science, 1998, 281(5381), 1309-1312.
[http://dx.doi.org/10.1126/science.281.5381.1309] [PMID: 9721092]
[24]
Moor, A.C.E. Signaling pathways in cell death and survival after photodynamic therapy. J. Photochem. Photobiol. B, 2000, 57(1), 1-13.
[http://dx.doi.org/10.1016/S1011-1344(00)00065-8] [PMID: 11100832]
[25]
Castano, A.P.; Demidova, T.N.; Hamblin, M.R. Mechanisms in photodynamic therapy: part two-cellular signaling, cell metabolism and modes of cell death. Photodiagn. Photodyn. Ther., 2005, 2(1), 1-23.
[http://dx.doi.org/10.1016/S1572-1000(05)00030-X] [PMID: 25048553]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy