Research Article

利用混合放射增强剂发现骨肉瘤的肿瘤细胞靶向治疗:体外研究

卷 28, 期 19, 2021

发表于: 18 November, 2020

页: [3877 - 3889] 页: 13

弟呕挨: 10.2174/0929867327666201118155216

价格: $65

摘要

骨肉瘤对辐射不敏感。高剂量辐射通常被用作一种治疗方法,但会对患者产生副作用。因此,发展肿瘤细胞靶向放射治疗,提高肿瘤细胞的放射治疗效率,降低放射治疗对正常细胞的毒性作用,是非常重要的。在这项研究中,我们开发了一种治疗骨肉瘤的创新方法,使用了一种新的辐射增强剂(即羧甲基己酰壳聚糖包覆的自组装金@Fe3O4纳米粒子;CSAF NPs)。CSAF纳米粒子与5-氨基乙酰丙酸一起用于实现肿瘤细胞靶向放射治疗。在本研究中,骨肉瘤细胞(MG63)和正常细胞(MC3T3-E1)用于体外研究,其中活性氧(ROS)测定、细胞生存力测定、克隆形成测定和蛋白质印迹用于确认治疗效率。活性氧测定显示,CSAF纳米粒子和5-氨基水杨酸的组合增强了辐射诱导的肿瘤细胞(MG63)中活性氧的产生;然而,这在正常细胞(MC3T3-E1)中没有观察到。用CSAF纳米粒子和5-ALA处理后,正常细胞与肿瘤细胞的细胞存活率达到2.79。此外,克隆形成试验表明,联合使用CSAF纳米粒子和5-ALA可提高MG63细胞的放射敏感性。这得到了蛋白质印迹的支持,该印迹证实了细胞色素c(细胞线粒体损伤的标志)和caspase-3(细胞凋亡的标志)的表达。研究结果为利用低剂量辐射开展肿瘤细胞靶向放射治疗提供了必要的依据。

关键词: 放疗,低剂量辐射,羧甲基己酰壳聚糖,金,氧化铁,5-氨基乙酰丙酸。

« Previous
[1]
Dorfman, H.D.; Czerniak, B. Bone cancers. Cancer, 1995, 75(1 Suppl), 203-210.
[http://dx.doi.org/10.1002/1097-0142(19950101)75:1+<203::AID-CNCR2820751308>3.0.CO;2-V] [PMID: 8000997]
[2]
Mirabello, L.; Troisi, R.J.; Savage, S.A. Osteosarcoma incidence and survival rates from 1973 to 2004: data from the surveillance, epidemiology, and end results program. Cancer, 2009, 115(7), 1531-1543.
[http://dx.doi.org/10.1002/cncr.24121] [PMID: 19197972]
[3]
Ottaviani, G.; Jaffe, N. The epidemiology of osteosarcoma. Cancer Treat. Res., 2009, 152, 3-13.
[http://dx.doi.org/10.1007/978-1-4419-0284-9_1] [PMID: 20213383]
[4]
Ando, K.; Heymann, M.F.; Stresing, V.; Mori, K.; Rédini, F.; Heymann, D. Current therapeutic strategies and novel approaches in osteosarcoma. Cancers (Basel), 2013, 5(2), 591-616.
[http://dx.doi.org/10.3390/cancers5020591] [PMID: 24216993]
[5]
Schwarz, R.; Bruland, O.; Cassoni, A.; Schomberg, P.; Bielack, S. The role of radiotherapy in oseosarcoma. Cancer Treat. Res., 2009, 152, 147-164.
[http://dx.doi.org/10.1007/978-1-4419-0284-9_7] [PMID: 20213389]
[6]
Eriksson, D.; Stigbrand, T. Radiation-induced cell death mechanisms. Tumour Biol., 2010, 31(4), 363-372.
[http://dx.doi.org/10.1007/s13277-010-0042-8] [PMID: 20490962]
[7]
Nedunchezhian, K.; Aswath, N.; Thiruppathy, M.; Thirugnanamurthy, S. Boron neutron capture therapy-a literature review. J. Clin. Diagn. Res., 2016, 10(12), ZE01-ZE04.
[http://dx.doi.org/10.7860/jcdr/2016/19890.9024] [PMID: 28209015]
[8]
Chang, S.-F.; Yang, Y.-T.; Li, W.-L.; Lin, C.-T.; Tsai, T. Enhancement of 5-aminolevulinic acid-induced photodynamic therapy by a bioadhesive polymer. J. Dent. Sci., 2010, 5(1), 30-35.
[http://dx.doi.org/10.1016/S1991-7902(10)60005-0]
[9]
Kelty, C.J.; Brown, N.J.; Reed, M.W.R.; Ackroyd, R. The use of 5-aminolaevulinic acid as a photosensitiser in photodynamic therapy and photodiagnosis. Photochem. Photobiol. Sci., 2002, 1(3), 158-168.
[http://dx.doi.org/10.1039/b201027p] [PMID: 12659511]
[10]
Takahashi, J.; Misawa, M.; Murakami, M.; Mori, T.; Nomura, K.; Iwahashi, H. 5-Aminolevulinic acid enhances cancer radiotherapy in a mouse tumor model. Springerplus, 2013, 2, 602.
[http://dx.doi.org/10.1186/2193-1801-2-602] [PMID: 24324921]
[11]
Misawa, M.; Takahashi, J. Generation of reactive oxygen species induced by gold nanoparticles under x-ray and UV irradiations. Nanomedicine (Lond.), 2011, 7(5), 604-614.
[http://dx.doi.org/10.1016/j.nano.2011.01.014] [PMID: 21333754]
[12]
Al Zaki, A.; Joh, D.; Cheng, Z.; De Barros, A.L.B.; Kao, G.; Dorsey, J.; Tsourkas, A. Gold-loaded polymeric micelles for computed tomography-guided radiation therapy treatment and radiosensitization. ACS Nano, 2014, 8(1), 104-112.
[http://dx.doi.org/10.1021/nn405701q] [PMID: 24377302]
[13]
Klein, S.; Sommer, A.; Distel, L.V.; Hazemann, J.-L.; Kröner, W.; Neuhuber, W.; Müller, P.; Proux, O.; Kryschi, C. Superparamagnetic iron oxide nanoparticles as novel X-ray enhancer for low-dose radiation therapy. J. Phys. Chem. B, 2014, 118(23), 6159-6166.
[http://dx.doi.org/10.1021/jp5026224] [PMID: 24827589]
[14]
Chithrani, D.B.; Jelveh, S.; Jalali, F.; van Prooijen, M.; Allen, C.; Bristow, R.G.; Hill, R.P.; Jaffray, D.A. Gold nanoparticles as radiation sensitizers in cancer therapy. Radiat. Res., 2010, 173(6), 719-728.
[http://dx.doi.org/10.1667/RR1984.1] [PMID: 20518651]
[15]
Liu, T.-Y.; Chen, S.-Y.; Lin, Y.-L.; Liu, D.-M. Synthesis and characterization of amphiphatic carboxymethyl-hexanoyl chitosan hydrogel: water-retention ability and drug encapsulation. Langmuir, 2006, 22(23), 9740-9745.
[http://dx.doi.org/10.1021/la061471n] [PMID: 17073505]
[16]
Chen, H.-P.; Tung, F.-I.; Chen, M.-H.; Liu, T.-Y. A magnetic vehicle realized tumor cell-targeted radiotherapy using low-dose radiation. J. Control. Release, 2016, 226, 182-192.
[http://dx.doi.org/10.1016/j.jconrel.2016.02.025] [PMID: 26892750]
[17]
Shi, W.; Zeng, H.; Sahoo, Y.; Ohulchanskyy, T.Y.; Ding, Y.; Wang, Z.L.; Swihart, M.; Prasad, P.N. A general approach to binary and ternary hybrid nanocrystals. Nano Lett., 2006, 6(4), 875-881.
[http://dx.doi.org/10.1021/nl0600833] [PMID: 16608302]
[18]
Liu, T-Y.; Lin, Y-L. Novel pH-sensitive chitosan-based hydrogel for encapsulating poorly water-soluble drugs. Acta Biomater., 2010, 6(4), 1423-1429.
[http://dx.doi.org/10.1016/j.actbio.2009.10.010] [PMID: 19819354]
[19]
Lee, N.; Yoo, D.; Ling, D.; Cho, M.H.; Hyeon, T.; Cheon, J. Iron oxide based nanoparticles for multimodal imaging and magnetoresponsive therapy. Chem. Rev., 2015, 115(19), 10637-10689.
[http://dx.doi.org/10.1021/acs.chemrev.5b00112] [PMID: 26250431]
[20]
Hillemanns, P.; Weingandt, H.; Baumgartner, R.; Diebold, J.; Xiang, W.; Stepp, H. Photodetection of cervical intraepithelial neoplasia using 5-aminolevulinic acid-induced porphyrin fluorescence. Cancer, 2000, 88(10), 2275-2282.
[http://dx.doi.org/10.1002/(SICI)1097-0142(20000515)88:10<2275::AID-CNCR11>3.0.CO;2-B] [PMID: 10820349]
[21]
Yang, X.; Palasuberniam, P.; Kraus, D.; Chen, B. Aminolevulinic acid-based tumor detection and therapy: molecular mechanisms and strategies for enhancement. Int. J. Mol. Sci., 2015, 16(10), 25865-25880.
[http://dx.doi.org/10.3390/ijms161025865] [PMID: 26516850]
[22]
Wachowska, M.; Muchowicz, A.; Firczuk, M.; Gabrysiak, M.; Winiarska, M.; Wańczyk, M.; Bojarczuk, K.; Golab, J. Aminolevulinic Acid (ALA) as a prodrug in photodynamic therapy of cancer. Molecules, 2011, 16(5), 4140-4164.
[http://dx.doi.org/10.3390/molecules16054140]
[23]
Green, D.R.; Reed, J.C. Mitochondria and apoptosis. Science, 1998, 281(5381), 1309-1312.
[http://dx.doi.org/10.1126/science.281.5381.1309] [PMID: 9721092]
[24]
Moor, A.C.E. Signaling pathways in cell death and survival after photodynamic therapy. J. Photochem. Photobiol. B, 2000, 57(1), 1-13.
[http://dx.doi.org/10.1016/S1011-1344(00)00065-8] [PMID: 11100832]
[25]
Castano, A.P.; Demidova, T.N.; Hamblin, M.R. Mechanisms in photodynamic therapy: part two-cellular signaling, cell metabolism and modes of cell death. Photodiagn. Photodyn. Ther., 2005, 2(1), 1-23.
[http://dx.doi.org/10.1016/S1572-1000(05)00030-X] [PMID: 25048553]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy