Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Biocompatible Nanovesicular Drug Delivery Systems with Targeting Potential for Autoimmune Diseases

Author(s): Yub Raj Neupane, Asiya Mahtab, Lubna Siddiqui, Archu Singh, Namrata Gautam, Syed Arman Rabbani, Honey Goel and Sushama Talegaonkar*

Volume 26, Issue 42, 2020

Page: [5488 - 5502] Pages: 15

DOI: 10.2174/1381612826666200523174108

Price: $65

Abstract

Autoimmune diseases are collectively addressed as chronic conditions initiated by the loss of one’s immunological tolerance, where the body treats its own cells as foreigners or self-antigens. These hay-wired antibodies or immunologically capable cells lead to a variety of disorders like rheumatoid arthritis, psoriatic arthritis, systemic lupus erythematosus, multiple sclerosis and recently included neurodegenerative diseases like Alzheimer’s, Parkinsonism and testicular cancer triggered T-cells induced autoimmune response in testes and brain. Conventional treatments for autoimmune diseases possess several downsides due to unfavourable pharmacokinetic behaviour of drug, reflected by low bioavailability, rapid clearance, offsite toxicity, restricted targeting ability and poor therapeutic outcomes. Novel nanovesicular drug delivery systems including liposomes, niosomes, proniosomes, ethosomes, transferosomes, pharmacosomes, ufasomes and biologically originated exosomes have proved to possess alluring prospects in supporting the combat against autoimmune diseases. These nanovesicles have revitalized available treatment modalities as they are biocompatible, biodegradable, less immunogenic and capable of carrying high drug payloads to deliver both hydrophilic as well as lipophilic drugs to specific sites via passive or active targeting. Due to their unique surface chemistry, they can be decorated with physiological or synthetic ligands to target specific receptors overexpressed in different autoimmune diseases and can even cross the blood-brain barrier. This review presents exhaustive yet concise information on the potential of various nanovesicular systems as drug carriers in improving the overall therapeutic efficiency of the dosage regimen for various autoimmune diseases. The role of endogenous exosomes as biomarkers in the diagnosis and prognosis of autoimmune diseases along with monitoring progress of treatment will also be highlighted.

Keywords: Autoimmune diseases, Alzheimer's disease, liposomes, pharmacosomes, stealth liposomes, nanophytosomes, extracellular vesicles, exosomes.

[1]
Cooper GS, Stroehla BC. The epidemiology of autoimmune diseases. Autoimmun Rev 2003; 2(3): 119-25.
[http://dx.doi.org/10.1016/S1568-9972(03)00006-5] [PMID: 12848952]
[2]
Adams KT, Wehrwein P. For Autoimmune Ills, Biologics bring promise-and problems. Manag Care 2016; 25(7): 16-20.
[PMID: 28121526]
[3]
Bullock J, Rizvi SAA, Saleh AM, et al. Rheumatoid arthritis: a brief overview of the treatment. Med Princ Pract 2018; 27(6): 501-7.
[http://dx.doi.org/10.1159/000493390] [PMID: 30173215]
[4]
Vanniasinghe AS, Bender V, Manolios N. The potential of liposomal drug delivery for the treatment of inflammatory arthritis Semin Arthritis Rheum. Elsevier 2009; pp. 182-96.
[http://dx.doi.org/10.1016/j.semarthrit.2008.08.004]
[5]
Pandey S, Rai N, Rawat P, Ahmad FJ, Talegaonkar S. Nanofacilitated synergistic treatment for rheumatoid arthritis: A ‘three-pronged’ approach. Med Hypotheses 2016; 92: 44-7.
[http://dx.doi.org/10.1016/j.mehy.2016.04.026] [PMID: 27241253]
[6]
Ganapathy S, Vedam V, Rajeev V, Arunachalam R. Autoimmune Disorders-Immunopathogenesis and Potential Therapies. J Young Pharm 2017; 9(1): 14-22.
[7]
Rekvig OP. Systemic lupus erythematosus: definitions, contexts, conflicts, enigmas. Front Immunol 2018; 9: 387.
[http://dx.doi.org/10.3389/fimmu.2018.00387] [PMID: 29545801]
[8]
Kaltwasser JP. Leflunomide in psoriatic arthritis. Autoimmun Rev 2007; 6(8): 511-4.
[http://dx.doi.org/10.1016/j.autrev.2006.12.001] [PMID: 17854740]
[9]
Carter CJ. Alzheimer’s disease: a pathogenetic autoimmune disorder caused by herpes simplex in a gene-dependent manner. Int J Alzheimers Dis 2010; 2010140539
[http://dx.doi.org/10.4061/2010/140539] [PMID: 21234306]
[10]
Butnaru D, Chapman J. The impact of self-replicating proteins on inflammation, autoimmunity and neurodegeneration-An untraveled path. Autoimmun Rev 2019; 18(3): 231-40.
[http://dx.doi.org/10.1016/j.autrev.2018.09.009] [PMID: 30639644]
[11]
D’Andrea MR. Add Alzheimer’s disease to the list of autoimmune diseases. Med Hypotheses 2005; 64(3): 458-63.
[http://dx.doi.org/10.1016/j.mehy.2004.08.024] [PMID: 15617848]
[12]
DeMaagd G, Philip A. Parkinson’s disease and its management: part 1: disease entity, risk factors, pathophysiology, clinical presentation, and diagnosis. P&T 2015; 40(8): 504-32.
[PMID: 26236139]
[13]
Jiang T, Li G, Xu J, Gao S, Chen X. The challenge of the pathogenesis of Parkinson’s disease: Is autoimmunity the culprit? Front Immunol 2018; 9: 2047.
[http://dx.doi.org/10.3389/fimmu.2018.02047] [PMID: 30319601]
[14]
Meroni PL, Riboldi P. Pathogenic mechanisms of antiphospholipid syndrome: a new autoimmune disease. Drug Discov Today Dis Mech 2004; 1: 309-14.
[http://dx.doi.org/10.1016/j.ddmec.2004.11.006]
[15]
Cojocaru M, Cojocaru IM, Silosi I. Multiple autoimmune syndrome. Maedica (Buchar) 2010; 5(2): 132-4.
[PMID: 21977137]
[16]
Mandel-Brehm C, Dubey D, Kryzer TJ, et al. Kelch-like protein 11 antibodies in seminoma-associated paraneoplastic encephalitis. N Engl J Med 2019; 381(1): 47-54.
[http://dx.doi.org/10.1056/NEJMoa1816721] [PMID: 31269365]
[17]
Naor D. interaction between hyaluronic acid and its receptors (CD44, RHAMM) regulates the activity of inflammation and cancer. Front Immunol 2016; 7: 39.
[http://dx.doi.org/10.3389/fimmu.2016.00039] [PMID: 26904028]
[18]
Trowbridge IS, Lesley J, Schulte R, Hyman R, Trotter J. Biochemical characterization and cellular distribution of a polymorphic, murmurine cell-surface glycoprotein expressed on lymphoid tissues. Immunogenetics 1982; 15(3): 299-312.
[http://dx.doi.org/10.1007/BF00364338] [PMID: 7068174]
[19]
Chu Q, Huang H, Huang T, et al. Extracellular serglycin upregulates the CD44 receptor in an autocrine manner to maintain self-renewal in nasopharyngeal carcinoma cells by reciprocally activating the MAPK/β-catenin axis. Cell Death Dis 2016; 7(11): e2456-6.
[http://dx.doi.org/10.1038/cddis.2016.287] [PMID: 27809309]
[20]
Pandey S, Mahtab A, Rai N, Rawat P, Ahmad FJ, Talegaonkar S. Emerging role of CD44 receptor as a potential target in disease diagnosis: a patent review. Recent Pat Inflamm Allergy Drug Discov 2017; 11(2): 77-91.
[http://dx.doi.org/10.2174/1872213X11666170907111858] [PMID: 28891438]
[21]
Du C, Xie X. G protein-coupled receptors as therapeutic targets for multiple sclerosis. Cell Res 2012; 22(7): 1108-28.
[http://dx.doi.org/10.1038/cr.2012.87] [PMID: 22664908]
[22]
Martin B, Lopez de Maturana R, Brenneman R, Walent T, Mattson MP, Maudsley S. Class II G protein-coupled receptors and their ligands in neuronal function and protection. Neuromolecular Med 2005; 7(1-2): 3-36.
[http://dx.doi.org/10.1385/NMM:7:1-2:003] [PMID: 16052036]
[23]
Chen J-F, Eltzschig HK, Fredholm BB. Adenosine receptors as drug targets--what are the challenges? Nat Rev Drug Discov 2013; 12(4): 265-86.
[http://dx.doi.org/10.1038/nrd3955] [PMID: 23535933]
[24]
Müller CE, Jacobson KA. Recent developments in adenosine receptor ligands and their potential as novel drugs. Biochim Biophys Acta 2011; 1808(5): 1290-308.
[http://dx.doi.org/10.1016/j.bbamem.2010.12.017] [PMID: 21185259]
[25]
Huang Q-Q, Pope RM. The role of toll-like receptors in rheumatoid arthritis. Curr Rheumatol Rep 2009; 11(5): 357-64.
[http://dx.doi.org/10.1007/s11926-009-0051-z] [PMID: 19772831]
[26]
Singh A, Neupane YR, Mangla B, Kohli K. Nanostructured lipid carriers for oral bioavailability enhancement of exemestane: formulation design, in vitro, ex vivo, and in vivo studies. J Pharm Sci 2019; 108(10): 3382-95.
[http://dx.doi.org/10.1016/j.xphs.2019.06.003] [PMID: 31201904]
[27]
Neupane YR, Srivastava M, Gyenwalee S, Ahmad N, Soni K, Kohli K. Solid lipid nanoparticles for oral delivery of decitabine: Formulation optimization, characterization, stability and ex-vivo gut permeation studies. Sci Adv Mater 2015; 7.
[http://dx.doi.org/10.1166/sam.2015.2133]
[28]
Singh A, Neupane YR, Panda BP, Kohli K. Lipid Based nanoformulation of lycopene improves oral delivery: formulation optimization, ex vivo assessment and its efficacy against breast cancer. J Microencapsul 2017; 34(4): 416-29.
[http://dx.doi.org/10.1080/02652048.2017.1340355] [PMID: 28595495]
[29]
Neupane YR, Sabir MD, Ahmad N, Ali M, Kohli K. Lipid drug conjugate nanoparticle as a novel lipid nanocarrier for the oral delivery of decitabine: ex vivo gut permeation studies. Nanotechnology 2013; 24(41)415102
[http://dx.doi.org/10.1088/0957-4484/24/41/415102] [PMID: 24061410]
[30]
Neupane YR, Srivastava M, Ahmad N, Kumar N, Bhatnagar A, Kohli K. Lipid based nanocarrier system for the potential oral delivery of decitabine: formulation design, characterization, ex vivo, and in vivo assessment. Int J Pharm 2014; 477(1-2): 601-12.
[http://dx.doi.org/10.1016/j.ijpharm.2014.11.001] [PMID: 25445972]
[31]
Jain S, Jain V, Mahajan SC. Lipid based vesicular drug delivery systems Adv Pharm 2014; 2014: 574673
[32]
Ahmad N, Amin S, Neupane YR, Kohli K. Anal fissure nanocarrier of lercanidipine for enhanced transdermal delivery: formulation optimization, ex vivo and in vivo assessment. Expert Opin Drug Deliv 2014; 11(4): 467-78.
[http://dx.doi.org/10.1517/17425247.2014.876004] [PMID: 24386935]
[33]
Pandita A, Sharma P. Pharmacosomes: an emerging novel vesicular drug delivery system for poorly soluble synthetic and herbal drugs. ISRN Pharm 2013; 2013348186
[http://dx.doi.org/10.1155/2013/348186] [PMID: 24106615]
[34]
Antimisiaris SG, Mourtas S, Marazioti A. Exosomes and exosome-inspired vesicles for targeted drug delivery. Pharmaceutics 2018; 10(4)E218
[http://dx.doi.org/10.3390/pharmaceutics10040218] [PMID: 30404188]
[35]
Ulbrich W, Lamprecht A. Targeted drug-delivery approaches by nanoparticulate carriers in the therapy of inflammatory diseases. J R Soc Interface 2010; 7(Suppl. 1): S55-66.
[http://dx.doi.org/10.1098/rsif.2009.0285.focus] [PMID: 19940000]
[36]
van den Hoven JM, Van Tomme SR, Metselaar JM, Nuijen B, Beijnen JH, Storm G. Liposomal drug formulations in the treatment of rheumatoid arthritis. Mol Pharm 2011; 8(4): 1002-15.
[http://dx.doi.org/10.1021/mp2000742] [PMID: 21634436]
[37]
Gill S, Löbenberg R, Ku T, Azarmi S, Roa W, Prenner EJ. Nanoparticles: characteristics, mechanisms of action, and toxicity in pulmonary drug delivery - a review. J Biomed Nanotechnol 2007; 3: 107-19.
[http://dx.doi.org/10.1166/jbn.2007.015]
[38]
Garg A, Kokkoli E. pH-Sensitive PEGylated liposomes functionalized with a fibronectin-mimetic peptide show enhanced intracellular delivery to colon cancer cell. Curr Pharm Biotechnol 2011; 12(8): 1135-43.
[http://dx.doi.org/10.2174/138920111796117328] [PMID: 21470144]
[39]
Pandey P, Pancholi SS. Nanocarriers: a novel treatment approach for arthritis. Int J Pharm Sci Res 2013; 4: 4165.
[40]
Bazile D, Prud’homme C, Bassoullet MT, et al. Stealth Me.PEG-PLA nanoparticles avoid uptake by the mononuclear phagocytes system. J Pharm Sci 1995; 84(4): 493-8.
[http://dx.doi.org/10.1002/jps.2600840420] [PMID: 7629743]
[41]
Steeber DA, Venturi GM, Tedder TF. A new twist to the leukocyte adhesion cascade: intimate cooperation is key. Trends Immunol 2005; 26(1): 9-12.
[http://dx.doi.org/10.1016/j.it.2004.11.012] [PMID: 15629403]
[42]
Barrera P, Blom A, van Lent PLEM, et al. Synovial macrophage depletion with clodronate-containing liposomes in rheumatoid arthritis. Arthritis Rheum 2000; 43(9): 1951-9.
[http://dx.doi.org/10.1002/1529-0131(200009)43:9<1951:AID-ANR5>3.0.CO;2-K] [PMID: 11014344]
[43]
Syed A, Devi VK. Potential of targeted drug delivery systems in treatment of rheumatoid arthritis. J Drug Deliv Sci Technol 2019; 53101217
[http://dx.doi.org/10.1016/j.jddst.2019.101217]
[44]
Bangham AD, Standish MM, Watkins JC. Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol 1965; 13(1): 238-52.
[http://dx.doi.org/10.1016/S0022-2836(65)80093-6] [PMID: 5859039]
[45]
Deamer DW. From “banghasomes” to liposomes: a memoir of Alec Bangham, 1921-2010. FASEB J 2010; 24(5): 1308-10.
[http://dx.doi.org/10.1096/fj.10-0503] [PMID: 20430797]
[46]
Gregoriadis G, Ryman BE. Liposomes as carriers of enzymes or drugs: a new approach to the treatment of storage diseases. Biochem J 1971; 124(5): 58P.
[PMID: 5130994]
[47]
Poste G, Papahadjopoulos D. Lipid vesicles as carriers for introducing materials into cultured cells: influence of vesicle lipid composition on mechanism(s) of vesicle incorporation into cells. Proc Natl Acad Sci USA 1976; 73(5): 1603-7.
[http://dx.doi.org/10.1073/pnas.73.5.1603] [PMID: 818640]
[48]
Suri R, Neupane YR, Mehra N, Jain GK, Kohli K. Sirolimus loaded polyol modified liposomes for the treatment of Posterior Segment Eye Diseases. Med Hypotheses 2020; 136109518
[http://dx.doi.org/10.1016/j.mehy.2019.109518] [PMID: 31837522]
[49]
Dass CR. Drug delivery in cancer using liposomes Drug Deliv Syst. Springer 2008; pp. 177-82.
[http://dx.doi.org/10.1007/978-1-59745-210-6_9]
[50]
Chang H-I, Yeh M-K. Clinical development of liposome-based drugs: formulation, characterization, and therapeutic efficacy. Int J Nanomedicine 2012; 7: 49-60.
[PMID: 22275822]
[51]
Lian T, Ho RJY. Trends and developments in liposome drug delivery systems. J Pharm Sci 2001; 90(6): 667-80.
[http://dx.doi.org/10.1002/jps.1023] [PMID: 11357170]
[52]
Immordino ML, Dosio F, Cattel L. Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomedicine 2006; 1(3): 297-315.
[PMID: 17717971]
[53]
Alving CR, Kinsky SC, Haxby JA, Kinsky CB. Antibody binding and complement fixation by a liposomal model membrane. Biochemistry 1969; 8(4): 1582-7.
[http://dx.doi.org/10.1021/bi00832a038] [PMID: 5805297]
[54]
Ta T, Porter TM. Thermosensitive liposomes for localized delivery and triggered release of chemotherapy. J Control Release 2013; 169(1-2): 112-25.
[http://dx.doi.org/10.1016/j.jconrel.2013.03.036] [PMID: 23583706]
[55]
Funk M, Schulze B, Guenzi E, et al. Cationic liposomal preparations for the treatment of rheumatoid arthritis 2009.DE602007618D1
[56]
Rahman M, Beg S, Sharma G, Anwar F, Kumar V. Emergence of lipid-based vesicular carriers as nanoscale pharmacotherapy in rheumatoid arthritis. Recent Pat Nanomed 2015; 5: 111-21.
[http://dx.doi.org/10.2174/1877912305666150616215800]
[57]
Türker S, Erdoğan S, Özer YA, Bilgili H, Deveci S. Enhanced efficacy of diclofenac sodium-loaded lipogelosome formulation in intra-articular treatment of rheumatoid arthritis. J Drug Target 2008; 16(1): 51-7.
[http://dx.doi.org/10.1080/10611860701725191] [PMID: 18172820]
[58]
Foong WC, Green KL. Treatment of antigen-induced arthritis in rabbits with liposome-entrapped methotrexate injected intra-articularly. J Pharm Pharmacol 1993; 45(3): 204-9.
[http://dx.doi.org/10.1111/j.2042-7158.1993.tb05533.x] [PMID: 8097778]
[59]
Bonanomi MH, Velvart M, Stimpel M, Roos KM, Fehr K, Weder HG. Studies of pharmacokinetics and therapeutic effects of glucocorticoids entrapped in liposomes after intraarticular application in healthy rabbits and in rabbits with antigen-induced arthritis. Rheumatol Int 1987; 7(5): 203-12.
[http://dx.doi.org/10.1007/BF00541378] [PMID: 3423619]
[60]
Khoury M, Louis-Plence P, Escriou V, et al. Efficient new cationic liposome formulation for systemic delivery of small interfering RNA silencing tumor necrosis factor α in experimental arthritis. Arthritis Rheum 2006; 54(6): 1867-77.
[http://dx.doi.org/10.1002/art.21876] [PMID: 16729293]
[61]
Kadry MO. Liposomal glutathione as a promising candidate for immunological rheumatoid arthritis therapy. Heliyon 2019; 5(7)e02162
[http://dx.doi.org/10.1016/j.heliyon.2019.e02162] [PMID: 31384691]
[62]
Shen Q, Zhang X, Qi J, Shu G, Du Y, Ying X. Sinomenine hydrochloride loaded thermosensitive liposomes combined with microwave hyperthermia for the treatment of rheumatoid arthritis. Int J Pharm 2020; 576119001
[http://dx.doi.org/10.1016/j.ijpharm.2019.119001] [PMID: 31893540]
[63]
Wang Q, He L, Fan D, Liang W, Fang J. Improving the anti-inflammatory efficacy of dexamethasone in the treatment of rheumatoid arthritis with polymerized stealth liposomes as a delivery vehicle. J Mater Chem B Mater Biol Med 2020; 8(9): 1841-51.
[http://dx.doi.org/10.1039/C9TB02538C] [PMID: 32016224]
[64]
Dolati S, Babaloo Z, Jadidi-Niaragh F, Ayromlou H, Sadreddini S, Yousefi M. Multiple sclerosis: Therapeutic applications of advancing drug delivery systems. Biomed Pharmacother 2017; 86: 343-53.
[http://dx.doi.org/10.1016/j.biopha.2016.12.010] [PMID: 28011382]
[65]
Alberts DS, Muggia FM, Carmichael J, et al. Efficacy and safety of liposomal anthracyclines in phase I/II clinical trialsSemin Oncol. Elsevier 2004; pp. 53-90.
[http://dx.doi.org/10.1053/j.seminoncol.2004.08.010]
[66]
Batist G, Barton J, Chaikin P, Swenson C, Welles L. Myocet (liposome-encapsulated doxorubicin citrate): a new approach in breast cancer therapy. Expert Opin Pharmacother 2002; 3(12): 1739-51.
[http://dx.doi.org/10.1517/14656566.3.12.1739] [PMID: 12472371]
[67]
Avnir Y, Turjeman K, Tulchinsky D, et al. Fabrication principles and their contribution to the superior in vivo therapeutic efficacy of nano-liposomes remote loaded with glucocorticoids. PLoS One 2011; 6(10)e25721
[http://dx.doi.org/10.1371/journal.pone.0025721] [PMID: 21998684]
[68]
Belogurov AA Jr, Stepanov AV, Smirnov IV, et al. Liposome-encapsulated peptides protect against experimental allergic encephalitis. FASEB J 2013; 27(1): 222-31.
[http://dx.doi.org/10.1096/fj.12-213975] [PMID: 23047895]
[69]
Stepanov AV, Belogurov AA, Mamedov AE, et al. Therapeutic effect of encapsulated into the nanocontainers MBP immunodominant peptides on EAE development in DA rats. Bioorg Khim 2012; 38(3): 306-14.
[PMID: 22997702]
[70]
Yildirim-Toruner C, Diamond B. Current and novel therapeutics in the treatment of systemic lupus erythematosus. J Allergy Clin Immunol 2011; 127(2): 303-12.
[http://dx.doi.org/10.1016/j.jaci.2010.12.1087] [PMID: 21281862]
[71]
Moallem E, Koren E, Ulmansky R, et al. A liposomal steroid nano-drug for treating systemic lupus erythematosus. Lupus 2016; 25(11): 1209-16.
[http://dx.doi.org/10.1177/0961203316636468] [PMID: 26957351]
[72]
Akbarzadeh A, Rezaei-Sadabady R, Davaran S, et al. Liposome: classification, preparation, and applications. Nanoscale Res Lett 2013; 8(1): 102.
[http://dx.doi.org/10.1186/1556-276X-8-102] [PMID: 23432972]
[73]
Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 2005; 4(2): 145-60.
[http://dx.doi.org/10.1038/nrd1632] [PMID: 15688077]
[74]
Mufamadi MS, Pillay V, Choonara YE, et al. A review on composite liposomal technologies for specialized drug delivery. J Drug Deliv 2011; 2011939851
[http://dx.doi.org/10.1155/2011/939851] [PMID: 21490759]
[75]
Singh A, Neupane YR, Shafi S, Mangla B, Kohli K. PEGylated liposomes as an emerging therapeutic platform for oral nanomedicine in cancer therapy: in vitro and in vivo assessment. J Mol Liq 2020; 303112649
[http://dx.doi.org/10.1016/j.molliq.2020.112649]
[76]
Kataria S, Sandhu P, Bilandi A, Akanksha M, Kapoor B. Stealth liposomes: A review. Int J Res Ayurveda Pharm 2011; 2(5)
[77]
Prabhu P, Shetty R, Koland M, et al. Investigation of nano lipid vesicles of methotrexate for anti-rheumatoid activity. Int J Nanomedicine 2012; 7: 177-86.
[http://dx.doi.org/10.2147/IJN.S25310] [PMID: 22275833]
[78]
Srinath P, Vyas SP, Diwan PV. Preparation and pharmacodynamic evaluation of liposomes of indomethacin. Drug Dev Ind Pharm 2000; 26(3): 313-21.
[http://dx.doi.org/10.1081/DDC-100100359] [PMID: 10738648]
[79]
Elron-Gross I, Glucksam Y, Margalit R. Liposomal dexamethasone-diclofenac combinations for local osteoarthritis treatment. Int J Pharm 2009; 376(1-2): 84-91.
[http://dx.doi.org/10.1016/j.ijpharm.2009.04.025] [PMID: 19409466]
[80]
Gouveia VM, Lopes-de-Araújo J, Costa Lima SA, Nunes C, Reis S. Hyaluronic acid-conjugated pH-sensitive liposomes for targeted delivery of prednisolone on rheumatoid arthritis therapy. Nanomedicine (Lond) 2018; 13(9): 1037-49.
[http://dx.doi.org/10.2217/nnm-2017-0377] [PMID: 29790395]
[81]
Ag Seleci D, Seleci M, Walter J-G, Stahl F, Scheper T. Niosomes as nanoparticular drug carriers: fundamentals and recent applications. J Nanomater 2016; 20167372306
[http://dx.doi.org/10.1155/2016/7372306]
[82]
Gharbavi M, Amani J, Kheiri-Manjili H, Danafar H, Sharafi A. Niosome: a promising nanocarrier for natural drug delivery through blood-brain barrier Adv Pharmacol. Pharm Sci 2018; 20186847974
[83]
Bartelds R, Nematollahi MH, Pols T, et al. Niosomes, an alternative for liposomal delivery. PLoS One 2018; 13(4)e0194179
[http://dx.doi.org/10.1371/journal.pone.0194179] [PMID: 29649223]
[84]
Rajera R, Nagpal K, Singh SK, Mishra DN. Niosomes: a controlled and novel drug delivery system. Biol Pharm Bull 2011; 34(7): 945-53.
[http://dx.doi.org/10.1248/bpb.34.945] [PMID: 21719996]
[85]
Abdolahi N, Soltani A, Erfani-Moghadam V, Rad SM. FRI0139 improvement solubility of amphiphilic naproxen-niosome for inflammatory arthritis treatment. Ann Rheum Dis 2019; 78(Suppl. 2): 740.
[86]
Abdolahi N, Soltani A. Improving drug solubility for inflammatory arthritis treatment: sulfasalazine noisome. Rheumatic Dis 2019; p. 78.
[87]
Turker S, Ozer AY, Kiliç E, Özalp M, Colak S, Korkmaz M. Gamma-irradiated liposome/noisome and lipogelosome/niogelosome formulations for the treatment of rheumatoid arthritis. Interv Med Appl Sci 2013; 5(2): 60-9.
[http://dx.doi.org/10.1556/IMAS.5.2013.2.2] [PMID: 24265892]
[88]
Hasani M, Sani NA, Khodabakhshi B, Arabi MS, Mohammadi S, Yazdani Y. Encapsulation of Leflunomide (LFD) in a novel niosomal formulation facilitated its delivery to THP-1 monocytic cells and enhanced Aryl hydrocarbon receptor (AhR) nuclear translocation and activation. Daru 2019; 27(2): 635-44.
[http://dx.doi.org/10.1007/s40199-019-00293-0] [PMID: 31432467]
[89]
Lakshmi PK, Devi GS, Bhaskaran S, Sacchidanand S. Niosomal methotrexate gel in the treatment of localized psoriasis: phase I and phase II studies. Indian J Dermatol Venereol Leprol 2007; 73(3): 157-61.
[http://dx.doi.org/10.4103/0378-6323.32709] [PMID: 17558046]
[90]
Rahimpour Y, Hamishehkar H. Niosomes as carrier in dermal drug delivery. Recent Adv Nov Drug Carr Syst 2012; 1: 141-64.
[http://dx.doi.org/10.5772/51729]
[91]
Estabragh MAR, Hamidifar Z, Pardakhty A. Formulation of Rivastigmine Niosomes for Alzheimer disease. Int Pharm Acta 2018; 1-104.
[92]
Ravouru N, Kondreddy P, Korakanchi D, Haritha M. Formulation and evaluation of niosomal nasal drug delivery system of folic acid for brain targeting. Curr Drug Discov Technol 2013; 10(4): 270-82.
[http://dx.doi.org/10.2174/15701638113109990031] [PMID: 23863098]
[93]
Gunay MS, Ozer AY, Erdogan S, et al. Development of nanosized, pramipexole-encapsulated liposomes and niosomes for the treatment of Parkinson’s disease. J Nanosci Nanotechnol 2017; 17: 5155-67.
[http://dx.doi.org/10.1166/jnn.2017.13799]
[94]
Bendas ER, Abdullah H, El-Komy MHM, Kassem MAA. Hydroxychloroquine niosomes: a new trend in topical management of oral lichen planus. Int J Pharm 2013; 458(2): 287-95.
[http://dx.doi.org/10.1016/j.ijpharm.2013.10.042] [PMID: 24184035]
[95]
Pardakhty A, Moazeni E, Varshosaz J, Hajhashemi V, Rouholamini Najafabadi A. Pharmacokinetic study of niosome-loaded insulin in diabetic rats. Daru 2011; 19(6): 404-11.
[PMID: 23008685]
[96]
Radha GV, Rani TS, Sarvani B. A review on proniosomal drug delivery system for targeted drug action. J Basic Clin Pharm 2013; 4(2): 42-8.
[http://dx.doi.org/10.4103/0976-0105.113609] [PMID: 24808669]
[97]
Hu C, Rhodes DG. Proniosomes: a novel drug carrier preparation. Int J Pharm 1999; 185(1): 23-35.
[http://dx.doi.org/10.1016/S0378-5173(99)00122-2] [PMID: 10425362]
[98]
Kumar K, Rai AK. Proniosomal formulation of curcumin having anti-inflammatory and anti-arthritic activity in different experimental animal models. Pharmazie 2012; 67(10): 852-7.
[PMID: 23136720]
[99]
Ammar HO, Ghorab M, El-Nahhas SA, Higazy IM. Proniosomes as a carrier system for transdermal delivery of tenoxicam. Int J Pharm 2011; 405(1-2): 142-52.
[http://dx.doi.org/10.1016/j.ijpharm.2010.11.003] [PMID: 21129461]
[100]
Verma P, Pathak K. Therapeutic and cosmeceutical potential of ethosomes: An overview. J Adv Pharm Technol Res 2010; 1(3): 274-82.
[http://dx.doi.org/10.4103/0110-5558.72415] [PMID: 22247858]
[101]
Madhavi N, Sudhakar B, Ratna JV. Colloidal dispersions (liposomes and ethosomes) for skin drug delivery and their role on rheumatoid arthritis. Asian J Pharm 2016; p. 1.
[102]
Thadanki M, Babu AK. Review on ethosomes: A novel approach of liposomes. Int J Pharm Life Sci 2015; p. 6.
[103]
Paliwal S, Tilak A, Sharma J, et al. Flurbiprofen loaded ethosomes - transdermal delivery of anti-inflammatory effect in rat model. Lipids Health Dis 2019; 18(1): 133.
[http://dx.doi.org/10.1186/s12944-019-1064-x] [PMID: 31170970]
[104]
Zhang Y, Xia Q, Li Y, et al. CD44 Assists the topical anti-psoriatic efficacy of curcumin-loaded hyaluronan-modified ethosomes: A new strategy for clustering drug in inflammatory skin. Theranostics 2019; 9(1): 48-64.
[http://dx.doi.org/10.7150/thno.29715] [PMID: 30662553]
[105]
Kumar Sarwa K, Rudrapal M, Mazumder B. Topical ethosomal capsaicin attenuates edema and nociception in arthritic rats. Drug Deliv 2015; 22(8): 1043-52.
[http://dx.doi.org/10.3109/10717544.2013.861041] [PMID: 24506573]
[106]
Poh S, Chelvam V, Ayala-López W, Putt KS, Low PS. Selective liposome targeting of folate receptor positive immune cells in inflammatory diseases. Nanomedicine (Lond) 2018; 14(3): 1033-43.
[http://dx.doi.org/10.1016/j.nano.2018.01.009] [PMID: 29410110]
[107]
Meka RR, Venkatesha SH, Acharya B, Moudgil KD. Peptide-targeted liposomal delivery of dexamethasone for arthritis therapy. Nanomedicine (Lond) 2019; 14(11): 1455-69.
[http://dx.doi.org/10.2217/nnm-2018-0501] [PMID: 30938236]
[108]
Koning GA, Schiffelers RM, Wauben MHM, et al. Targeting of angiogenic endothelial cells at sites of inflammation by dexamethasone phosphate-containing RGD peptide liposomes inhibits experimental arthritis. Arthritis Rheum 2006; 54(4): 1198-208.
[http://dx.doi.org/10.1002/art.21719] [PMID: 16575845]
[109]
van Rooijen N, Hendrikx E. Liposomes for specific depletion of macrophages from organs and tissues Liposomes. Springer 2010; pp. 189-203.
[http://dx.doi.org/10.1007/978-1-60327-360-2_13]
[110]
Rasaie S, Ghanbarzadeh S, Mohammadi M, Hamishehkar H. Nano phytosomes of quercetin: A promising formulation for fortification of food products with antioxidants. Pharm Sci 2014; 20: 96.
[111]
Babazadeh A, Zeinali M, Hamishehkar H. Nano-phytosome: A developing platform for herbal anti-cancer agents in cancer therapy. Curr Drug Targets 2018; 19(2): 170-80.
[http://dx.doi.org/10.2174/1389450118666170508095250] [PMID: 28482783]
[112]
Singh B, Awasthi R, Ahmad A, Saifi A. Phytosome: Most significant tool for herbal drug delivery to enhance the therapeutic benefits of phytoconstituents. J Drug Deliv Ther 2018; 8: 98-102.
[http://dx.doi.org/10.22270/jddt.v8i1.1559]
[113]
Supraja B, Mulangi S. An updated review on pharmacosomes, a vesicular drug delivery system. J Drug Deliv Ther 2019; 9: 393-402.
[http://dx.doi.org/10.22270/jddt.v9i1-s.2234]
[114]
Semalty A, Semalty M, Singh D, Rawat MSM. Development and physicochemical evaluation of pharmacosomes of diclofenac. Acta Pharm 2009; 59(3): 335-44.
[http://dx.doi.org/10.2478/v10007-009-0023-x] [PMID: 19819829]
[115]
Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 2013; 200(4): 373-83.
[http://dx.doi.org/10.1083/jcb.201211138] [PMID: 23420871]
[116]
Harding CV, Heuser JE, Stahl PD. Exosomes: looking back three decades and into the future. J Cell Biol 2013; 200(4): 367-71.
[http://dx.doi.org/10.1083/jcb.201212113] [PMID: 23420870]
[117]
Barile L, Vassalli G. Exosomes: Therapy delivery tools and biomarkers of diseases. Pharmacol Ther 2017; 174: 63-78.
[http://dx.doi.org/10.1016/j.pharmthera.2017.02.020] [PMID: 28202367]
[118]
Fleury A, Martinez MC, Le Lay S. Extracellular vesicles as therapeutic tools in cardiovascular diseases. Front Immunol 2014; 5: 370.
[http://dx.doi.org/10.3389/fimmu.2014.00370] [PMID: 25136343]
[119]
Chong SY, Lee CK, Huang C, et al. Extracellular Vesicles in Cardiovascular Diseases : Alternative Biomarker Sources. n.d.
[120]
Tan L, Wu H, Liu Y, Zhao M, Li D, Lu Q. Recent advances of exosomes in immune modulation and autoimmune diseases. Autoimmunity 2016; 49(6): 357-65.
[http://dx.doi.org/10.1080/08916934.2016.1191477] [PMID: 27259064]
[121]
Perez-Hernandez J, Cortes R. Extracellular vesicles as biomarkers of systemic lupus erythematosus. Dis Markers 2015; 2015613536
[http://dx.doi.org/10.1155/2015/613536] [PMID: 26435565]
[122]
Zöller M. Janus-faced myeloid-derived suppressor cell exosomes for the good and the bad in cancer and autoimmune disease. Front Immunol 2018; 9: 137.
[http://dx.doi.org/10.3389/fimmu.2018.00137] [PMID: 29456536]
[123]
Johnstone RM. Exosomes biological significance: A concise review. Blood Cells Mol Dis 2006; 36(2): 315-21.
[http://dx.doi.org/10.1016/j.bcmd.2005.12.001] [PMID: 16487731]
[124]
Hurley JH. ESCRT complexes and the biogenesis of multivesicular bodies. Curr Opin Cell Biol 2008; 20(1): 4-11.
[http://dx.doi.org/10.1016/j.ceb.2007.12.002] [PMID: 18222686]
[125]
Kim MS, Haney MJ, Zhao Y, et al. Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells. Nanomedicine (Lond) 2016; 12(3): 655-64.
[http://dx.doi.org/10.1016/j.nano.2015.10.012] [PMID: 26586551]
[126]
Bang C, Thum T. Exosomes: new players in cell-cell communication. Int J Biochem Cell Biol 2012; 44(11): 2060-4.
[http://dx.doi.org/10.1016/j.biocel.2012.08.007] [PMID: 22903023]
[127]
Ciardiello C, Cavallini L, Spinelli C, et al. Focus on extracellular vesicles: new frontiers of cell-to-cell communication in cancer. Int J Mol Sci 2016; 17(2): 175.
[http://dx.doi.org/10.3390/ijms17020175] [PMID: 26861306]
[128]
Tetta C, Ghigo E, Silengo L, Deregibus MC, Camussi G. Extracellular vesicles as an emerging mechanism of cell-to-cell communication. Endocrine 2013; 44(1): 11-9.
[http://dx.doi.org/10.1007/s12020-012-9839-0] [PMID: 23203002]
[129]
Natasha G, Gundogan B, Tan A, et al. Exosomes as immunotheranostic nanoparticles. Clin Ther 2014; 36(6): 820-9.
[http://dx.doi.org/10.1016/j.clinthera.2014.04.019] [PMID: 24863261]
[130]
Chen Z, Wang H, Xia Y, Yan F, Lu Y. Therapeutic potential of mesenchymal cell-derived miRNA-150-5p-expressing exosomes in rheumatoid arthritis mediated by the modulation of MMP14 and VEGF. J Immunol 2018; 201(8): 2472-82.
[http://dx.doi.org/10.4049/jimmunol.1800304] [PMID: 30224512]
[131]
Tian J, Casella G, Zhang Y, Rostami A, Li X. Potential roles of extracellular vesicles in the pathophysiology, diagnosis, and treatment of autoimmune diseases. Int J Biol Sci 2020; 16(4): 620-32.
[http://dx.doi.org/10.7150/ijbs.39629] [PMID: 32025210]
[132]
Gould SJ, Raposo G. As we wait: coping with an imperfect nomenclature for extracellular vesicles. J Extracell Vesicles 2013; 2: 20389.
[http://dx.doi.org/10.3402/jev.v2i0.20389] [PMID: 24009890]
[133]
Lässer C, Eldh M, Lötvall J. Isolation and characterization of RNA-containing exosomes. J Vis Exp 2012; (59): e3037
[PMID: 22257828]
[134]
Kumar D, Gupta D, Shankar S, Srivastava RK. Biomolecular characterization of exosomes released from cancer stem cells: Possible implications for biomarker and treatment of cancer. Oncotarget 2015; 6(5): 3280-91.
[http://dx.doi.org/10.18632/oncotarget.2462] [PMID: 25682864]
[135]
Bobrie A, Théry C. Exosomes and communication between tumours and the immune system: are all exosomes equal? Biochem Soc Trans 2013; 41(1): 263-7.
[http://dx.doi.org/10.1042/BST20120245] [PMID: 23356294]
[136]
Menay F, Herschlik L, De Toro J, et al. Exosomes isolated from ascites of T-cell lymphoma-bearing mice expressing surface CD24 and HSP-90 induce a tumor-specific immune response. Front Immunol 2017; 8: 286.
[http://dx.doi.org/10.3389/fimmu.2017.00286] [PMID: 28360912]
[137]
Simpson RJ, Jensen SS, Lim JWE. Proteomic profiling of exosomes: current perspectives. Proteomics 2008; 8(19): 4083-99.
[http://dx.doi.org/10.1002/pmic.200800109] [PMID: 18780348]
[138]
Llorente A, Skotland T, Sylvänne T, et al. Molecular lipidomics of exosomes released by PC-3 prostate cancer cells. Biochim Biophys Acta 2013; 1831(7): 1302-9.
[http://dx.doi.org/10.1016/j.bbalip.2013.04.011] [PMID: 24046871]
[139]
Subra C, Laulagnier K, Perret B, Record M. Exosome lipidomics unravels lipid sorting at the level of multivesicular bodies. Biochimie 2007; 89(2): 205-12.
[http://dx.doi.org/10.1016/j.biochi.2006.10.014] [PMID: 17157973]
[140]
Laulagnier K, Motta C, Hamdi S, et al. Mast cell- and dendritic cell-derived exosomes display a specific lipid composition and an unusual membrane organization. Biochem J 2004; 380(Pt 1): 161-71.
[http://dx.doi.org/10.1042/bj20031594] [PMID: 14965343]
[141]
Lee JY, Park JK, Lee EY, Lee EB, Song YW. Circulating exosomes from patients with systemic lupus erythematosus induce an proinflammatory immune response. Arthritis Res Ther 2016; 18(1): 264.
[http://dx.doi.org/10.1186/s13075-016-1159-y] [PMID: 27852323]
[142]
Perez-Hernandez J, Forner MJ, Pinto C, Chaves FJ, Cortes R, Redon J. Increased urinary exosomal microRNAs in patients with systemic lupus erythematosus. PLoS One 2015; 10(9)e0138618
[http://dx.doi.org/10.1371/journal.pone.0138618] [PMID: 26390437]
[143]
Verderio C, Muzio L, Turola E, et al. Myeloid microvesicles are a marker and therapeutic target for neuroinflammation. Ann Neurol 2012; 72(4): 610-24.
[http://dx.doi.org/10.1002/ana.23627] [PMID: 23109155]
[144]
Lee J, McKinney KQ, Pavlopoulos AJ, et al. Exosomal proteome analysis of cerebrospinal fluid detects biosignatures of neuromyelitis optica and multiple sclerosis. Clin Chim Acta 2016; 462: 118-26.
[http://dx.doi.org/10.1016/j.cca.2016.09.001] [PMID: 27609124]
[145]
Song J, Kim D, Han J, Kim Y, Lee M, Jin E-J. PBMC and exosome-derived Hotair is a critical regulator and potent marker for rheumatoid arthritis. Clin Exp Med 2015; 15(1): 121-6.
[http://dx.doi.org/10.1007/s10238-013-0271-4] [PMID: 24722995]
[146]
Kurowska-Stolarska M, Alivernini S, Ballantine LE, et al. MicroRNA-155 as a proinflammatory regulator in clinical and experimental arthritis. Proc Natl Acad Sci USA 2011; 108(27): 11193-8.
[http://dx.doi.org/10.1073/pnas.1019536108] [PMID: 21690378]
[147]
Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJA. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 2011; 29(4): 341-5.
[http://dx.doi.org/10.1038/nbt.1807] [PMID: 21423189]
[148]
Théry C, Ostrowski M, Segura E. Membrane vesicles as conveyors of immune responses. Nat Rev Immunol 2009; 9(8): 581-93.
[http://dx.doi.org/10.1038/nri2567] [PMID: 19498381]
[149]
Yáñez-Mó M, Siljander PR-M, Andreu Z, et al. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles 2015; 4: 27066.
[http://dx.doi.org/10.3402/jev.v4.27066] [PMID: 25979354]
[150]
Najar M, Bouhtit F, Melki R, et al. Mesenchymal stromal cell-based therapy: new perspectives and challenges 2019.
[http://dx.doi.org/10.3390/jcm8050626]
[151]
Fujii S, Miura Y, Fujishiro A, et al. Graft‐versus‐host disease amelioration by human bone marrow mesenchymal stromal/stem cell‐derived extracellular vesicles is associated with peripheral preservation of naive T cell populations. Stem Cells 2018; 36(3): 434-45.
[http://dx.doi.org/10.1002/stem.2759] [PMID: 29239062]
[152]
Tian T, Zhang H-X, He C-P, et al. Surface functionalized exosomes as targeted drug delivery vehicles for cerebral ischemia therapy. Biomaterials 2018; 150: 137-49.
[http://dx.doi.org/10.1016/j.biomaterials.2017.10.012] [PMID: 29040874]
[153]
Wang L, Yang Y, Liu Y, Ning L, Xiang Y, Li G. Bridging exosome and liposome through zirconium-phosphate coordination chemistry: a new method for exosome detection. Chem Commun (Camb) 2019; 55(18): 2708-11.
[http://dx.doi.org/10.1039/C9CC00220K] [PMID: 30758019]
[154]
Saleh AF, Lázaro-Ibáñez E, Forsgard MA-M, et al. Extracellular vesicles induce minimal hepatotoxicity and immunogenicity. Nanoscale 2019; 11(14): 6990-7001.
[http://dx.doi.org/10.1039/C8NR08720B] [PMID: 30916672]
[155]
Jo W, Kim J, Yoon J, et al. Large-scale generation of cell-derived nanovesicles. Nanoscale 2014; 6(20): 12056-64.
[http://dx.doi.org/10.1039/C4NR02391A] [PMID: 25189198]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy