Review Article

Correlation between MDSC and Immune Tolerance in Transplantation: Cytokines, Pathways and Cell-cell Interaction

Author(s): Tianying Yang, Jiawei Li, Ruimin Li, Chunchen Yang, Weitao Zhang, Yue Qiu, Cheng Yang* and Ruiming Rong*

Volume 19, Issue 2, 2019

Page: [81 - 92] Pages: 12

DOI: 10.2174/1566523219666190618093707

Price: $65

Abstract

MDSCs play an important role in the induction of immune tolerance. Cytokines and chemokines (GM-CSF, IL-6) contributed to the expansion, accumulation of MDSCs, and MDSCs function through iNOS, arginase and PD-L1. MDSCs are recruited and regulated through JAK/STAT, mTOR and Raf/MEK/ERK signaling pathways. MDSCs’ immunosuppressive functions were realized through Tregs-mediated pathways and their direct suppression of immune cells. All of the above contribute to the MDSC-related immune tolerance in transplantation. MDSCs have huge potential in prolonging graft survival and reducing rejection through different ways and many other factors worthy to be further investigated are also introduced.

Keywords: Myeloid-derived suppressor cells, immune tolerance, transplantation, GM-CSF, CXCR2, JAK/STAT.

Graphical Abstract

[1]
Sykes M. Immune tolerance in recipients of combined haploidentical bone marrow and kidney transplantation. Bone Marrow Transplant 2015; 50(Suppl. 2): S82-6.
[http://dx.doi.org/10.1038/bmt.2015.102] [PMID: 26039215]
[2]
Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science 2003; 299(5609): 1057-61.
[http://dx.doi.org/10.1126/science.1079490] [PMID: 12522256]
[3]
Fillatreau S, Sweenie CH, McGeachy MJ, Gray D, Anderton SM. B cells regulate autoimmunity by provision of IL-10. Nat Immunol 2002; 3(10): 944-50.
[http://dx.doi.org/10.1038/ni833] [PMID: 12244307]
[4]
Gabrilovich DI, Ostrand-Rosenberg S, Bronte V. Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol 2012; 12(4): 253-68.
[http://dx.doi.org/10.1038/nri3175] [PMID: 22437938]
[5]
Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 2009; 9(3): 162-74.
[http://dx.doi.org/10.1038/nri2506] [PMID: 19197294]
[6]
Nagaraj S, Gupta K, Pisarev V, et al. Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer. Nat Med 2007; 13(7): 828-35.
[http://dx.doi.org/10.1038/nm1609] [PMID: 17603493]
[7]
De Wilde V, Van Rompaey N, Hill M, et al. Endotoxin-induced myeloid-derived suppressor cells inhibit alloimmune responses via heme oxygenase-1. Am J Transplant 2009; 9(9): 2034-47.
[http://dx.doi.org/10.1111/j.1600-6143.2009.02757.x] [PMID: 19681826]
[8]
Dugast AS, Haudebourg T, Coulon F, et al. Myeloid-derived suppressor cells accumulate in kidney allograft tolerance and specifically suppress effector T cell expansion. J Immunol 2008; 180(12): 7898-906.
[http://dx.doi.org/10.4049/jimmunol.180.12.7898]
[9]
Adeegbe D, Serafini P, Bronte V, Zoso A, Ricordi C, Inverardi L. In vivo induction of myeloid suppressor cells and CD4(+)Foxp3(+) T regulatory cells prolongs skin allograft survival in mice. Cell Transplant 2011; 20(6): 941-54.
[http://dx.doi.org/10.3727/096368910X540621] [PMID: 21054938]
[10]
Arakawa Y, Qin J, Chou HS, et al. Cotransplantation with myeloid-derived suppressor cells protects cell transplants: A crucial role of inducible nitric oxide synthase. Transplantation 2014; 97(7): 740-7.
[http://dx.doi.org/10.1097/01.TP.0000442504.23885.f7] [PMID: 24642686]
[11]
Cornish AL, Campbell IK, McKenzie BS, Chatfield S. Wicks IPGCSF G-CSF and GM-CSF as therapeutic targets in rheumatoid arthritis Nat Rev Rheumatol 2009; 5(10): 554-9.
[http://dx.doi.org/10.1038/nrrheum.2009.178] [PMID: 19798030]
[12]
Ushach I, Zlotnik A. Biological role of granulocyte macrophage colony-stimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF) on cells of the myeloid lineage. J Leukoc Biol 2016; 100(3): 481-9.
[http://dx.doi.org/10.1189/jlb.3RU0316-144R] [PMID: 27354413]
[13]
Kandalla PK, Sarrazin S, Molawi K, et al. M-CSF improves protection against bacterial and fungal infections after hematopoietic stem/progenitor cell transplantation. J Exp Med 2016; 213(11): 2269-79.
[http://dx.doi.org/10.1084/jem.20151975] [PMID: 27811055]
[14]
Wan L, Zhang Y, Lai Y, et al. Effect of Granulocyte-Macrophage Colony-Stimulating factor on prevention and treatment of invasive fungal disease in recipients of allogeneic Stem-Cell Transplantation: A prospective multicenter randomized phase IV trial. J Clin Oncol 2015; 33(34): 3999-4006.
[http://dx.doi.org/10.1200/JCO.2014.60.5121] [PMID: 26392095]
[15]
Yang F, Li Y, Wu T, et al. TNFα-induced M-MDSCs promote transplant immune tolerance via nitric oxide. J Mol Med (Berl) 2016; 94(8): 911-20.
[http://dx.doi.org/10.1007/s00109-016-1398-z] [PMID: 26936474]
[16]
Zhao Y, Shen XF, Cao K, et al. Dexamethasone-Induced myeloid-derived suppressor cells prolong allo cardiac graft survival through inos- and glucocorticoid Receptor-Dependent mechanism. Front Immunol 2018; 9: 282.
[http://dx.doi.org/10.3389/fimmu.2018.00282] [PMID: 29497426]
[17]
Nywening TM, Belt BA, Cullinan DR, et al. Targeting both tumour-associated CXCR2+ neutrophils and CCR2+ macrophages disrupts myeloid recruitment and improves chemotherapeutic responses in pancreatic ductal adenocarcinoma. Gut 2018; 67(6): 1112-23.
[http://dx.doi.org/10.1136/gutjnl-2017-313738] [PMID: 29196437]
[18]
Liao J, Wang X, Bi Y, et al. Dexamethasone potentiates myeloid-derived suppressor cell function in prolonging allograft survival through nitric oxide. J Leukoc Biol 2014; 96(5): 675-84.
[http://dx.doi.org/10.1189/jlb.2HI1113-611RR] [PMID: 24948701]
[19]
Ochando JC, Conde P. Editorial: Dexamethasone and MDSC in transplantation: Yes to NO. J Leukoc Biol 2014; 96(5): 669-71.
[http://dx.doi.org/10.1189/jlb.3CE0514-272R] [PMID: 25360039]
[20]
Nakao T, Nakamura T, Masuda K, et al. Dexamethasone prolongs cardiac allograft survival in a murine model through myeloid-derived suppressor cells. Transplant Proc 2018; 50(1): 299-304.
[http://dx.doi.org/10.1016/j.transproceed.2017.11.014] [PMID: 29407325]
[21]
Tanaka T, Narazaki M, Kishimoto T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb Perspect Biol 2014; 6(10)a016295
[http://dx.doi.org/10.1101/cshperspect.a016295] [PMID: 25190079]
[22]
Wu CT, Hsieh CC, Lin CC, Chen WC, Hong JH, Chen MF. Significance of IL-6 in the transition of hormone-resistant prostate cancer and the induction of myeloid-derived suppressor cells. J Mol Med (Berl) 2012; 90(11): 1343-55.
[http://dx.doi.org/10.1007/s00109-012-0916-x] [PMID: 22660275]
[23]
Hock BD, McKenzie JL, Cross NB, Currie MJ. Dynamic changes in myeloid derived suppressor cell subsets following renal transplant: A prospective study. Transpl Immunol 2015; 32(3): 164-71.
[http://dx.doi.org/10.1016/j.trim.2015.05.001] [PMID: 25968653]
[24]
Gong W, Shou D, Cheng F, Shi J, Ge F, Liu D. Tolerance induced by IL-6 deficient donor heart is significantly involved in myeloid-derived suppressor cells (MDSCs). Transpl Immunol 2015; 32(2): 72-5.
[http://dx.doi.org/10.1016/j.trim.2015.02.001] [PMID: 25680847]
[25]
Sinha P, Clements VK, Ostrand-Rosenberg S. Interleukin-13-regulated M2 macrophages in combination with myeloid suppressor cells block immune surveillance against metastasis. Cancer Res 2005; 65(24): 11743-51.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-0045] [PMID: 16357187]
[26]
Davidson C, Verma ND, Robinson CM, et al. IL-13 prolongs allograft survival: Association with inhibition of macrophage cytokine activation. Transpl Immunol 2007; 17(3): 178-86.
[http://dx.doi.org/10.1016/j.trim.2006.09.035] [PMID: 17331844]
[27]
Gabitass RF, Annels NE, Stocken DD, Pandha HA, Middleton GW. Elevated myeloid-derived suppressor cells in pancreatic, esophageal and gastric cancer are an independent prognostic factor and are associated with significant elevation of the Th2 cytokine interleukin-13. Cancer Immunol Immunother 2011; 60(10): 1419-30.
[http://dx.doi.org/10.1007/s00262-011-1028-0] [PMID: 21644036]
[28]
Highfill SL, Rodriguez PC, Zhou Q, et al. Bone marrow myeloid-derived suppressor cells (MDSCs) inhibit graft-versus-host disease (GVHD) via an arginase-1-dependent mechanism that is up-regulated by interleukin-13. Blood 2010; 116(25): 5738-47.
[http://dx.doi.org/10.1182/blood-2010-06-287839] [PMID: 20807889]
[29]
Kusmartsev SA, Li Y, Chen SH. Gr-1+ myeloid cells derived from tumor-bearing mice inhibit primary T cell activation induced through CD3/CD28 costimulation. J Immunol 2000; 165(2): 779-85.
[30]
Mazzoni A, Bronte V, Visintin A, et al. Myeloid suppressor lines inhibit T cell responses by an NO-dependent mechanism. J Immunol 2002; 168: 689-95.
[31]
Zhu B, Bando Y, Xiao S, et al. CD11b+Ly-6C(hi) suppressive monocytes in experimental autoimmune encephalomyelitis. J Immunol 2007; 179(8): 5228-37.
[32]
Garcia MR, Ledgerwood L, Yang Y, et al. Monocytic suppressive cells mediate cardiovascular transplantation tolerance in mice. J Clin Invest 2010; 120(7): 2486-96.
[http://dx.doi.org/10.1172/JCI41628] [PMID: 20551515]
[33]
Heslan JM, Beriou G, Le Luduec JB, et al. Accumulation of T cells with potent regulatory properties and restricted Vbeta7-TCR rearrangements in tolerated allografts. Transplantation 2005; 80(10): 1476-84.
[http://dx.doi.org/10.1097/01.tp.0000185198.07663.ba] [PMID: 16340794]
[34]
Feng G, Gao W, Strom TB, et al. Exogenous IFN-gamma ex vivo shapes the alloreactive T-cell repertoire by inhibition of Th17 responses and generation of functional Foxp3+ regulatory T cells. Eur J Immunol 2008; 38(9): 2512-27.
[http://dx.doi.org/10.1002/eji.200838411] [PMID: 18792404]
[35]
Feng G, Wood KJ, Bushell A. Interferon-gamma conditioning ex vivo generates CD25+CD62L+Foxp3+ regulatory T cells that prevent allograft rejection: Potential avenues for cellular therapy. Transplantation 2008; 86(4): 578-89.
[http://dx.doi.org/10.1097/TP.0b013e3181806a60] [PMID: 18724229]
[36]
Sawitzki B, Kingsley CI, Oliveira V, Karim M, Herber M, Wood KJ. IFN-gamma production by alloantigen-reactive regulatory T cells is important for their regulatory function in vivo. J Exp Med 2005; 201(12): 1925-35.
[http://dx.doi.org/10.1084/jem.20050419] [PMID: 15967822]
[37]
Matsumura T, Ato M, Ikebe T, Ohnishi M, Watanabe H, Kobayashi K. Interferon-γ-producing immature myeloid cells confer protection against severe invasive group A Streptococcus infections. Nat Commun 2012; 3: 678.
[http://dx.doi.org/10.1038/ncomms1677] [PMID: 22334081]
[38]
Bryant J, Lerret NM, Wang JJ, et al. Preemptive donor apoptotic cell infusions induce IFN-gamma-producing myeloid-derived suppressor cells for cardiac allograft protection. J Immunol 2014; 192(12): 6092-101.
[39]
Cayrol C, Girard JP. IL-33: An alarmin cytokine with crucial roles in innate immunity, inflammation and allergy. Curr Opin Immunol 2014; 31: 31-7.
[http://dx.doi.org/10.1016/j.coi.2014.09.004] [PMID: 25278425]
[40]
Cayrol C, Girard JP. Interleukin-33 (IL-33): A nuclear cytokine from the IL-1 family. Immunol Rev 2018; 281(1): 154-68.
[http://dx.doi.org/10.1111/imr.12619] [PMID: 29247993]
[41]
Mayuzumi N, Matsushima H, Takashima A. IL-33 promotes DC development in BM culture by triggering GM-CSF production. Eur J Immunol 2009; 39(12): 3331-42.
[http://dx.doi.org/10.1002/eji.200939472] [PMID: 19750479]
[42]
Turnquist HR, Zhao Z, Rosborough BR, et al. IL-33 expands suppressive CD11b+ Gr-1(int) and regulatory T cells, including ST2L+ Foxp3+ cells, and mediates regulatory T cell-dependent promotion of cardiac allograft survival. J Immunol 2011; 187(9): 4598-610.
[43]
Amatya N, Garg AV, Gaffen SL. IL-17 Signaling: The Yin and the Yang. Trends Immunol 2017; 38(5): 310-22.
[http://dx.doi.org/10.1016/j.it.2017.01.006] [PMID: 28254169]
[44]
Gajardo T, Morales RA, Campos-Mora M, Campos-Acuña J, Pino-Lagos K. Exogenous interleukin-33 targets myeloid-derived suppressor cells and generates periphery-induced Foxp3+ regulatory T cells in skin-transplanted mice. Immunology 2015; 146(1): 81-8.
[http://dx.doi.org/10.1111/imm.12483] [PMID: 25988395]
[45]
Nikolova M, Musette P, Bagot M, Boumsell L, Bensussan A. Engagement of ILT2/CD85j in Sézary syndrome cells inhibits their CD3/TCR signaling. Blood 2002; 100(3): 1019-25.
[http://dx.doi.org/10.1182/blood-2001-12-0303] [PMID: 12130517]
[46]
Shiroishi M, Tsumoto K, Amano K, et al. Human inhibitory receptors Ig-like transcript 2 (ILT2) and ILT4 compete with CD8 for MHC class I binding and bind preferentially to HLA-G. Proc Natl Acad Sci USA 2003; 100(15): 8856-61.
[http://dx.doi.org/10.1073/pnas.1431057100] [PMID: 12853576]
[47]
Liang S, Zhang W, Horuzsko A. Human ILT2 receptor associates with murine MHC class I molecules in vivo and impairs T cell function. Eur J Immunol 2006; 36(9): 2457-71.
[http://dx.doi.org/10.1002/eji.200636031] [PMID: 16897816]
[48]
Zhang W, Liang S, Wu J, Horuzsko A. Human inhibitory receptor immunoglobulin-like transcript 2 amplifies CD11b+Gr1+ myeloid-derived suppressor cells that promote long-term survival of allografts. Transplantation 2008; 86(8): 1125-34.
[http://dx.doi.org/10.1097/TP.0b013e318186fccd] [PMID: 18946352]
[49]
Dietrich J, Cella M, Colonna M. Ig-like transcript 2 (ILT2)/leukocyte Ig-like receptor 1 (LIR1) inhibits TCR signaling and actin cytoskeleton reorganization. J Immunol 2001; 166(4): 2514-1.
[50]
Sayós J, Martínez-Barriocanal A, Kitzig F, Bellón T, López-Botet M. Recruitment of C-terminal Src kinase by the leukocyte inhibitory receptor CD85j. Biochem Biophys Res Commun 2004; 324(2): 640-7.
[http://dx.doi.org/10.1016/j.bbrc.2004.09.097] [PMID: 15474475]
[51]
Bronte V, Serafini P, Mazzoni A, Segal DM, Zanovello P. L-arginine metabolism in myeloid cells controls T-lymphocyte functions. Trends Immunol 2003; 24(6): 302-6.
[http://dx.doi.org/10.1016/S1471-4906(03)00132-7] [PMID: 12810105]
[52]
Szuster-Ciesielska A, Hryciuk-Umer E, Stepulak A, Kupisz K, Kandefer-Szerszeń M. Reactive oxygen species production by blood neutrophils of patients with laryngeal carcinoma and antioxidative enzyme activity in their blood. Acta Oncol 2004; 43(3): 252-8.
[http://dx.doi.org/10.1080/02841860410029708] [PMID: 15244248]
[53]
Corzo CA, Cotter MJ, Cheng P, et al. Mechanism regulating reactive oxygen species in tumor-induced myeloid-derived suppressor cells. J Immunol 2009; 182(9): 5693-701.
[http://dx.doi.org/10.4049/jimmunol.0900092]
[54]
Koblish HK, Hunter CA, Wysocka M, Trinchieri G, Lee WM. Immune suppression by recombinant interleukin (rIL)-12 involves interferon gamma induction of nitric oxide synthase 2 (iNOS) activity: Inhibitors of NO generation reveals the extent of rIL-12 vaccine adjuvant effect. J Exp Med 1998; 188(9): 1603-10.
[http://dx.doi.org/10.1084/jem.188.9.1603] [PMID: 9802972]
[55]
Rodriguez PC, Zea AH, Culotta KS, Zabaleta J, Ochoa JB, Ochoa AC. Regulation of T cell receptor CD3zeta chain expression by L-arginine. J Biol Chem 2002; 277(24): 21123-9.
[http://dx.doi.org/10.1074/jbc.M110675200] [PMID: 11950832]
[56]
Harari O, Liao JK. Inhibition of MHC II gene transcription by nitric oxide and antioxidants. Curr Pharm Des 2004; 10(8): 893-8.
[http://dx.doi.org/10.2174/1381612043452893] [PMID: 15032692]
[57]
Bingisser RM, Tilbrook PA, Holt PG, Kees UR. Macrophage-derived nitric oxide regulates T cell activation via reversible disruption of the Jak3/STAT5 signaling pathway. J Immunol 1998; 160(12): 5729-34.
[58]
Rivoltini L, Carrabba M, Huber V, et al. Immunity to cancer: Attack and escape in T lymphocyte-tumor cell interaction. Immunol Rev 2002; 188: 97-113.
[http://dx.doi.org/10.1034/j.1600-065X.2002.18809.x] [PMID: 12445284]
[59]
Nakamura T, Nakao T, Yoshimura N, Ashihara E. Rapamycin Prolongs cardiac allograft survival in a mouse model by inducing Myeloid-Derived suppressor cells. Am J Transplant 2015; 15(9): 2364-77.
[http://dx.doi.org/10.1111/ajt.13276] [PMID: 25943210]
[60]
Basso D, Fogar P, Falconi M, et al. Pancreatic tumors and immature immunosuppressive myeloid cells in blood and spleen: Role of inhibitory co-stimulatory molecules PDL1 and CTLA4. An in vivo and in vitro study. PLoS One 2013; 8(1)e54824
[http://dx.doi.org/10.1371/journal.pone.0054824] [PMID: 23359812]
[61]
Rodríguez PC, Ochoa AC. Arginine regulation by myeloid derived suppressor cells and tolerance in cancer: Mechanisms and therapeutic perspectives. Immunol Rev 2008; 222: 180-91.
[http://dx.doi.org/10.1111/j.1600-065X.2008.00608.x] [PMID: 18364002]
[62]
Wells AD, Li XC, Li Y, et al. Requirement for T-cell apoptosis in the induction of peripheral transplantation tolerance. Nat Med 1999; 5(11): 1303-7.
[http://dx.doi.org/10.1038/15260] [PMID: 10545998]
[63]
Brito C, Naviliat M, Tiscornia AC, et al. Peroxynitrite inhibits T lymphocyte activation and proliferation by promoting impairment of tyrosine phosphorylation and peroxynitrite-driven apoptotic death. J Immunol 1999; 162(6): 3356-66.
[64]
Thompson ED, Taube JM, Asch-Kendrick RJ, et al. PD-L1 expression and the immune microenvironment in primary invasive lobular carcinomas of the breast. Mod Pathol 2017; 30(11): 1551-60.
[65]
Prima V, Kaliberova LN, Kaliberov S, Curiel DT, Kusmartsev S. COX2/mPGES1/PGE2 pathway regulates PD-L1 expression in tumor-associated macrophages and myeloid-derived suppressor cells. Proc Natl Acad Sci USA 2017; 114(5): 1117-22.
[http://dx.doi.org/10.1073/pnas.1612920114] [PMID: 28096371]
[66]
Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 2008; 26: 677-704.
[http://dx.doi.org/10.1146/annurev.immunol.26.021607.090331] [PMID: 18173375]
[67]
Keir ME, Liang SC, Guleria I, et al. Tissue expression of PD-L1 mediates peripheral T cell tolerance. J Exp Med 2006; 203(4): 883-95.
[http://dx.doi.org/10.1084/jem.20051776] [PMID: 16606670]
[68]
Wang L, Han R, Hancock WW. Programmed cell death 1 (PD-1) and its ligand PD-L1 are required for allograft tolerance. Eur J Immunol 2007; 37(10): 2983-90.
[http://dx.doi.org/10.1002/eji.200737583] [PMID: 17899549]
[69]
Sandner SE, Clarkson MR, Salama AD, et al. Role of the programmed death-1 pathway in regulation of alloimmune responses in vivo. J Immunol 2005; 174(6): 3408-15.
[http://dx.doi.org/10.4049/jimmunol.174.6.3408]
[70]
Nakamura T, Nakao T, Ashihara E, Yoshimura N. Myeloid-derived suppressor cells recruit CD4(+)/Foxp3(+) Regulatory T Cells in a murine cardiac allograft. Transplant Proc 2016; 48(4): 1275-8.
[http://dx.doi.org/10.1016/j.transproceed.2015.10.060] [PMID: 27320602]
[71]
Gao W, Demirci G, Strom TB, Li XC. Stimulating PD-1-negative signals concurrent with blocking CD154 co-stimulation induces long-term islet allograft survival. Transplantation 2003; 76(6): 994-9.
[http://dx.doi.org/10.1097/01.TP.0000085010.39567.FB] [PMID: 14508368]
[72]
Nelp MT, Kates PA, Hunt JT, et al. Immune-modulating enzyme indoleamine 2,3-dioxygenase is effectively inhibited by targeting its apo-form. Proc Natl Acad Sci USA 2018; 115(13): 3249-54.
[http://dx.doi.org/10.1073/pnas.1719190115] [PMID: 29531094]
[73]
Mougiakakos D, Jitschin R, von Bahr L, et al. Immunosuppressive CD14+HLA-DRlow/neg IDO+ myeloid cells in patients following allogeneic hematopoietic stem cell transplantation. Leukemia 2013; 27(2): 377-88.
[http://dx.doi.org/10.1038/leu.2012.215] [PMID: 22828446]
[74]
Holmgaard RB, Zamarin D, Li Y, et al. Tumor-expressed IDO recruits and activates MDSCs in a treg-dependent manner. Cell Rep 2015; 13(2): 412-24.
[http://dx.doi.org/10.1016/j.celrep.2015.08.077] [PMID: 26411680]
[75]
Wang X, Bi Y, Xue L, et al. The calcineurin-NFAT axis controls allograft immunity in myeloid-derived suppressor cells through reprogramming T cell differentiation. Mol Cell Biol 2015; 35(3): 598-609.
[http://dx.doi.org/10.1128/MCB.01251-14] [PMID: 25452304]
[76]
Tan MC, Goedegebuure PS, Belt BA, et al. Disruption of CCR5-dependent homing of regulatory T cells inhibits tumor growth in a murine model of pancreatic cancer. J Immunol 2009; 182(3): 1746-55.
[http://dx.doi.org/10.4049/jimmunol.182.3.1746]
[77]
Adler EP, Lemken CA, Katchen NS, Kurt RA. A dual role for tumor-derived chemokine RANTES (CCL5). Immunol Lett 2003; 90(2-3): 187-94.
[http://dx.doi.org/10.1016/j.imlet.2003.09.013] [PMID: 14687724]
[78]
Dilek N, Poirier N, Usal C, Martinet B, Blancho G, Vanhove B. Control of transplant tolerance and intragraft regulatory T cell localization by myeloid-derived suppressor cells and CCL5. J Immunol 2012; 188(9): 4209-16.
[http://dx.doi.org/10.4049/jimmunol.1101512]
[79]
Meng F, Chen S, Guo X, et al. Clinical significance of myeloid-derived suppressor cells in human renal transplantation with acute T cell-mediated rejection. Inflammation 2014; 37(5): 1799-805.
[http://dx.doi.org/10.1007/s10753-014-9910-5] [PMID: 24788988]
[80]
Bunt SK, Sinha P, Clements VK, Leips J, Ostrand-Rosenberg S. Inflammation induces myeloid-derived suppressor cells that facilitate tumor progression. J Immunol 2006; 176(1): 284-90.
[http://dx.doi.org/10.4049/jimmunol.176.1.284]
[81]
Gallina G, Dolcetti L, Serafini P, et al. Tumors induce a subset of inflammatory monocytes with immunosuppressive activity on CD8+ T cells. J Clin Invest 2006; 116(10): 2777-90.
[http://dx.doi.org/10.1172/JCI28828] [PMID: 17016559]
[82]
Serafini P, Borrello I, Bronte V. Myeloid suppressor cells in cancer: recruitment, phenotype, properties, and mechanisms of immune suppression. Semin Cancer Biol 2006; 16(1): 53-65.
[http://dx.doi.org/10.1016/j.semcancer.2005.07.005] [PMID: 16168663]
[83]
Kortylewski M, Kujawski M, Wang T, et al. Inhibiting Stat3 signaling in the hematopoietic system elicits multicomponent antitumor immunity. Nat Med 2005; 11(12): 1314-21.
[http://dx.doi.org/10.1038/nm1325] [PMID: 16288283]
[84]
McKallip RJ, Nagarkatti M, Nagarkatti PS. Delta-9-tetrahydrocannabinol enhances breast cancer growth and metastasis by suppression of the antitumor immune response. J Immunol 2005; 174(6): 3281-9.
[85]
Klein TW, Friedman H, Specter S. Marijuana, immunity and infection. J Neuroimmunol 1998; 83(1-2): 102-15.
[http://dx.doi.org/10.1016/S0165-5728(97)00226-9] [PMID: 9610678]
[86]
Hegde VL, Nagarkatti M, Nagarkatti PS. Cannabinoid receptor activation leads to massive mobilization of myeloid-derived suppressor cells with potent immunosuppressive properties. Eur J Immunol 2010; 40(12): 3358-71.
[http://dx.doi.org/10.1002/eji.201040667] [PMID: 21110319]
[87]
Sido JM, Nagarkatti PS, Nagarkatti MΔ. 9- Tetrahydrocannabinol attenuates allogeneic host-versus-graft response and delays skin graft rejection through activation of cannabinoid receptor 1 and induction of myeloid-derived suppressor cells. J Leukoc Biol 2015; 98(3): 435-47.
[http://dx.doi.org/10.1189/jlb.3A0115-030RR] [PMID: 26034207]
[88]
Jackson AR, Hegde VL, Nagarkatti PS, Nagarkatti M. Characterization of endocannabinoid-mediated induction of myeloid-derived suppressor cells involving mast cells and MCP-1. J Leukoc Biol 2014; 95(4): 609-19.
[http://dx.doi.org/10.1189/jlb.0613350] [PMID: 24319288]
[89]
Sido JM, Yang X, Nagarkatti PS, Nagarkatti MΔ. 9- Tetrahydrocannabinol-mediated epigenetic modifications elicit myeloid-derived suppressor cell activation via STAT3/S100A8. J Leukoc Biol 2015; 97(4): 677-88.
[http://dx.doi.org/10.1189/jlb.1A1014-479R] [PMID: 25713087]
[90]
Sinha P, Okoro C, Foell D, Freeze HH, Ostrand-Rosenberg S, Srikrishna G. Proinflammatory S100 proteins regulate the accumulation of myeloid-derived suppressor cells. J Immunol 2008; 181(7): 4666-75.
[http://dx.doi.org/10.4049/jimmunol.181.7.4666]
[91]
Zhang Y, Bi Y, Yang H, et al. mTOR limits the recruitment of CD11b+Gr1+Ly6Chigh myeloid-derived suppressor cells in protecting against murine immunological hepatic injury. J Leukoc Biol 2014; 95(6): 961-70.
[http://dx.doi.org/10.1189/jlb.0913473] [PMID: 24569105]
[92]
Carracedo A, Ma L, Teruya-Feldstein J, et al. Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer. J Clin Invest 2008; 118(9): 3065-74.
[http://dx.doi.org/10.1172/JCI34739] [PMID: 18725988]
[93]
Faber AC, Li D, Song Y, et al. Differential induction of apoptosis in HER2 and EGFR addicted cancers following PI3K inhibition. Proc Natl Acad Sci USA 2009; 106(46): 19503-8.
[http://dx.doi.org/10.1073/pnas.0905056106] [PMID: 19850869]
[94]
Wang X, Hawk N, Yue P, et al. Overcoming mTOR inhibition-induced paradoxical activation of survival signaling pathways enhances mTOR inhibitors’ anticancer efficacy. Cancer Biol Ther 2008; 7(12): 1952-8.
[http://dx.doi.org/10.4161/cbt.7.12.6944] [PMID: 18981735]
[95]
Wu T, Zhao Y, Wang H, et al. mTOR masters monocytic myeloid-derived suppressor cells in mice with allografts or tumors. Sci Rep 2016; 6: 20250.
[http://dx.doi.org/10.1038/srep20250] [PMID: 26833095]
[96]
Turnquist HR, Raimondi G, Zahorchak AF, Fischer RT, Wang Z, Thomson AW. Rapamycin-conditioned dendritic cells are poor stimulators of allogeneic CD4+ T cells, but enrich for antigen-specific Foxp3+ T regulatory cells and promote organ transplant tolerance. J Immunol 2007; 178(11): 7018-31.
[97]
Horibe EK, Sacks J, Unadkat J, et al. Rapamycin-conditioned, alloantigen-pulsed dendritic cells promote indefinite survival of vascularized skin allografts in association with T regulatory cell expansion. Transpl Immunol 2008; 18(4): 307-18.
[http://dx.doi.org/10.1016/j.trim.2007.10.007] [PMID: 18158116]
[98]
Taner T, Hackstein H, Wang Z, Morelli AE, Thomson AW. Rapamycin-treated, alloantigen-pulsed host dendritic cells induce ag-specific T cell regulation and prolong graft survival. Am J Transplant 2005; 5(2): 228-36.
[http://dx.doi.org/10.1046/j.1600-6143.2004.00673.x] [PMID: 15643982]
[99]
Lu Y, Liu H, Bi Y, et al. Glucocorticoid receptor promotes the function of myeloid-derived suppressor cells by suppressing HIF1α-dependent glycolysis. Cell Mol Immunol 2018; 15(6): 618-29.
[http://dx.doi.org/10.1038/cmi.2017.5] [PMID: 28287112]
[100]
Wood KJ, Sakaguchi S. Regulatory T cells in transplantation tolerance. Nat Rev Immunol 2003; 3(3): 199-210.
[http://dx.doi.org/10.1038/nri1027] [PMID: 12658268]
[101]
Romano M, Tung SL, Smyth LA, Lombardi G. Treg therapy in transplantation: A general overview. Transpl Int 2017; 30(8): 745-53.
[http://dx.doi.org/10.1111/tri.12909] [PMID: 28012226]
[102]
Huang B, Pan PY, Li Q, et al. Gr-1+CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Res 2006; 66(2): 1123-31.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-1299] [PMID: 16424049]
[103]
MacDonald KP, Rowe V, Clouston AD, et al. Cytokine expanded myeloid precursors function as regulatory antigen-presenting cells and promote tolerance through IL-10-producing regulatory T cells. J Immunol 2005; 174(4): 1841-50.
[104]
Luan Y, Mosheir E, Menon MC, et al. Monocytic myeloid-derived suppressor cells accumulate in renal transplant patients and mediate CD4(+) Foxp3(+) Treg expansion. Am J Transplant 2013; 13(12): 3123-31.
[http://dx.doi.org/10.1111/ajt.12461] [PMID: 24103111]
[105]
Yang R, Cai Z, Zhang Y, Yutzy WH IV, Roby KF, Roden RB. CD80 in immune suppression by mouse ovarian carcinoma-associated Gr-1+CD11b+ myeloid cells. Cancer Res 2006; 66(13): 6807-15.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-3755] [PMID: 16818658]
[106]
Okano S, Abu-Elmagd K, Kish DD, et al. Myeloid-derived suppressor cells increase and inhibit donor-reactive T cell responses to graft intestinal epithelium in intestinal transplant patients. Am J Transplant 2018; 18(10): 2544-58.
[http://dx.doi.org/10.1111/ajt.14718] [PMID: 29509288]
[107]
Kim JI, Lee MK IV, Moore DJ, et al. Regulatory T-cell counter-regulation by innate immunity is a barrier to transplantation tolerance. Am J Transplant 2009; 9(12): 2736-44.
[http://dx.doi.org/10.1111/j.1600-6143.2009.02847.x] [PMID: 19845585]
[108]
Dupuis M, De Jesus Ibarra-Sanchez M, Tremblay ML, Duplay P. Gr-1+ myeloid cells lacking T cell protein tyrosine phosphatase inhibit lymphocyte proliferation by an IFN-gamma- and nitric oxide-dependent mechanism. J Immunol 2003; 171(2): 726-32.
[109]
Nagaraj S, Schrum AG, Cho HI, Celis E, Gabrilovich DI. Mechanism of T cell tolerance induced by myeloid-derived suppressor cells. J Immunol 2010; 184(6): 3106-16.
[http://dx.doi.org/10.4049/jimmunol.0902661]
[110]
Sinha P, Clements VK, Bunt SK, Albelda SM, Ostrand-Rosenberg S. Cross-talk between myeloid-derived suppressor cells and macrophages subverts tumor immunity toward a type 2 response. J Immunol 2007; 179(2): 977-83.
[http://dx.doi.org/10.4049/jimmunol.179.2.977]
[111]
Talmadge JE. Pathways mediating the expansion and immunosuppressive activity of myeloid-derived suppressor cells and their relevance to cancer therapy. Clin Cancer Res 2007; 13: 5243-8.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-0182]
[112]
Peranzoni E, Zilio S, Marigo I, et al. Myeloid-derived suppressor cell heterogeneity and subset definition. Curr Opin Immunol 2010; 22(2): 238-44.
[http://dx.doi.org/10.1016/j.coi.2010.01.021] [PMID: 20171075]
[113]
Chevalier MF, Trabanelli S, Racle J, et al. ILC2-modulated T cell-to-MDSC balance is associated with bladder cancer recurrence. J Clin Invest 2017; 127(8): 2916-29.
[http://dx.doi.org/10.1172/JCI89717] [PMID: 28650339]
[114]
Wu D, Shi Y, Wang C, et al. Activated NKT cells facilitated functional switch of myeloid-derived suppressor cells at inflammation sites in fulminant hepatitis mice. Immunobiology 2017; 222(2): 440-9.
[http://dx.doi.org/10.1016/j.imbio.2016.08.005] [PMID: 27523745]
[115]
Mussai F, De Santo C, Cerundolo V. Interaction between invariant NKT cells and myeloid-derived suppressor cells in cancer patients: Evidence and therapeutic opportunities. J Immunother 2012; 35(6): 449-59.
[http://dx.doi.org/10.1097/CJI.0b013e31825be926]
[116]
Hongo D, Tang X, Baker J, Engleman EG, Strober S. Requirement for interactions of natural killer T cells and myeloid-derived suppressor cells for transplantation tolerance. Am J Transplant 2014; 14(11): 2467-77.
[http://dx.doi.org/10.1111/ajt.12914] [PMID: 25311657]
[117]
Niederkorn JY. Emerging concepts in CD8(+) T regulatory cells. Curr Opin Immunol 2008; 20(3): 327-31.
[http://dx.doi.org/10.1016/j.coi.2008.02.003] [PMID: 18406591]
[118]
Picarda E, Anegon I, Guillonneau C. T-cell receptor specificity of CD8(+) Tregs in allotransplantation. Immunotherapy 2011; 3(4): 35-7.
[http://dx.doi.org/10.2217/imt.11.37] [PMID: 21524168]
[119]
Cao X, Cai SF, Fehniger TA, et al. Granzyme B and perforin are important for regulatory T cell-mediated suppression of tumor clearance. Immunity 2007; 27(4): 635-46.
[http://dx.doi.org/10.1016/j.immuni.2007.08.014] [PMID: 17919943]
[120]
Bézie S, Picarda E, Ossart J, et al. IL-34 is a Treg-specific cytokine and mediates transplant tolerance. J Clin Invest 2015; 125(10): 3952-64.
[http://dx.doi.org/10.1172/JCI81227] [PMID: 26389674]
[121]
Issa F, Robb RJ, Wood KJ. The where and when of T cell regulation in transplantation. Trends Immunol 2013; 34(3): 107-13.
[http://dx.doi.org/10.1016/j.it.2012.11.003] [PMID: 23228885]
[122]
Horikawa N, Abiko K, Matsumura N, et al. Expression of vascular endothelial growth factor in ovarian cancer inhibits tumor immunity through the accumulation of Myeloid-Derived suppressor cells. Clin Cancer Res 2017; 23(2): 587-99.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-0387]
[123]
Rodríguez-Ubreva J, Català-Moll F, Obermajer N, et al. Prostaglandin E2 leads to the acquisition of DNMT3A-dependent tolerogenic functions in human myeloid-derived suppressor cells. Cell Rep 2017; 21(1): 154-67.
[http://dx.doi.org/10.1016/j.celrep.2017.09.018] [PMID: 28978469]
[124]
Wondimu A, Liu Y, Su Y, et al. Gangliosides drive the tumor infiltration and function of myeloid-derived suppressor cells. Cancer Res 2014; 74(19): 5449-57.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-0927] [PMID: 25115301]
[125]
Shao L, Zhang B, Wang L, Wu L, Kan Q, Fan K. MMP-9-cleaved osteopontin isoform mediates tumor immune escape by inducing expansion of myeloid-derived suppressor cells. Biochem Biophys Res Commun 2017; 493(4): 1478-84.
[http://dx.doi.org/10.1016/j.bbrc.2017.10.009] [PMID: 28986261]
[126]
Lee SE, Lim JY, Kim TW, et al. Matrix Metalloproteinase-9 in Monocytic Myeloid-Derived Suppressor Cells correlate with early infections and clinical outcomes in allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 2018; 24(1): 32-42.
[http://dx.doi.org/10.1016/j.bbmt.2017.08.017]
[127]
Kusmartsev S, Nefedova Y, Yoder D, Gabrilovich DI. Antigen-specific inhibition of CD8+ T cell response by immature myeloid cells in cancer is mediated by reactive oxygen species. J Immunol 2004; 172(2): 989. 9.
[128]
Schmielau J, Finn OJ. Activated granulocytes and granulocyte-derived hydrogen peroxide are the underlying mechanism of suppression of t-cell function in advanced cancer patients. Cancer Res 2001; 61(12): 4756-60.
[PMID: 11406548]
[129]
Mantovani G, Macciò A, Madeddu C, et al. Antioxidant agents are effective in inducing lymphocyte progression through cell cycle in advanced cancer patients: Assessment of the most important laboratory indexes of cachexia and oxidative stress. J Mol Med (Berl) 2003; 81(10): 664-73.
[http://dx.doi.org/10.1007/s00109-003-0476-1] [PMID: 12928788]
[130]
Wortel CM, Heidt S. Regulatory B cells: Phenotype, function and role in transplantation. Transpl Immunol 2017; 41: 1-9.
[http://dx.doi.org/10.1016/j.trim.2017.02.004] [PMID: 28257995]
[131]
Park MJ, Lee SH, Kim EK, et al. Interleukin-10 produced by myeloid-derived suppressor cells is critical for the induction of Tregs and attenuation of rheumatoid inflammation in mice. Sci Rep 2018; 8(1): 3753.
[http://dx.doi.org/10.1038/s41598-018-21856-2] [PMID: 29491381]
[132]
Nakamura T, Ushigome H. Myeloid-Derived Suppressor cells as a regulator of immunity in organ transplantation. Int J Mol Sci 2018; 19(8)E2357
[http://dx.doi.org/10.3390/ijms19082357] [PMID: 30103447]
[133]
Zhang C, Wang S, Yang C, Rong R. The Crosstalk between Myeloid Derived Suppressor Cells and immune cells: To establish immune tolerance in transplantation. J Immunol Res 2016; 20164986797
[http://dx.doi.org/10.1155/2016/4986797] [PMID: 27868073]
[134]
Heim CE, Vidlak D, Scherr TD, et al. Myeloid-derived suppressor cells contribute to Staphylococcus aureus orthopedic biofilm infection. J Immunol 2014; 192(8): 3778-92.
[http://dx.doi.org/10.4049/jimmunol.1303408]
[135]
Ostrand-Rosenberg S, Sinha P, Beury DW, Clements VK. Cross-talk between myeloid-derived suppressor cells (MDSC), macrophages, and dendritic cells enhances tumor-induced immune suppression. Semin Cancer Biol 2012; 22(4): 275-81.
[http://dx.doi.org/10.1016/j.semcancer.2012.01.011] [PMID: 22313874]
[136]
Vaknin I, Blinder L, Wang L, et al. A common pathway mediated through Toll-like receptors leads to T- and natural killer-cell immunosuppression. Blood 2008; 111(3): 1437-47.
[http://dx.doi.org/10.1182/blood-2007-07-100404] [PMID: 17991807]
[137]
Liu J, Wang H, Yu Q, et al. Aberrant frequency of IL-10-producing B cells and its association with Treg and MDSC cells in non small cell lung carcinoma patients. Hum Immunol 2016; 77(1): 84-9.
[http://dx.doi.org/10.1016/j.humimm.2015.10.015] [PMID: 26527508]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy