Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Review Article

Nanogels for Skin Cancer Therapy via Transdermal Delivery: Current Designs

Author(s): Phuong H.L. Tran, Wei Duan, Beom-Jin Lee and Thao T.D. Tran*

Volume 20, Issue 7, 2019

Page: [575 - 582] Pages: 8

DOI: 10.2174/1389200220666190618100030

Price: $65

Abstract

Background: Recently, several strategies have been proposed for skin cancer therapy by transdermal delivery, and particularly the use of nanotechnology.

Methods: This process disrupts the stratum corneum to deliver a drug through the skin, allowing it to accumulate at the tumor site.

Results: Nanogels are drug delivery systems that can be applied to many diseases. Nanogel engineering has been widely studied for use in drug delivery, particularly in cancer theranostics. This review summarizes specific strategies for using nanogels to treat skin cancer, a topic that is limited in recent literature.

Conclusion: Advanced techniques for effective skin cancer therapy based on the nanogel’s penetration and cellular uptake abilities will be discussed. Moreover, techniques for penetrating the skin, as well as drug release, permeation studies, and microscopic observations, will also be discussed.

Keywords: Nanotechnology, skin cancer, nanogels, penetration, transdermal drug delivery, cellular uptake.

Graphical Abstract

[1]
Loescher, L.J.; Janda, M.; Soyer, H.P.; Shea, K.; Curiel-Lewandrowski, C. Advances in skin cancer early detection and diagnosis. Semin. Oncol. Nurs., 2013, 29(3), 170-181.
[http://dx.doi.org/10.1016/j.soncn.2013.06.003] [PMID: 23958215]
[2]
Simões, M.C.F.; Sousa, J.J.S.; Pais, A.A.C.C. Skin cancer and new treatment perspectives: A review. Cancer Lett., 2015, 357(1), 8-42.
[http://dx.doi.org/10.1016/j.canlet.2014.11.001] [PMID: 25444899]
[3]
D’Orazio, J.; Jarrett, S.; Amaro-Ortiz, A.; Scott, T. UV radiation and the skin. Int. J. Mol. Sci., 2013, 14(6), 12222-12248.
[http://dx.doi.org/10.3390/ijms140612222] [PMID: 23749111]
[4]
Geller, A.C.; Annas, G.D. Epidemiology of melanoma and nonmelanoma skin cancer. Semin. Oncol. Nurs., 2003, 19(1), 2-11.
[PMID: 12638376]
[5]
Marks, R. An overview of skin cancers. Incidence and causation. Cancer, 1995, 75(2)(Suppl.), 607-612.
[http://dx.doi.org/10.1002/1097-0142(19950115)75:2+<607:AID-CNCR2820751402>3.0.CO;2-8] [PMID: 7804986]
[6]
Miller, D.L.; Weinstock, M.A. Nonmelanoma skin cancer in the United States: Incidence. J. Am. Acad. Dermatol., 1994, 30(5 Pt 1), 774-778.
[http://dx.doi.org/10.1016/S0190-9622(08)81509-5] [PMID: 8176018]
[7]
FitzGerald, K.L.; Buttner, P.G.; Donovan, S.A. Nonpigmented skin lesions - how many are nonmelanoma skin cancer? Aust. Fam. Physician, 2006, 35(7), 555-557.
[PMID: 16820835]
[8]
Fransen, M.; Karahalios, A.; Sharma, N.; English, D.R.; Giles, G.G.; Sinclair, R.D. Non-melanoma skin cancer in Australia. Med. J. Aust., 2012, 197(10), 565-568.
[http://dx.doi.org/10.5694/mja12.10654] [PMID: 23163687]
[9]
Vogt, A.; Wischke, C.; Neffe, A.T.; Ma, N.; Alexiev, U.; Lendlein, A. Nanocarriers for drug delivery into and through the skin - Do existing technologies match clinical challenges? J. Control. Release, 2016, 242, 3-15.
[http://dx.doi.org/10.1016/j.jconrel.2016.07.027] [PMID: 27449743]
[10]
Trommer, H.; Neubert, R.H. Overcoming the stratum corneum: the modulation of skin penetration. A review. Skin Pharmacol. Physiol., 2006, 19(2), 106-121.
[http://dx.doi.org/10.1159/000091978] [PMID: 16685150]
[11]
Rancan, F.; Asadian-Birjand, M.; Dogan, S.; Graf, C.; Cuellar, L.; Lommatzsch, S.; Blume-Peytavi, U.; Calderón, M.; Vogt, A. Effects of thermoresponsivity and softness on skin penetration and cellular uptake of polyglycerol-based nanogels. J. Control. Release, 2016, 228, 159-169.
[http://dx.doi.org/10.1016/j.jconrel.2016.02.047] [PMID: 26948381]
[12]
Elias, P.M. Stratum corneum defensive functions: An integrated view. J. Invest. Dermatol., 2005, 125(2), 183-200.
[http://dx.doi.org/10.1111/j.0022-202X.2005.23668.x] [PMID: 16098026]
[13]
Bouwstra, J.; Gooris, G.; Groen, D.; Ponec, M. The skin barrier in healthy and diseased state. Chem. Phys. Lipids, 2009, 160, S16.
[http://dx.doi.org/10.1016/j.chemphyslip.2009.06.136]
[14]
Sivaram, A.J.; Rajitha, P.; Maya, S.; Jayakumar, R.; Sabitha, M. Nanogels for delivery, imaging and therapy. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2015, 7(4), 509-533.
[http://dx.doi.org/10.1002/wnan.1328] [PMID: 25581024]
[15]
Tran, P.H.L.; Tran, T.T.D.; Vo, T.V.; Lee, B.J. Promising iron oxide-based magnetic nanoparticles in biomedical engineering. Arch. Pharm. Res., 2012, 35(12), 2045-2061.
[http://dx.doi.org/10.1007/s12272-012-1203-7] [PMID: 23263800]
[16]
Tran, P.H-L.; Tran, T.T-D.; Vo, T.V.; Vo, C.L-N.; Lee, B-J. Novel multifunctional biocompatible gelatin-oleic acid conjugate: Self-assembled nanoparticles for drug delivery. J. Biomed. Nanotechnol., 2013, 9(8), 1416-1431.
[http://dx.doi.org/10.1166/jbn.2013.1621] [PMID: 23926810]
[17]
Tran, T.T.D.; Tran, P.H.L.; Yoon, T.J.; Lee, B.J. Fattigation-platform theranostic nanoparticles for cancer therapy. Mater. Sci. Eng. C, 2017, 75, 1161-1167.
[http://dx.doi.org/10.1016/j.msec.2017.03.012] [PMID: 28415402]
[18]
Xiao, B.; Ma, L.; Merlin, D. Nanoparticle-mediated co-delivery of chemotherapeutic agent and siRNA for combination cancer therapy. Expert Opin. Drug Deliv., 2017, 14(1), 65-73.
[http://dx.doi.org/10.1080/17425247.2016.1205583] [PMID: 27337289]
[19]
Kolosnjaj-Tabi, J.; Wilhelm, C. Magnetic nanoparticles in cancer therapy: how can thermal approaches help?In: Future Medicine: London ; , 2017, Vol. 12, .
[http://dx.doi.org/10.2217/nnm-2017-0014]
[20]
Alberti, D.; Protti, N.; Franck, M.; Stefania, R.; Bortolussi, S.; Altieri, S.; Deagostino, A.; Aime, S.; Geninatti Crich, S. Theranostic nanoparticles loaded with imaging probes and rubrocurcumin for combined cancer therapy by folate receptor targeting. ChemMedChem, 2017, 12(7), 502-509.
[http://dx.doi.org/10.1002/cmdc.201700039] [PMID: 28217982]
[21]
Tran, T.T.D.; Tran, P.H.L.; Wang, Y.; Li, P.; Kong, L. Nanoparticulate drug delivery to colorectal cancer: Formulation strategies and surface engineering. Curr. Pharm. Des., 2016, 22(19), 2904-2912.
[http://dx.doi.org/10.2174/1381612822666160217140932] [PMID: 26898738]
[22]
Phan, U.T.; Nguyen, K.T.; Vo, T.V.; Duan, W.; Tran, P.H.; Tran, T.D. Investigation of fucoidan-oleic acid conjugate for delivery of curcumin and paclitaxel. Anticancer. Agents Med. Chem., 2016, 16(10), 1281-1287.
[http://dx.doi.org/10.2174/1567201810666131124140259] [PMID: 27237629]
[23]
Tran, K.T.M.; Vo, T.V.; Duan, W.; Tran, P.H.L.; Tran, T.T.D. Perspectives of engineered marine derived polymers for biomedical nanoparticles. Curr. Pharm. Des., 2016, 22(19), 2844-2856.
[PMID: 26898745] [http://dx.doi.org/ 10.2174/1381612822666160217124735]
[24]
Tran, K.N.; Tran, P.H.L.; Vo, T.V.; Tran, T.T.D. Design of fucoidan functionalized - Iron oxide nanoparticles for biomedical applications. Curr. Drug Deliv., 2016, 13(5), 774-783.
[http://dx.doi.org/10.2174/1567201812666151020100921] [PMID: 27138526]
[25]
Tran, P.H-L.; Tran, T.T-D.; Lee, B-J. Biodistribution and pharmacokinetics in rats and antitumor effect in various types of tumor-bearing mice of novel self-assembled gelatin-oleic acid nanoparticles containing paclitaxel. J. Biomed. Nanotechnol., 2014, 10(1), 154-165.
[http://dx.doi.org/10.1166/jbn.2014.1660] [PMID: 24724507]
[26]
Tran, P.H-L.; Tran, T.T-D.; Vo, T.V. Polymer conjugate-based nanomaterials for drug delivery. J. Nanosci. Nanotechnol., 2014, 14(1), 815-827.
[http://dx.doi.org/10.1166/jnn.2014.8901] [PMID: 24730300]
[27]
Tran, T.T.D.; Van Vo, T.; Tran, P.H.L. Design of iron oxide nanoparticles decorated oleic acid and bovine serum albumin for drug delivery. Chem. Eng. Res. Des., 2015, 94, 112-118.
[http://dx.doi.org/10.1016/j.cherd.2014.12.016]
[28]
Tran, T.T.D.; Tran, P.H.L.; Nguyen, K.T.; Tran, V.T. Nano-precipitation: Preparation and application in the field of pharmacy. Curr. Pharm. Des., 2016, 22(20), 2997-3006.
[http://dx.doi.org/10.2174/1381612822666160408151702] [PMID: 27055935]
[29]
Nguyen, K.T.; Pham, M.N.; Vo, T.V.; Duan, W.; Tran, P.H.; Tran, T.T. Strategies of Engineering Nanoparticles for Treating Neurodegenerative Disorders. Curr. Drug Metab., 2017, 18(9), 786-797.
[http://dx.doi.org/10.2174/1389200218666170125114751] [PMID: 28124594]
[30]
Nam Hoang, P.; Thao Thanh, L.; Minh Nguyet, P.; Thinh Duc, L.; Toi Van, V.; Phuong Ha-Lien, T.; Thao Truong-Dinh, T. A comparison of fucoidan conjugated to paclitaxel and curcumin for the dual delivery of cancer therapeutic agents. Anticancer. Agents Med. Chem., 2018, 18(9), 1349-1355.
[http://dx.doi.org/dx.doi: 10.2174/1871520617666171121125845] [PMID: 29173183]
[31]
Tran, P.H.L.; Duan, W.; Tran, T.T.D. Conjugation Strategies for Colonic Delivery and its Application in Colorectal Cancer Therapy. Curr. Drug Metab., 2017, 18(11), 1016-1019.
[http://dx.doi.org/10.2174/1389200218666171031150001] [PMID: 29086687]
[32]
Tran, T.T-D.; Tran, P.H-L.; Amin, H.H.; Lee, B-J. Biodistribution and in vivo performance of fattigation-platform theranostic nanoparticles. Mater. Sci. Eng. C, 2017, 79, 671-678.
[http://dx.doi.org/10.1016/j.msec.2017.05.029] [PMID: 28629067]
[33]
Nguyen, T.N.G.; Tran, V.T.; Duan, W.; Tran, P.H.L.; Tran, T.T.D. Nanoprecipitation for Poorly Water-Soluble Drugs. Curr. Drug Metab., 2017, 18(11), 1000-1015.
[http://dx.doi.org/10.2174/1389200218666171004112122] [PMID: 28982324]
[34]
Zha, Q.; Wang, X.; Cheng, X.; Fu, S.; Yang, G.; Yao, W.; Tang, R. Acid-degradable carboxymethyl chitosan nanogels via an ortho ester linkage mediated improved penetration and growth inhibition of 3-D tumor spheroids in vitro. Mater. Sci. Eng. C, 2017, 78, 246-257.
[http://dx.doi.org/10.1016/j.msec.2017.04.098] [PMID: 28575982]
[35]
Li, D.; Van Nostrum, C.F.; Mastrobattista, E.; Vermonden, T.; Hennink, W.E. Nanogels for intracellular delivery of biotherapeutics. J. Control. Release, 2017, 259, 16-28.
[http://dx.doi.org/10.1016/j.jconrel.2016.12.020] [PMID: 28017888]
[36]
Yi, P.; Wang, Y.; He, P.; Zhan, Y.; Sun, Z.; Li, Y.; Zhang, Y. Study on β-cyclodextrin-complexed nanogels with improved thermal response for anticancer drug delivery. Mater. Sci. Eng. C, 2017, 78, 773-779.
[http://dx.doi.org/10.1016/j.msec.2017.04.096] [PMID: 28576048]
[37]
Raemdonck, K.; Demeester, J.; De Smedt, S. Advanced nanogel engineering for drug delivery. Soft Matter, 2009, 5(4), 707-715.
[http://dx.doi.org/10.1039/B811923F]
[38]
Maya, S.; Sarmento, B.; Nair, A.; Rejinold, N.S.; Nair, S.V.; Jayakumar, R. Smart stimuli sensitive nanogels in cancer drug delivery and imaging: a review. Curr. Pharm. Des., 2013, 19(41), 7203-7218.
[http://dx.doi.org/10.2174/138161281941131219124142] [PMID: 23489200]
[39]
Yallapu, M.M.; Jaggi, M.; Chauhan, S.C. Design and engineering of nanogels for cancer treatment. Drug Discov. Today, 2011, 16(9-10), 457-463.
[http://dx.doi.org/10.1016/j.drudis.2011.03.004] [PMID: 21414419]
[40]
Yallapu, M.M.; Reddy, M.K.; Labhasetwar, V. Nanogels: Chemistry to drug delivery.In: Biomedical Applications of Nanotechnology; Vinod Labhasetwar, Diandra L. Leslie,Pelecky, Eds.; . John Wiley & Sons, Inc.: New Jersey, 2007, Chap. 6, pp. 131-171.
[http://dx.doi.org/10.1002/9780470152928.ch6]
[41]
Vinogradov, S.V.; Bronich, T.K.; Kabanov, A.V. Nanosized cationic hydrogels for drug delivery: Preparation, properties and interactions with cells. Adv. Drug Deliv. Rev., 2002, 54(1), 135-147.
[http://dx.doi.org/10.1016/S0169-409X(01)00245-9] [PMID: 11755709]
[42]
Oh, J.K.; Drumright, R.; Siegwart, D.J.; Matyjaszewski, K. The development of microgels/nanogels for drug delivery applications. Prog. Polym. Sci., 2008, 33(4), 448-477.
[http://dx.doi.org/10.1016/j.progpolymsci.2008.01.002]
[43]
Xing, T.; Mao, C.; Lai, B.; Yan, L. Synthesis of disulfide-cross-linked polypeptide nanogel conjugated with a near-infrared fluorescence probe for direct imaging of reduction-induced drug release. ACS Appl. Mater. Interfaces, 2012, 4(10), 5662-5672.
[http://dx.doi.org/10.1021/am301600u] [PMID: 22974285]
[44]
Asadian-Birjand, M.; Bergueiro, J.; Rancan, F.; Cuggino, J.C.; Mutihac, R-C.; Achazi, K.; Dernedde, J.; Blume-Peytayi, U.; Vogt, A.; Calderon, M. Engineering thermoresponsive polyether-based nanogels for temperature dependent skin penetration. Polym. Chem., 2015, 6(32), 5827-5831.
[http://dx.doi.org/10.1039/C5PY00924C]
[45]
Giulbudagian, M.; Rancan, F.; Klossek, A.; Yamamoto, K.; Jurisch, J.; Neto, V.C.; Schrade, P.; Bachmann, S.; Rühl, E.; Blume-Peytavi, U.; Vogt, A.; Calderón, M. Correlation between the chemical composition of thermoresponsive nanogels and their interaction with the skin barrier. J. Control. Release, 2016, 243, 323-332.
[http://dx.doi.org/10.1016/j.jconrel.2016.10.022] [PMID: 27793686]
[46]
Edlich, A.; Gerecke, C.; Giulbudagian, M.; Neumann, F.; Hedtrich, S.; Schäfer-Korting, M.; Ma, N.; Calderon, M.; Kleuser, B. Specific uptake mechanisms of well-tolerated thermoresponsive polyglycerol-based nanogels in antigen-presenting cells of the skin. Eur. J. Pharm. Biopharm., 2017, 116, 155-163.
[http://dx.doi.org/10.1016/j.ejpb.2016.12.016] [PMID: 28027923]
[47]
Rancan, F.; Giulbudagian, M.; Jurisch, J.; Blume-Peytavi, U.; Calderón, M.; Vogt, A. Drug delivery across intact and disrupted skin barrier: Identification of cell populations interacting with penetrated thermoresponsive nanogels. Eur. J. Pharm. Biopharm., 2017, 116, 4-11.
[http://dx.doi.org/10.1016/j.ejpb.2016.11.017] [PMID: 27865989]
[48]
Maria, M.; Michael, G.; Marcelo, C. Positively -. Macromol. Chem. Phys., 2014, 215(24), 2414-2419.
[http://dx.doi.org/10.1002/macp.201400286]
[49]
Mauri, E.; Chincarini, G.M.F.; Rigamonti, R.; Magagnin, L.; Sacchetti, A.; Rossi, F. Modulation of electrostatic interactions to improve controlled drug delivery from nanogels. Mater. Sci. Eng. C, 2017, 72, 308-315.
[http://dx.doi.org/10.1016/j.msec.2016.11.081] [PMID: 28024591]
[50]
Chung, C.; McClements, D.J. Controlling microstructure and physical properties of biopolymer hydrogel particles through modulation of electrostatic interactions. J. Food Eng., 2015, 158, 13-21.
[http://dx.doi.org/10.1016/j.jfoodeng.2015.02.028]
[51]
Mangalathillam, S.; Rejinold, N.S.; Nair, A.; Lakshmanan, V-K.; Nair, S.V.; Jayakumar, R. Curcumin loaded chitin nanogels for skin cancer treatment via the transdermal route. Nanoscale, 2012, 4(1), 239-250.
[http://dx.doi.org/10.1039/C1NR11271F] [PMID: 22080352]
[52]
Sabitha, M.; Sanoj Rejinold, N.; Nair, A.; Lakshmanan, V-K.; Nair, S.V.; Jayakumar, R. Development and evaluation of 5-fluorouracil loaded chitin nanogels for treatment of skin cancer. Carbohydr. Polym., 2013, 91(1), 48-57.
[http://dx.doi.org/10.1016/j.carbpol.2012.07.060] [PMID: 23044104]
[53]
Gratieri, T.; Alberti, I.; Lapteva, M.; Kalia, Y.N. Next generation intra- and transdermal therapeutic systems: Using non- and minimally-invasive technologies to increase drug delivery into and across the skin. Eur. J. Pharm. Sci., 2013, 50(5), 609-622.
[http://dx.doi.org/10.1016/j.ejps.2013.03.019] [PMID: 23567467]
[54]
Wong, T.W. Electrical, magnetic, photomechanical and cavitational waves to overcome skin barrier for transdermal drug delivery. J. Control. Release, 2014, 193, 257-269.
[http://dx.doi.org/10.1016/j.jconrel.2014.04.045] [PMID: 24801250]
[55]
Schoellhammer, C.M.; Blankschtein, D.; Langer, R. Skin permeabilization for transdermal drug delivery: recent advances and future prospects. Expert Opin. Drug Deliv., 2014, 11(3), 393-407.
[http://dx.doi.org/10.1517/17425247.2014.875528] [PMID: 24392787]
[56]
Cázares-Delgadillo, J.; Ganem-Rondero, A.; Merino, V.; Kalia, Y.N. Controlled transdermal iontophoresis for poly-pharmacotherapy: Simultaneous delivery of granisetron, metoclopramide and dexamethasone sodium phosphate in vitro and in vivo. Eur. J. Pharm. Sci., 2016, 85, 31-38.
[http://dx.doi.org/10.1016/j.ejps.2016.01.027] [PMID: 26826281]
[57]
Toyoda, M.; Hama, S.; Ikeda, Y.; Nagasaki, Y.; Kogure, K. Anti-cancer vaccination by transdermal delivery of antigen peptide-loaded nanogels via iontophoresis. Int. J. Pharm., 2015, 483(1-2), 110-114.
[http://dx.doi.org/10.1016/j.ijpharm.2015.02.024] [PMID: 25681719]
[58]
Kraus, M.; Wolf, B. Implications of acidic tumor microenvironment for neoplastic growth and cancer treatment: a computer analysis. Tumour Biol., 1996, 17(3), 133-154.
[http://dx.doi.org/10.1159/000217977] [PMID: 8638088]
[59]
Estrella, V.; Chen, T.; Lloyd, M.; Wojtkowiak, J.; Cornnell, H.H.; Ibrahim-Hashim, A.; Bailey, K.; Balagurunathan, Y.; Rothberg, J.M.; Sloane, B.F.; Johnson, J.; Gatenby, R.A.; Gillies, R.J. Acidity generated by the tumor microenvironment drives local invasion. Cancer Res., 2013, 73(5), 1524-1535.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-2796] [PMID: 23288510]
[60]
Danhier, F.; Feron, O.; Préat, V. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J. Control. Release, 2010, 148(2), 135-146.
[http://dx.doi.org/10.1016/j.jconrel.2010.08.027] [PMID: 20797419]
[61]
Sahu, P.; Kashaw, S.K.; Jain, S.; Sau, S.; Iyer, A.K. Assessment of penetration potential of pH responsive double walled biodegradable nanogels coated with eucalyptus oil for the controlled delivery of 5-fluorouracil: In vitro and ex vivo studies. J. Control. Release, 2017, 253, 122-136.
[http://dx.doi.org/10.1016/j.jconrel.2017.03.023] [PMID: 28322977]
[62]
Miettinen, M.; Franssila, K. Immunohistochemical spectrum of malignant melanoma. The common presence of keratins. Lab. Invest., 1989, 61(6), 623-628.
[PMID: 2481151]
[63]
Rejinold, N.S.; Chennazhi, K.P.; Tamura, H.; Nair, S.V.; Rangasamy, J. Multifunctional chitin nanogels for simultaneous drug delivery, bioimaging, and biosensing. ACS Appl. Mater. Interfaces, 2011, 3(9), 3654-3665.
[http://dx.doi.org/10.1021/am200844m] [PMID: 21863797]
[64]
Priya, P.; Raj, R.M.; Vasanthakumar, V.; Raj, V. Curcumin-loaded layer-by-layer folic acid and casein coated carboxymethyl cellulose/casein nanogels for treatment of skin cancer. Arab. J. Chem., 2017.
[http://dx.doi.org/10.1016/j.arabjc.2017.07.010]
[65]
Fu, L.; Liu, L.; Ruan, Z.; Zhang, H.; Yan, L. Folic acid targeted pH-responsive amphiphilic polymer nanoparticles conjugated with near infrared fluorescence probe for imaging-guided drug delivery. RSC Advances, 2016, 6(46), 40312-40322.
[http://dx.doi.org/10.1039/C6RA05657A]
[66]
Kaminski, G.A.T.; Sierakowski, M.R.; Pontarolo, R.; Santos, L.A.; de Freitas, R.A. Layer-by-layer polysaccharide-coated liposomes for sustained delivery of epidermal growth factor. Carbohydr. Polym., 2016, 140, 129-135.
[http://dx.doi.org/10.1016/j.carbpol.2015.12.014] [PMID: 26876836]
[67]
Barbosa-Barros, L.; García-Jimeno, S.; Estelrich, J. Formation and characterization of biobased magnetic nanoparticles double coated with dextran and chitosan by layer-by-layer deposition. Colloids Surf. A Physicochem. Eng. Asp., 2014, 450, 121-129.
[http://dx.doi.org/10.1016/j.colsurfa.2014.03.004]
[68]
Rydzek, G.; Ji, Q.; Li, M.; Schaaf, P.; Hill, J.P.; Boulmedais, F.; Ariga, K. Electrochemical nanoarchitectonics and layer-by-layer assembly: From basics to future. Nano Today, 2015, 10(2), 138-167.
[http://dx.doi.org/10.1016/j.nantod.2015.02.008]
[69]
Prakash, U.; Thiagarajan, P. Transdermal drug delivery systems influencing factors, study methods and therapeutic applications. Int. J. Pharm., 2012, 2(2), 366-374.
[70]
Yokota, J.; Kyotani, S. Influence of nanoparticle size on the skin penetration, skin retention and anti-inflammatory activity of non-steroidal anti-inflammatory drugs. J. Chin. Med. Assoc., 2018, 81(6), 511-519.
[http://dx.doi.org/10.1016/j.jcma.2018.01.008] [PMID: 29555445]
[71]
MuÈller. R.H.; MaÈder, K.; Gohla, S. Solid Lipid Nanoparticles (SLN) for controlled drug delivery-a review of the state of the art. Eur. J. Pharm. Biopharm., 2000, 50(1), 161-177.
[http://dx.doi.org/10.1016/S0939-6411(00)00087-4] [PMID: 10840199]
[72]
Prow, T.W.; Grice, J.E.; Lin, L.L.; Faye, R.; Butler, M.; Becker, W.; Wurm, E.M.; Yoong, C.; Robertson, T.A.; Soyer, H.P.; Roberts, M.S. Nanoparticles and microparticles for skin drug delivery. Adv. Drug Deliv. Rev., 2011, 63(6), 470-491.
[http://dx.doi.org/10.1016/j.addr.2011.01.012] [PMID: 21315122]
[73]
Shim, J.; Seok Kang, H.; Park, W-S.; Han, S-H.; Kim, J.; Chang, I-S. Transdermal delivery of mixnoxidil with block copolymer nanoparticles. J. Control. Release, 2004, 97(3), 477-484.
[http://dx.doi.org/10.1016/S0168-3659(04)00167-1] [PMID: 15212879]
[74]
Alvarez-Román, R.; Naik, A.; Kalia, Y.N.; Guy, R.H.; Fessi, H. Enhancement of topical delivery from biodegradable nanoparticles. Pharm. Res., 2004, 21(10), 1818-1825.
[http://dx.doi.org/10.1023/B:PHAM.0000045235.86197.ef] [PMID: 15553228]
[75]
Alvarez-Román, R.; Naik, A.; Kalia, Y.N.; Guy, R.H.; Fessi, H. Skin penetration and distribution of polymeric nanoparticles. J. Control. Release, 2004, 99(1), 53-62.
[http://dx.doi.org/10.1016/j.jconrel.2004.06.015] [PMID: 15342180]
[76]
Nam, Y.S.; Kim, J-W.; Park, J.; Shim, J.; Lee, J.S.; Han, S.H. Tocopheryl acetate nanoemulsions stabilized with lipid-polymer hybrid emulsifiers for effective skin delivery. Colloids Surf. B Biointerfaces, 2012, 94, 51-57.
[http://dx.doi.org/10.1016/j.colsurfb.2012.01.016] [PMID: 22326341]
[77]
Shakeel, F.; Baboota, S.; Ahuja, A.; Ali, J.; Shafiq, S. Celecoxib nanoemulsion: skin permeation mechanism and bioavailability assessment. J. Drug Target., 2008, 16(10), 733-740.
[http://dx.doi.org/10.1080/10611860802473402] [PMID: 18985507]
[78]
Dayan, N.; Touitou, E. Carriers for skin delivery of trihexyphenidyl HCl: Ethosomes vs. liposomes. Biomaterials, 2000, 21(18), 1879-1885.
[http://dx.doi.org/10.1016/S0142-9612(00)00063-6] [PMID: 10919691]
[79]
El Maghraby, G.M.; Williams, A.C.; Barry, B.W. Skin delivery of 5-fluorouracil from ultradeformable and standard liposomes in vitro. J. Pharm. Pharmacol., 2001, 53(8), 1069-1077.
[http://dx.doi.org/10.1211/0022357011776450] [PMID: 11518016]
[80]
El Maghraby, G.M.; Williams, A.C.; Barry, B.W. Skin delivery of oestradiol from lipid vesicles: Importance of liposome structure. Int. J. Pharm., 2000, 204(1-2), 159-169.
[http://dx.doi.org/10.1016/S0378-5173(00)00493-2] [PMID: 11012000]
[81]
Touitou, E.; Dayan, N.; Bergelson, L.; Godin, B.; Eliaz, M. Ethosomes - novel vesicular carriers for enhanced delivery: Characterization and skin penetration properties. J. Control. Release, 2000, 65(3), 403-418.
[http://dx.doi.org/10.1016/S0168-3659(99)00222-9] [PMID: 10699298]
[82]
Küchler, S.; Radowski, M.R.; Blaschke, T.; Dathe, M.; Plendl, J.; Haag, R.; Schäfer-Korting, M.; Kramer, K.D. Nanoparticles for skin penetration enhancement-a comparison of a dendritic core-multishell-nanotransporter and solid lipid nanoparticles. Eur. J. Pharm. Biopharm., 2009, 71(2), 243-250.
[http://dx.doi.org/10.1016/j.ejpb.2008.08.019] [PMID: 18796329]
[83]
Khanh, T.M.T.; Wei, D.; Tran, P.H.L.; Tran, T.T.D. Nanotechnology in neuroscience and its perspective as gene carrier. Curr. Top. Med. Chem., 2017, 17(12), 1379-1389.
[http://dx.doi.org/10.2174/1568026616666161222145654] [PMID: 28017150]
[84]
Wang, Y.; Li, P.; Truong-Dinh Tran, T.; Zhang, J.; Kong, L. Manufacturing techniques and surface engineering of polymer based nanoparticles for targeted drug delivery to cancer. Nanomaterials (Basel), 2016, 6(2), 26.
[http://dx.doi.org/10.3390/nano6020026] [PMID: 28344283]
[85]
Küchler, S.; Abdel-Mottaleb, M.; Lamprecht, A.; Radowski, M.R.; Haag, R.; Schäfer-Korting, M. Influence of nanocarrier type and size on skin delivery of hydrophilic agents. Int. J. Pharm., 2009, 377(1-2), 169-172.
[http://dx.doi.org/10.1016/j.ijpharm.2009.04.046] [PMID: 19439166]
[86]
Desai, P.; Patlolla, R.R.; Singh, M. Interaction of nanoparticles and cell-penetrating peptides with skin for transdermal drug delivery. Mol. Membr. Biol., 2010, 27(7), 247-259.
[http://dx.doi.org/10.3109/09687688.2010.522203] [PMID: 21028936]
[87]
Ayub, A.C.; Gomes, A.D.; Lima, M.V.; Vianna-Soares, C.D.; Ferreira, L.A. Topical delivery of fluconazole: In vitro skin penetration and permeation using emulsions as dosage forms. Drug Dev. Ind. Pharm., 2007, 33(3), 273-280.
[http://dx.doi.org/10.1080/03639040600829989] [PMID: 17454060]
[88]
Anuchapreeda, S.; Fukumori, Y.; Okonogi, S.; Ichikawa, H. Preparation of lipid nanoemulsions incorporating curcumin for cancer therapy. J. Nanotechnol., 2011, 2012, 1-11.
[http://dx.doi.org/10.1155/2012/270383]
[89]
Sunitha, S.; Wankar, J.; Ajimera, T. Design, development and evaluation of nanoemulsion and nanogel of itraconazole for transdermal delivery. J. Sci. Res. Pharm., 2014, 3, 6-11.
[90]
Pham, M.N.; Van Vo, T.; Tran, V-T.; Tran, P.H-L.; Tran, T.T-D. Microemulsion-based mucoadhesive buccal wafers: Wafer formation, in vitro release, and ex vivo evaluation. AAPS PharmSciTech, 2017, 18(7), 2727-2736.
[http://dx.doi.org/10.1208/s12249-017-0754-9] [PMID: 28299621]
[91]
Rai, V.K.; Mishra, N.; Yadav, K.S.; Yadav, N.P. Nanoemulsion as pharmaceutical carrier for dermal and transdermal drug delivery: Formulation development, stability issues, basic considerations and applications. J. Control. Release, 2018, 270, 203-225.
[http://dx.doi.org/10.1016/j.jconrel.2017.11.049] [PMID: 29199062]
[92]
Jangdey, M.S.; Gupta, A.; Saraf, S. Fabrication, in vitro characterization, and enhanced in vivo evaluation of carbopol-based nanoemulsion gel of apigenin for UV-induced skin carcinoma. Drug Deliv., 2017, 24(1), 1026-1036.
[http://dx.doi.org/10.1080/10717544.2017.1344333] [PMID: 28687053]
[93]
Sahu, P.; Kashaw, S.K.; Kushwah, V.; Sau, S.; Jain, S.; Iyer, A.K. pH responsive biodegradable nanogels for sustained release of bleomycin. Bioorg. Med. Chem., 2017, 25(17), 4595-4613.
[http://dx.doi.org/10.1016/j.bmc.2017.06.038] [PMID: 28734664]
[94]
Thacharodi, D.; Rao, K.P. Development and in vitro evaluation of chitosan-based transdermal drug delivery systems for the controlled delivery of propranolol hydrochloride. Biomaterials, 1995, 16(2), 145-148.
[http://dx.doi.org/10.1016/0142-9612(95)98278-M] [PMID: 7734649]
[95]
Kong, B.J.; Kim, A.; Park, S.N. Properties and in vitro drug release of hyaluronic acid-hydroxyethyl cellulose hydrogels for transdermal delivery of isoliquiritigenin. Carbohydr. Polym., 2016, 147, 473-481.
[http://dx.doi.org/10.1016/j.carbpol.2016.04.021] [PMID: 27178954]
[96]
Khallaf, R.A.; Salem, H.F.; Abdelbary, A. 5-Fluorouracil shell-enriched Solid Lipid Nanoparticles (SLN) for effective skin carcinoma treatment. Drug Deliv., 2016, 23(9), 3452-3460.
[http://dx.doi.org/10.1080/10717544.2016.1194498] [PMID: 27240935]
[97]
Schmook, F.P.; Meingassner, J.G.; Billich, A. Comparison of human skin or epidermis models with human and animal skin in in vitro percutaneous absorption. Int. J. Pharm., 2001, 215(1-2), 51-56.
[http://dx.doi.org/10.1016/S0378-5173(00)00665-7] [PMID: 11250091]
[98]
Bronaugh, R.L.; Stewart, R.F.; Congdon, E.R. Methods for in vitro percutaneous absorption studies. II. Animal models for human skin. Toxicol. Appl. Pharmacol., 1982, 62(3), 481-488.
[http://dx.doi.org/10.1016/0041-008X(82)90149-1] [PMID: 7071863]
[99]
Venâncio, J.H.; Andrade, L.M.; Esteves, N.L.S.; Brito, L.B.; Valadares, M.C.; Oliveira, G.A.R.; Lima, E.M.; Marreto, R.N.; Gratieri, T.; Taveira, S.F. Topotecan-loaded lipid nanoparticles as a viable tool for the topical treatment of skin cancers. J. Pharm. Pharmacol., 2017, 69(10), 1318-1326.
[http://dx.doi.org/dx.doi:10.1111/jphp.12772] [PMID: 28703281]
[100]
Jose, A.; Labala, S.; Ninave, K.M.; Gade, S.K.; Venuganti, V.V.K. Effective skin cancer treatment by topical co-delivery of curcumin and STAT3 siRNA using cationic liposomes. AAPS PharmSciTech, 2018, 19(1), 166-175.
[http://dx.doi.org/dx.doi: 10.1208/s12249-017-0833-y] [PMID: 28639178]
[101]
Rachmawati, H.; Edityaningrum, C.A.; Mauludin, R. Molecular inclusion complex of curcumin-β-cyclodextrin nanoparticle to enhance curcumin skin permeability from hydrophilic matrix gel. AAPS PharmSciTech, 2013, 14(4), 1303-1312.
[http://dx.doi.org/10.1208/s12249-013-0023-5] [PMID: 23990077]
[102]
Samah, N.A.; Williams, N.; Heard, C.M. Nanogel particulates located within diffusion cell receptor phases following topical application demonstrates uptake into and migration across skin. Int. J. Pharm., 2010, 401(1-2), 72-78.
[http://dx.doi.org/10.1016/j.ijpharm.2010.08.011] [PMID: 20817080]
[103]
Ostrowski, A.; Nordmeyer, D.; Boreham, A.; Holzhausen, C.; Mundhenk, L.; Graf, C.; Meinke, M.C.; Vogt, A.; Hadam, S.; Lademann, J.; Rühl, E.; Alexiev, U.; Gruber, A.D. Overview about the localization of nanoparticles in tissue and cellular context by different imaging techniques. Beilstein J. Nanotechnol., 2015, 6, 263-280.
[http://dx.doi.org/10.3762/bjnano.6.25] [PMID: 25671170]
[104]
Baroli, B.; Ennas, M.G.; Loffredo, F.; Isola, M.; Pinna, R.; López-Quintela, M.A. Penetration of metallic nanoparticles in human full-thickness skin. J. Invest. Dermatol., 2007, 127(7), 1701-1712.
[http://dx.doi.org/10.1038/sj.jid.5700733] [PMID: 17380118]
[105]
Patra, S.; Roy, E.; Madhuri, R.; Sharma, P.K. The next generation cell-penetrating peptide and carbon dot conjugated nano-liposome for transdermal delivery of curcumin. Biomater. Sci., 2016, 4(3), 418-429.
[http://dx.doi.org/10.1039/C5BM00433K] [PMID: 26631310]
[106]
Ghalandarlaki, N.; Alizadeh, A.M.; Ashkani-Esfahani, S. Nanotechnology-applied curcumin for different diseases therapy. BioMed Res. Int., 2014, 2014, 394264.
[http://dx.doi.org/10.1155/2014/394264] [PMID: 24995293]
[107]
Kong, M.; Chen, X.G.; Kweon, D.K.; Park, H.J. Investigations on skin permeation of hyaluronic acid based nanoemulsion as transdermal carrier. Carbohydr. Polym., 2011, 86(2), 837-843.
[http://dx.doi.org/10.1016/j.carbpol.2011.05.027]
[108]
Alvarez-Román, R.; Naik, A.; Kalia, Y.N.; Fessi, H.; Guy, R.H. Visualization of skin penetration using confocal laser scanning microscopy. Eur. J. Pharm. Biopharm., 2004, 58(2), 301-316.
[http://dx.doi.org/10.1016/j.ejpb.2004.03.027] [PMID: 15296957]
[109]
Lombardi Borgia, S.; Regehly, M.; Sivaramakrishnan, R.; Mehnert, W.; Korting, H.C.; Danker, K.; Röder, B.; Kramer, K.D.; Schäfer-Korting, M. Lipid nanoparticles for skin penetration enhancement-correlation to drug localization within the particle matrix as determined by fluorescence and parelectric spectroscopy. J. Control. Release, 2005, 110(1), 151-163.
[http://dx.doi.org/10.1016/j.jconrel.2005.09.045] [PMID: 16297487]
[110]
Guterres, S.S.; Alves, M.P.; Pohlmann, A.R. Polymeric nanoparticles, nanospheres and nanocapsules, for cutaneous applications. Drug Target Insights, 2007, 2, 147-157.
[http://dx.doi.org/10.1177/117739280700200002] [PMID: 21901071]
[111]
Grant, C.A.; Twigg, P.C.; Baker, R.; Tobin, D.J. Tattoo ink nanoparticles in skin tissue and fibroblasts. Beilstein J. Nanotechnol., 2015, 6, 1183-1191.
[http://dx.doi.org/10.3762/bjnano.6.120] [PMID: 26171294]
[112]
Halder, A.; Mukherjee, P.; Ghosh, S.; Mandal, S.; Chatterji, U.; Mukherjee, A. Smart PLGA nanoparticles loaded with Quercetin: Cellular uptake and in-vitro anticancer study. Mater. Today Proc., 2018, 5(3, Part 3), 9698-9705.
[http://dx.doi.org/10.1016/j.matpr.2017.10.156]
[113]
Lu, Y-C.; Chang, F-Y.; Tu, S-J.; Chen, J-P.; Ma, Y-H. Cellular uptake of magnetite nanoparticles enhanced by NdFeB magnets in staggered arrangement. J. Magn. Magn. Mater., 2017, 427, 71-80.
[http://dx.doi.org/10.1016/j.jmmm.2016.11.010]
[114]
Batheja, P.; Sheihet, L.; Kohn, J.; Singer, A.J.; Michniak-Kohn, B. Topical drug delivery by a polymeric nanosphere gel: Formulation optimization and in vitro and in vivo skin distribution studies. J. Control. Release, 2011, 149(2), 159-167.
[http://dx.doi.org/10.1016/j.jconrel.2010.10.005] [PMID: 20950659]
[115]
Mayer, A.; Vadon, M.; Rinner, B.; Novak, A.; Wintersteiger, R.; Fröhlich, E. The role of nanoparticle size in hemocompatibility. Toxicology, 2009, 258(2-3), 139-147.
[http://dx.doi.org/10.1016/j.tox.2009.01.015] [PMID: 19428933]
[116]
Ilinskaya, A.N.; Dobrovolskaia, M.A. Nanoparticles and the blood coagulation system. Part II: Safety concerns. Nanomedicine (Lond.), 2013, 8(6), 969-981.
[http://dx.doi.org/10.2217/nnm.13.49] [PMID: 23730696]
[117]
Kim, D.W.; Kim, K.S.; Seo, Y.G.; Lee, B-J.; Park, Y.J.; Youn, Y.S.; Kim, J.O.; Yong, C.S.; Jin, S.G.; Choi, H-G. Novel sodium fusidate-loaded film-forming hydrogel with easy application and excellent wound healing. Int. J. Pharm., 2015, 495(1), 67-74.
[http://dx.doi.org/10.1016/j.ijpharm.2015.08.082] [PMID: 26325319]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy