摘要
MDSCs在诱导免疫耐受中起重要作用。 细胞因子和趋化因子(GM-CSF,IL-6)通过iNOS,精氨酸酶和PD-L1促进MDSCs的扩增,积累和MDSCs的功能。 通过JAK / STAT,mTOR和Raf / MEK / ERK信号传导途径募集和调节MDSC。 MDSCs的免疫抑制功能通过Tregs介导的途径及其对免疫细胞的直接抑制来实现。 所有这些都有助于移植中MDSC相关的免疫耐受。 MDSCs在延长移植物存活率和减少排斥反应方面具有巨大的潜力,并且还引入了许多值得进一步研究的因素。
关键词: 髓源性抑制细胞,免疫耐受,移植,GM-CSF,CXCR2,JAK / STAT。
图形摘要
[1]
Sykes M. Immune tolerance in recipients of combined haploidentical bone marrow and kidney transplantation. Bone Marrow Transplant 2015; 50(Suppl. 2): S82-6.
[http://dx.doi.org/10.1038/bmt.2015.102] [PMID: 26039215]
[http://dx.doi.org/10.1038/bmt.2015.102] [PMID: 26039215]
[2]
Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science 2003; 299(5609): 1057-61.
[http://dx.doi.org/10.1126/science.1079490] [PMID: 12522256]
[http://dx.doi.org/10.1126/science.1079490] [PMID: 12522256]
[3]
Fillatreau S, Sweenie CH, McGeachy MJ, Gray D, Anderton SM. B cells regulate autoimmunity by provision of IL-10. Nat Immunol 2002; 3(10): 944-50.
[http://dx.doi.org/10.1038/ni833] [PMID: 12244307]
[http://dx.doi.org/10.1038/ni833] [PMID: 12244307]
[4]
Gabrilovich DI, Ostrand-Rosenberg S, Bronte V. Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol 2012; 12(4): 253-68.
[http://dx.doi.org/10.1038/nri3175] [PMID: 22437938]
[http://dx.doi.org/10.1038/nri3175] [PMID: 22437938]
[5]
Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 2009; 9(3): 162-74.
[http://dx.doi.org/10.1038/nri2506] [PMID: 19197294]
[http://dx.doi.org/10.1038/nri2506] [PMID: 19197294]
[6]
Nagaraj S, Gupta K, Pisarev V, et al. Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer. Nat Med 2007; 13(7): 828-35.
[http://dx.doi.org/10.1038/nm1609] [PMID: 17603493]
[http://dx.doi.org/10.1038/nm1609] [PMID: 17603493]
[7]
De Wilde V, Van Rompaey N, Hill M, et al. Endotoxin-induced myeloid-derived suppressor cells inhibit alloimmune responses via heme oxygenase-1. Am J Transplant 2009; 9(9): 2034-47.
[http://dx.doi.org/10.1111/j.1600-6143.2009.02757.x] [PMID: 19681826]
[http://dx.doi.org/10.1111/j.1600-6143.2009.02757.x] [PMID: 19681826]
[8]
Dugast AS, Haudebourg T, Coulon F, et al. Myeloid-derived suppressor cells accumulate in kidney allograft tolerance and specifically suppress effector T cell expansion. J Immunol 2008; 180(12): 7898-906.
[http://dx.doi.org/10.4049/jimmunol.180.12.7898]
[http://dx.doi.org/10.4049/jimmunol.180.12.7898]
[9]
Adeegbe D, Serafini P, Bronte V, Zoso A, Ricordi C, Inverardi L. In vivo induction of myeloid suppressor cells and CD4(+)Foxp3(+) T regulatory cells prolongs skin allograft survival in mice. Cell Transplant 2011; 20(6): 941-54.
[http://dx.doi.org/10.3727/096368910X540621] [PMID: 21054938]
[http://dx.doi.org/10.3727/096368910X540621] [PMID: 21054938]
[10]
Arakawa Y, Qin J, Chou HS, et al. Cotransplantation with myeloid-derived suppressor cells protects cell transplants: A crucial role of inducible nitric oxide synthase. Transplantation 2014; 97(7): 740-7.
[http://dx.doi.org/10.1097/01.TP.0000442504.23885.f7] [PMID: 24642686]
[http://dx.doi.org/10.1097/01.TP.0000442504.23885.f7] [PMID: 24642686]
[11]
Cornish AL, Campbell IK, McKenzie BS, Chatfield S. Wicks IPGCSF
G-CSF and GM-CSF as therapeutic targets in rheumatoid arthritis
Nat Rev Rheumatol 2009; 5(10): 554-9.
[http://dx.doi.org/10.1038/nrrheum.2009.178] [PMID: 19798030]
[http://dx.doi.org/10.1038/nrrheum.2009.178] [PMID: 19798030]
[12]
Ushach I, Zlotnik A. Biological role of granulocyte macrophage colony-stimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF) on cells of the myeloid lineage. J Leukoc Biol 2016; 100(3): 481-9.
[http://dx.doi.org/10.1189/jlb.3RU0316-144R] [PMID: 27354413]
[http://dx.doi.org/10.1189/jlb.3RU0316-144R] [PMID: 27354413]
[13]
Kandalla PK, Sarrazin S, Molawi K, et al. M-CSF improves protection against bacterial and fungal infections after hematopoietic stem/progenitor cell transplantation. J Exp Med 2016; 213(11): 2269-79.
[http://dx.doi.org/10.1084/jem.20151975] [PMID: 27811055]
[http://dx.doi.org/10.1084/jem.20151975] [PMID: 27811055]
[14]
Wan L, Zhang Y, Lai Y, et al. Effect of Granulocyte-Macrophage Colony-Stimulating factor on prevention and treatment of invasive fungal disease in recipients of allogeneic Stem-Cell Transplantation: A prospective multicenter randomized phase IV trial. J Clin Oncol 2015; 33(34): 3999-4006.
[http://dx.doi.org/10.1200/JCO.2014.60.5121] [PMID: 26392095]
[http://dx.doi.org/10.1200/JCO.2014.60.5121] [PMID: 26392095]
[15]
Yang F, Li Y, Wu T, et al. TNFα-induced M-MDSCs promote transplant immune tolerance via nitric oxide. J Mol Med (Berl) 2016; 94(8): 911-20.
[http://dx.doi.org/10.1007/s00109-016-1398-z] [PMID: 26936474]
[http://dx.doi.org/10.1007/s00109-016-1398-z] [PMID: 26936474]
[16]
Zhao Y, Shen XF, Cao K, et al. Dexamethasone-Induced myeloid-derived suppressor cells prolong allo cardiac graft survival through inos- and glucocorticoid Receptor-Dependent mechanism. Front Immunol 2018; 9: 282.
[http://dx.doi.org/10.3389/fimmu.2018.00282] [PMID: 29497426]
[http://dx.doi.org/10.3389/fimmu.2018.00282] [PMID: 29497426]
[17]
Nywening TM, Belt BA, Cullinan DR, et al. Targeting both tumour-associated CXCR2+ neutrophils and CCR2+ macrophages disrupts myeloid recruitment and improves chemotherapeutic responses in pancreatic ductal adenocarcinoma. Gut 2018; 67(6): 1112-23.
[http://dx.doi.org/10.1136/gutjnl-2017-313738] [PMID: 29196437]
[http://dx.doi.org/10.1136/gutjnl-2017-313738] [PMID: 29196437]
[18]
Liao J, Wang X, Bi Y, et al. Dexamethasone potentiates myeloid-derived suppressor cell function in prolonging allograft survival through nitric oxide. J Leukoc Biol 2014; 96(5): 675-84.
[http://dx.doi.org/10.1189/jlb.2HI1113-611RR] [PMID: 24948701]
[http://dx.doi.org/10.1189/jlb.2HI1113-611RR] [PMID: 24948701]
[19]
Ochando JC, Conde P. Editorial: Dexamethasone and MDSC in transplantation: Yes to NO. J Leukoc Biol 2014; 96(5): 669-71.
[http://dx.doi.org/10.1189/jlb.3CE0514-272R] [PMID: 25360039]
[http://dx.doi.org/10.1189/jlb.3CE0514-272R] [PMID: 25360039]
[20]
Nakao T, Nakamura T, Masuda K, et al. Dexamethasone prolongs cardiac allograft survival in a murine model through myeloid-derived suppressor cells. Transplant Proc 2018; 50(1): 299-304.
[http://dx.doi.org/10.1016/j.transproceed.2017.11.014] [PMID: 29407325]
[http://dx.doi.org/10.1016/j.transproceed.2017.11.014] [PMID: 29407325]
[21]
Tanaka T, Narazaki M, Kishimoto T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb Perspect Biol 2014; 6(10)a016295
[http://dx.doi.org/10.1101/cshperspect.a016295] [PMID: 25190079]
[http://dx.doi.org/10.1101/cshperspect.a016295] [PMID: 25190079]
[22]
Wu CT, Hsieh CC, Lin CC, Chen WC, Hong JH, Chen MF. Significance of IL-6 in the transition of hormone-resistant prostate cancer and the induction of myeloid-derived suppressor cells. J Mol Med (Berl) 2012; 90(11): 1343-55.
[http://dx.doi.org/10.1007/s00109-012-0916-x] [PMID: 22660275]
[http://dx.doi.org/10.1007/s00109-012-0916-x] [PMID: 22660275]
[23]
Hock BD, McKenzie JL, Cross NB, Currie MJ. Dynamic changes in myeloid derived suppressor cell subsets following renal transplant: A prospective study. Transpl Immunol 2015; 32(3): 164-71.
[http://dx.doi.org/10.1016/j.trim.2015.05.001] [PMID: 25968653]
[http://dx.doi.org/10.1016/j.trim.2015.05.001] [PMID: 25968653]
[24]
Gong W, Shou D, Cheng F, Shi J, Ge F, Liu D. Tolerance induced by IL-6 deficient donor heart is significantly involved in myeloid-derived suppressor cells (MDSCs). Transpl Immunol 2015; 32(2): 72-5.
[http://dx.doi.org/10.1016/j.trim.2015.02.001] [PMID: 25680847]
[http://dx.doi.org/10.1016/j.trim.2015.02.001] [PMID: 25680847]
[25]
Sinha P, Clements VK, Ostrand-Rosenberg S. Interleukin-13-regulated M2 macrophages in combination with myeloid suppressor cells block immune surveillance against metastasis. Cancer Res 2005; 65(24): 11743-51.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-0045] [PMID: 16357187]
[http://dx.doi.org/10.1158/0008-5472.CAN-05-0045] [PMID: 16357187]
[26]
Davidson C, Verma ND, Robinson CM, et al. IL-13 prolongs allograft survival: Association with inhibition of macrophage cytokine activation. Transpl Immunol 2007; 17(3): 178-86.
[http://dx.doi.org/10.1016/j.trim.2006.09.035] [PMID: 17331844]
[http://dx.doi.org/10.1016/j.trim.2006.09.035] [PMID: 17331844]
[27]
Gabitass RF, Annels NE, Stocken DD, Pandha HA, Middleton GW. Elevated myeloid-derived suppressor cells in pancreatic, esophageal and gastric cancer are an independent prognostic factor and are associated with significant elevation of the Th2 cytokine interleukin-13. Cancer Immunol Immunother 2011; 60(10): 1419-30.
[http://dx.doi.org/10.1007/s00262-011-1028-0] [PMID: 21644036]
[http://dx.doi.org/10.1007/s00262-011-1028-0] [PMID: 21644036]
[28]
Highfill SL, Rodriguez PC, Zhou Q, et al. Bone marrow myeloid-derived suppressor cells (MDSCs) inhibit graft-versus-host disease (GVHD) via an arginase-1-dependent mechanism that is up-regulated by interleukin-13. Blood 2010; 116(25): 5738-47.
[http://dx.doi.org/10.1182/blood-2010-06-287839] [PMID: 20807889]
[http://dx.doi.org/10.1182/blood-2010-06-287839] [PMID: 20807889]
[29]
Kusmartsev SA, Li Y, Chen SH. Gr-1+ myeloid cells derived from tumor-bearing mice inhibit primary T cell activation induced through CD3/CD28 costimulation. J Immunol 2000; 165(2): 779-85.
[30]
Mazzoni A, Bronte V, Visintin A, et al. Myeloid suppressor lines inhibit T cell responses by an NO-dependent mechanism. J Immunol 2002; 168: 689-95.
[31]
Zhu B, Bando Y, Xiao S, et al. CD11b+Ly-6C(hi) suppressive monocytes in experimental autoimmune encephalomyelitis. J Immunol 2007; 179(8): 5228-37.
[32]
Garcia MR, Ledgerwood L, Yang Y, et al. Monocytic suppressive cells mediate cardiovascular transplantation tolerance in mice. J Clin Invest 2010; 120(7): 2486-96.
[http://dx.doi.org/10.1172/JCI41628] [PMID: 20551515]
[http://dx.doi.org/10.1172/JCI41628] [PMID: 20551515]
[33]
Heslan JM, Beriou G, Le Luduec JB, et al. Accumulation of T cells with potent regulatory properties and restricted Vbeta7-TCR rearrangements in tolerated allografts. Transplantation 2005; 80(10): 1476-84.
[http://dx.doi.org/10.1097/01.tp.0000185198.07663.ba] [PMID: 16340794]
[http://dx.doi.org/10.1097/01.tp.0000185198.07663.ba] [PMID: 16340794]
[34]
Feng G, Gao W, Strom TB, et al. Exogenous IFN-gamma ex vivo shapes the alloreactive T-cell repertoire by inhibition of Th17 responses and generation of functional Foxp3+ regulatory T cells. Eur J Immunol 2008; 38(9): 2512-27.
[http://dx.doi.org/10.1002/eji.200838411] [PMID: 18792404]
[http://dx.doi.org/10.1002/eji.200838411] [PMID: 18792404]
[35]
Feng G, Wood KJ, Bushell A. Interferon-gamma conditioning ex vivo generates CD25+CD62L+Foxp3+ regulatory T cells that prevent allograft rejection: Potential avenues for cellular therapy. Transplantation 2008; 86(4): 578-89.
[http://dx.doi.org/10.1097/TP.0b013e3181806a60] [PMID: 18724229]
[http://dx.doi.org/10.1097/TP.0b013e3181806a60] [PMID: 18724229]
[36]
Sawitzki B, Kingsley CI, Oliveira V, Karim M, Herber M, Wood KJ. IFN-gamma production by alloantigen-reactive regulatory T cells is important for their regulatory function in vivo. J Exp Med 2005; 201(12): 1925-35.
[http://dx.doi.org/10.1084/jem.20050419] [PMID: 15967822]
[http://dx.doi.org/10.1084/jem.20050419] [PMID: 15967822]
[37]
Matsumura T, Ato M, Ikebe T, Ohnishi M, Watanabe H, Kobayashi K. Interferon-γ-producing immature myeloid cells confer protection against severe invasive group A Streptococcus infections. Nat Commun 2012; 3: 678.
[http://dx.doi.org/10.1038/ncomms1677] [PMID: 22334081]
[http://dx.doi.org/10.1038/ncomms1677] [PMID: 22334081]
[38]
Bryant J, Lerret NM, Wang JJ, et al. Preemptive donor apoptotic cell infusions induce IFN-gamma-producing myeloid-derived suppressor cells for cardiac allograft protection. J Immunol 2014; 192(12): 6092-101.
[39]
Cayrol C, Girard JP. IL-33: An alarmin cytokine with crucial roles in innate immunity, inflammation and allergy. Curr Opin Immunol 2014; 31: 31-7.
[http://dx.doi.org/10.1016/j.coi.2014.09.004] [PMID: 25278425]
[http://dx.doi.org/10.1016/j.coi.2014.09.004] [PMID: 25278425]
[40]
Cayrol C, Girard JP. Interleukin-33 (IL-33): A nuclear cytokine from the IL-1 family. Immunol Rev 2018; 281(1): 154-68.
[http://dx.doi.org/10.1111/imr.12619] [PMID: 29247993]
[http://dx.doi.org/10.1111/imr.12619] [PMID: 29247993]
[41]
Mayuzumi N, Matsushima H, Takashima A. IL-33 promotes DC development in BM culture by triggering GM-CSF production. Eur J Immunol 2009; 39(12): 3331-42.
[http://dx.doi.org/10.1002/eji.200939472] [PMID: 19750479]
[http://dx.doi.org/10.1002/eji.200939472] [PMID: 19750479]
[42]
Turnquist HR, Zhao Z, Rosborough BR, et al. IL-33 expands suppressive CD11b+ Gr-1(int) and regulatory T cells, including ST2L+ Foxp3+ cells, and mediates regulatory T cell-dependent promotion of cardiac allograft survival. J Immunol 2011; 187(9): 4598-610.
[43]
Amatya N, Garg AV, Gaffen SL. IL-17 Signaling: The Yin and the Yang. Trends Immunol 2017; 38(5): 310-22.
[http://dx.doi.org/10.1016/j.it.2017.01.006] [PMID: 28254169]
[http://dx.doi.org/10.1016/j.it.2017.01.006] [PMID: 28254169]
[44]
Gajardo T, Morales RA, Campos-Mora M, Campos-Acuña J, Pino-Lagos K. Exogenous interleukin-33 targets myeloid-derived suppressor cells and generates periphery-induced Foxp3+ regulatory T cells in skin-transplanted mice. Immunology 2015; 146(1): 81-8.
[http://dx.doi.org/10.1111/imm.12483] [PMID: 25988395]
[http://dx.doi.org/10.1111/imm.12483] [PMID: 25988395]
[45]
Nikolova M, Musette P, Bagot M, Boumsell L, Bensussan A. Engagement of ILT2/CD85j in Sézary syndrome cells inhibits their CD3/TCR signaling. Blood 2002; 100(3): 1019-25.
[http://dx.doi.org/10.1182/blood-2001-12-0303] [PMID: 12130517]
[http://dx.doi.org/10.1182/blood-2001-12-0303] [PMID: 12130517]
[46]
Shiroishi M, Tsumoto K, Amano K, et al. Human inhibitory receptors Ig-like transcript 2 (ILT2) and ILT4 compete with CD8 for MHC class I binding and bind preferentially to HLA-G. Proc Natl Acad Sci USA 2003; 100(15): 8856-61.
[http://dx.doi.org/10.1073/pnas.1431057100] [PMID: 12853576]
[http://dx.doi.org/10.1073/pnas.1431057100] [PMID: 12853576]
[47]
Liang S, Zhang W, Horuzsko A. Human ILT2 receptor associates with murine MHC class I molecules in vivo and impairs T cell function. Eur J Immunol 2006; 36(9): 2457-71.
[http://dx.doi.org/10.1002/eji.200636031] [PMID: 16897816]
[http://dx.doi.org/10.1002/eji.200636031] [PMID: 16897816]
[48]
Zhang W, Liang S, Wu J, Horuzsko A. Human inhibitory receptor immunoglobulin-like transcript 2 amplifies CD11b+Gr1+ myeloid-derived suppressor cells that promote long-term survival of allografts. Transplantation 2008; 86(8): 1125-34.
[http://dx.doi.org/10.1097/TP.0b013e318186fccd] [PMID: 18946352]
[http://dx.doi.org/10.1097/TP.0b013e318186fccd] [PMID: 18946352]
[49]
Dietrich J, Cella M, Colonna M. Ig-like transcript 2 (ILT2)/leukocyte Ig-like receptor 1 (LIR1) inhibits TCR signaling and actin cytoskeleton reorganization. J Immunol 2001; 166(4): 2514-1.
[50]
Sayós J, Martínez-Barriocanal A, Kitzig F, Bellón T, López-Botet M. Recruitment of C-terminal Src kinase by the leukocyte inhibitory receptor CD85j. Biochem Biophys Res Commun 2004; 324(2): 640-7.
[http://dx.doi.org/10.1016/j.bbrc.2004.09.097] [PMID: 15474475]
[http://dx.doi.org/10.1016/j.bbrc.2004.09.097] [PMID: 15474475]
[51]
Bronte V, Serafini P, Mazzoni A, Segal DM, Zanovello P. L-arginine metabolism in myeloid cells controls T-lymphocyte functions. Trends Immunol 2003; 24(6): 302-6.
[http://dx.doi.org/10.1016/S1471-4906(03)00132-7] [PMID: 12810105]
[http://dx.doi.org/10.1016/S1471-4906(03)00132-7] [PMID: 12810105]
[52]
Szuster-Ciesielska A, Hryciuk-Umer E, Stepulak A, Kupisz K, Kandefer-Szerszeń M. Reactive oxygen species production by blood neutrophils of patients with laryngeal carcinoma and antioxidative enzyme activity in their blood. Acta Oncol 2004; 43(3): 252-8.
[http://dx.doi.org/10.1080/02841860410029708] [PMID: 15244248]
[http://dx.doi.org/10.1080/02841860410029708] [PMID: 15244248]
[53]
Corzo CA, Cotter MJ, Cheng P, et al. Mechanism regulating reactive oxygen species in tumor-induced myeloid-derived suppressor cells. J Immunol 2009; 182(9): 5693-701.
[http://dx.doi.org/10.4049/jimmunol.0900092]
[http://dx.doi.org/10.4049/jimmunol.0900092]
[54]
Koblish HK, Hunter CA, Wysocka M, Trinchieri G, Lee WM. Immune suppression by recombinant interleukin (rIL)-12 involves interferon gamma induction of nitric oxide synthase 2 (iNOS) activity: Inhibitors of NO generation reveals the extent of rIL-12 vaccine adjuvant effect. J Exp Med 1998; 188(9): 1603-10.
[http://dx.doi.org/10.1084/jem.188.9.1603] [PMID: 9802972]
[http://dx.doi.org/10.1084/jem.188.9.1603] [PMID: 9802972]
[55]
Rodriguez PC, Zea AH, Culotta KS, Zabaleta J, Ochoa JB, Ochoa AC. Regulation of T cell receptor CD3zeta chain expression by L-arginine. J Biol Chem 2002; 277(24): 21123-9.
[http://dx.doi.org/10.1074/jbc.M110675200] [PMID: 11950832]
[http://dx.doi.org/10.1074/jbc.M110675200] [PMID: 11950832]
[56]
Harari O, Liao JK. Inhibition of MHC II gene transcription by nitric oxide and antioxidants. Curr Pharm Des 2004; 10(8): 893-8.
[http://dx.doi.org/10.2174/1381612043452893] [PMID: 15032692]
[http://dx.doi.org/10.2174/1381612043452893] [PMID: 15032692]
[57]
Bingisser RM, Tilbrook PA, Holt PG, Kees UR. Macrophage-derived nitric oxide regulates T cell activation via reversible disruption of the Jak3/STAT5 signaling pathway. J Immunol 1998; 160(12): 5729-34.
[58]
Rivoltini L, Carrabba M, Huber V, et al. Immunity to cancer: Attack and escape in T lymphocyte-tumor cell interaction. Immunol Rev 2002; 188: 97-113.
[http://dx.doi.org/10.1034/j.1600-065X.2002.18809.x] [PMID: 12445284]
[http://dx.doi.org/10.1034/j.1600-065X.2002.18809.x] [PMID: 12445284]
[59]
Nakamura T, Nakao T, Yoshimura N, Ashihara E. Rapamycin Prolongs cardiac allograft survival in a mouse model by inducing Myeloid-Derived suppressor cells. Am J Transplant 2015; 15(9): 2364-77.
[http://dx.doi.org/10.1111/ajt.13276] [PMID: 25943210]
[http://dx.doi.org/10.1111/ajt.13276] [PMID: 25943210]
[60]
Basso D, Fogar P, Falconi M, et al. Pancreatic tumors and immature immunosuppressive myeloid cells in blood and spleen: Role of inhibitory co-stimulatory molecules PDL1 and CTLA4. An in vivo and in vitro study. PLoS One 2013; 8(1)e54824
[http://dx.doi.org/10.1371/journal.pone.0054824] [PMID: 23359812]
[http://dx.doi.org/10.1371/journal.pone.0054824] [PMID: 23359812]
[61]
Rodríguez PC, Ochoa AC. Arginine regulation by myeloid derived suppressor cells and tolerance in cancer: Mechanisms and therapeutic perspectives. Immunol Rev 2008; 222: 180-91.
[http://dx.doi.org/10.1111/j.1600-065X.2008.00608.x] [PMID: 18364002]
[http://dx.doi.org/10.1111/j.1600-065X.2008.00608.x] [PMID: 18364002]
[62]
Wells AD, Li XC, Li Y, et al. Requirement for T-cell apoptosis in the induction of peripheral transplantation tolerance. Nat Med 1999; 5(11): 1303-7.
[http://dx.doi.org/10.1038/15260] [PMID: 10545998]
[http://dx.doi.org/10.1038/15260] [PMID: 10545998]
[63]
Brito C, Naviliat M, Tiscornia AC, et al. Peroxynitrite inhibits T lymphocyte activation and proliferation by promoting impairment of tyrosine phosphorylation and peroxynitrite-driven apoptotic death. J Immunol 1999; 162(6): 3356-66.
[64]
Thompson ED, Taube JM, Asch-Kendrick RJ, et al. PD-L1 expression and the immune microenvironment in primary invasive lobular carcinomas of the breast. Mod Pathol 2017; 30(11): 1551-60.
[65]
Prima V, Kaliberova LN, Kaliberov S, Curiel DT, Kusmartsev S. COX2/mPGES1/PGE2 pathway regulates PD-L1 expression in tumor-associated macrophages and myeloid-derived suppressor cells. Proc Natl Acad Sci USA 2017; 114(5): 1117-22.
[http://dx.doi.org/10.1073/pnas.1612920114] [PMID: 28096371]
[http://dx.doi.org/10.1073/pnas.1612920114] [PMID: 28096371]
[66]
Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 2008; 26: 677-704.
[http://dx.doi.org/10.1146/annurev.immunol.26.021607.090331] [PMID: 18173375]
[http://dx.doi.org/10.1146/annurev.immunol.26.021607.090331] [PMID: 18173375]
[67]
Keir ME, Liang SC, Guleria I, et al. Tissue expression of PD-L1 mediates peripheral T cell tolerance. J Exp Med 2006; 203(4): 883-95.
[http://dx.doi.org/10.1084/jem.20051776] [PMID: 16606670]
[http://dx.doi.org/10.1084/jem.20051776] [PMID: 16606670]
[68]
Wang L, Han R, Hancock WW. Programmed cell death 1 (PD-1) and its ligand PD-L1 are required for allograft tolerance. Eur J Immunol 2007; 37(10): 2983-90.
[http://dx.doi.org/10.1002/eji.200737583] [PMID: 17899549]
[http://dx.doi.org/10.1002/eji.200737583] [PMID: 17899549]
[69]
Sandner SE, Clarkson MR, Salama AD, et al. Role of the programmed death-1 pathway in regulation of alloimmune responses in vivo. J Immunol 2005; 174(6): 3408-15.
[http://dx.doi.org/10.4049/jimmunol.174.6.3408]
[http://dx.doi.org/10.4049/jimmunol.174.6.3408]
[70]
Nakamura T, Nakao T, Ashihara E, Yoshimura N. Myeloid-derived suppressor cells recruit CD4(+)/Foxp3(+) Regulatory T Cells in a murine cardiac allograft. Transplant Proc 2016; 48(4): 1275-8.
[http://dx.doi.org/10.1016/j.transproceed.2015.10.060] [PMID: 27320602]
[http://dx.doi.org/10.1016/j.transproceed.2015.10.060] [PMID: 27320602]
[71]
Gao W, Demirci G, Strom TB, Li XC. Stimulating PD-1-negative signals concurrent with blocking CD154 co-stimulation induces long-term islet allograft survival. Transplantation 2003; 76(6): 994-9.
[http://dx.doi.org/10.1097/01.TP.0000085010.39567.FB] [PMID: 14508368]
[http://dx.doi.org/10.1097/01.TP.0000085010.39567.FB] [PMID: 14508368]
[72]
Nelp MT, Kates PA, Hunt JT, et al. Immune-modulating enzyme indoleamine 2,3-dioxygenase is effectively inhibited by targeting its apo-form. Proc Natl Acad Sci USA 2018; 115(13): 3249-54.
[http://dx.doi.org/10.1073/pnas.1719190115] [PMID: 29531094]
[http://dx.doi.org/10.1073/pnas.1719190115] [PMID: 29531094]
[73]
Mougiakakos D, Jitschin R, von Bahr L, et al. Immunosuppressive CD14+HLA-DRlow/neg IDO+ myeloid cells in patients following allogeneic hematopoietic stem cell transplantation. Leukemia 2013; 27(2): 377-88.
[http://dx.doi.org/10.1038/leu.2012.215] [PMID: 22828446]
[http://dx.doi.org/10.1038/leu.2012.215] [PMID: 22828446]
[74]
Holmgaard RB, Zamarin D, Li Y, et al. Tumor-expressed IDO recruits and activates MDSCs in a treg-dependent manner. Cell Rep 2015; 13(2): 412-24.
[http://dx.doi.org/10.1016/j.celrep.2015.08.077] [PMID: 26411680]
[http://dx.doi.org/10.1016/j.celrep.2015.08.077] [PMID: 26411680]
[75]
Wang X, Bi Y, Xue L, et al. The calcineurin-NFAT axis controls allograft immunity in myeloid-derived suppressor cells through reprogramming T cell differentiation. Mol Cell Biol 2015; 35(3): 598-609.
[http://dx.doi.org/10.1128/MCB.01251-14] [PMID: 25452304]
[http://dx.doi.org/10.1128/MCB.01251-14] [PMID: 25452304]
[76]
Tan MC, Goedegebuure PS, Belt BA, et al. Disruption of CCR5-dependent homing of regulatory T cells inhibits tumor growth in a murine model of pancreatic cancer. J Immunol 2009; 182(3): 1746-55.
[http://dx.doi.org/10.4049/jimmunol.182.3.1746]
[http://dx.doi.org/10.4049/jimmunol.182.3.1746]
[77]
Adler EP, Lemken CA, Katchen NS, Kurt RA. A dual role for tumor-derived chemokine RANTES (CCL5). Immunol Lett 2003; 90(2-3): 187-94.
[http://dx.doi.org/10.1016/j.imlet.2003.09.013] [PMID: 14687724]
[http://dx.doi.org/10.1016/j.imlet.2003.09.013] [PMID: 14687724]
[78]
Dilek N, Poirier N, Usal C, Martinet B, Blancho G, Vanhove B. Control of transplant tolerance and intragraft regulatory T cell localization by myeloid-derived suppressor cells and CCL5. J Immunol 2012; 188(9): 4209-16.
[http://dx.doi.org/10.4049/jimmunol.1101512]
[http://dx.doi.org/10.4049/jimmunol.1101512]
[79]
Meng F, Chen S, Guo X, et al. Clinical significance of myeloid-derived suppressor cells in human renal transplantation with acute T cell-mediated rejection. Inflammation 2014; 37(5): 1799-805.
[http://dx.doi.org/10.1007/s10753-014-9910-5] [PMID: 24788988]
[http://dx.doi.org/10.1007/s10753-014-9910-5] [PMID: 24788988]
[80]
Bunt SK, Sinha P, Clements VK, Leips J, Ostrand-Rosenberg S. Inflammation induces myeloid-derived suppressor cells that facilitate tumor progression. J Immunol 2006; 176(1): 284-90.
[http://dx.doi.org/10.4049/jimmunol.176.1.284]
[http://dx.doi.org/10.4049/jimmunol.176.1.284]
[81]
Gallina G, Dolcetti L, Serafini P, et al. Tumors induce a subset of inflammatory monocytes with immunosuppressive activity on CD8+ T cells. J Clin Invest 2006; 116(10): 2777-90.
[http://dx.doi.org/10.1172/JCI28828] [PMID: 17016559]
[http://dx.doi.org/10.1172/JCI28828] [PMID: 17016559]
[82]
Serafini P, Borrello I, Bronte V. Myeloid suppressor cells in cancer: recruitment, phenotype, properties, and mechanisms of immune suppression. Semin Cancer Biol 2006; 16(1): 53-65.
[http://dx.doi.org/10.1016/j.semcancer.2005.07.005] [PMID: 16168663]
[http://dx.doi.org/10.1016/j.semcancer.2005.07.005] [PMID: 16168663]
[83]
Kortylewski M, Kujawski M, Wang T, et al. Inhibiting Stat3 signaling in the hematopoietic system elicits multicomponent antitumor immunity. Nat Med 2005; 11(12): 1314-21.
[http://dx.doi.org/10.1038/nm1325] [PMID: 16288283]
[http://dx.doi.org/10.1038/nm1325] [PMID: 16288283]
[84]
McKallip RJ, Nagarkatti M, Nagarkatti PS. Delta-9-tetrahydrocannabinol enhances breast cancer growth and metastasis by suppression of the antitumor immune response. J Immunol 2005; 174(6): 3281-9.
[85]
Klein TW, Friedman H, Specter S. Marijuana, immunity and infection. J Neuroimmunol 1998; 83(1-2): 102-15.
[http://dx.doi.org/10.1016/S0165-5728(97)00226-9] [PMID: 9610678]
[http://dx.doi.org/10.1016/S0165-5728(97)00226-9] [PMID: 9610678]
[86]
Hegde VL, Nagarkatti M, Nagarkatti PS. Cannabinoid receptor activation leads to massive mobilization of myeloid-derived suppressor cells with potent immunosuppressive properties. Eur J Immunol 2010; 40(12): 3358-71.
[http://dx.doi.org/10.1002/eji.201040667] [PMID: 21110319]
[http://dx.doi.org/10.1002/eji.201040667] [PMID: 21110319]
[87]
Sido JM, Nagarkatti PS, Nagarkatti MΔ. 9- Tetrahydrocannabinol attenuates allogeneic host-versus-graft response and delays skin graft rejection through activation of cannabinoid receptor 1 and induction of myeloid-derived suppressor cells. J Leukoc Biol 2015; 98(3): 435-47.
[http://dx.doi.org/10.1189/jlb.3A0115-030RR] [PMID: 26034207]
[http://dx.doi.org/10.1189/jlb.3A0115-030RR] [PMID: 26034207]
[88]
Jackson AR, Hegde VL, Nagarkatti PS, Nagarkatti M. Characterization of endocannabinoid-mediated induction of myeloid-derived suppressor cells involving mast cells and MCP-1. J Leukoc Biol 2014; 95(4): 609-19.
[http://dx.doi.org/10.1189/jlb.0613350] [PMID: 24319288]
[http://dx.doi.org/10.1189/jlb.0613350] [PMID: 24319288]
[89]
Sido JM, Yang X, Nagarkatti PS, Nagarkatti MΔ. 9- Tetrahydrocannabinol-mediated epigenetic modifications elicit myeloid-derived suppressor cell activation via STAT3/S100A8. J Leukoc Biol 2015; 97(4): 677-88.
[http://dx.doi.org/10.1189/jlb.1A1014-479R] [PMID: 25713087]
[http://dx.doi.org/10.1189/jlb.1A1014-479R] [PMID: 25713087]
[90]
Sinha P, Okoro C, Foell D, Freeze HH, Ostrand-Rosenberg S, Srikrishna G. Proinflammatory S100 proteins regulate the accumulation of myeloid-derived suppressor cells. J Immunol 2008; 181(7): 4666-75.
[http://dx.doi.org/10.4049/jimmunol.181.7.4666]
[http://dx.doi.org/10.4049/jimmunol.181.7.4666]
[91]
Zhang Y, Bi Y, Yang H, et al. mTOR limits the recruitment of CD11b+Gr1+Ly6Chigh myeloid-derived suppressor cells in protecting against murine immunological hepatic injury. J Leukoc Biol 2014; 95(6): 961-70.
[http://dx.doi.org/10.1189/jlb.0913473] [PMID: 24569105]
[http://dx.doi.org/10.1189/jlb.0913473] [PMID: 24569105]
[92]
Carracedo A, Ma L, Teruya-Feldstein J, et al. Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer. J Clin Invest 2008; 118(9): 3065-74.
[http://dx.doi.org/10.1172/JCI34739] [PMID: 18725988]
[http://dx.doi.org/10.1172/JCI34739] [PMID: 18725988]
[93]
Faber AC, Li D, Song Y, et al. Differential induction of apoptosis in HER2 and EGFR addicted cancers following PI3K inhibition. Proc Natl Acad Sci USA 2009; 106(46): 19503-8.
[http://dx.doi.org/10.1073/pnas.0905056106] [PMID: 19850869]
[http://dx.doi.org/10.1073/pnas.0905056106] [PMID: 19850869]
[94]
Wang X, Hawk N, Yue P, et al. Overcoming mTOR inhibition-induced paradoxical activation of survival signaling pathways enhances mTOR inhibitors’ anticancer efficacy. Cancer Biol Ther 2008; 7(12): 1952-8.
[http://dx.doi.org/10.4161/cbt.7.12.6944] [PMID: 18981735]
[http://dx.doi.org/10.4161/cbt.7.12.6944] [PMID: 18981735]
[95]
Wu T, Zhao Y, Wang H, et al. mTOR masters monocytic myeloid-derived suppressor cells in mice with allografts or tumors. Sci Rep 2016; 6: 20250.
[http://dx.doi.org/10.1038/srep20250] [PMID: 26833095]
[http://dx.doi.org/10.1038/srep20250] [PMID: 26833095]
[96]
Turnquist HR, Raimondi G, Zahorchak AF, Fischer RT, Wang Z, Thomson AW. Rapamycin-conditioned dendritic cells are poor stimulators of allogeneic CD4+ T cells, but enrich for antigen-specific Foxp3+ T regulatory cells and promote organ transplant tolerance. J Immunol 2007; 178(11): 7018-31.
[97]
Horibe EK, Sacks J, Unadkat J, et al. Rapamycin-conditioned, alloantigen-pulsed dendritic cells promote indefinite survival of vascularized skin allografts in association with T regulatory cell expansion. Transpl Immunol 2008; 18(4): 307-18.
[http://dx.doi.org/10.1016/j.trim.2007.10.007] [PMID: 18158116]
[http://dx.doi.org/10.1016/j.trim.2007.10.007] [PMID: 18158116]
[98]
Taner T, Hackstein H, Wang Z, Morelli AE, Thomson AW. Rapamycin-treated, alloantigen-pulsed host dendritic cells induce ag-specific T cell regulation and prolong graft survival. Am J Transplant 2005; 5(2): 228-36.
[http://dx.doi.org/10.1046/j.1600-6143.2004.00673.x] [PMID: 15643982]
[http://dx.doi.org/10.1046/j.1600-6143.2004.00673.x] [PMID: 15643982]
[99]
Lu Y, Liu H, Bi Y, et al. Glucocorticoid receptor promotes the function of myeloid-derived suppressor cells by suppressing HIF1α-dependent glycolysis. Cell Mol Immunol 2018; 15(6): 618-29.
[http://dx.doi.org/10.1038/cmi.2017.5] [PMID: 28287112]
[http://dx.doi.org/10.1038/cmi.2017.5] [PMID: 28287112]
[100]
Wood KJ, Sakaguchi S. Regulatory T cells in transplantation tolerance. Nat Rev Immunol 2003; 3(3): 199-210.
[http://dx.doi.org/10.1038/nri1027] [PMID: 12658268]
[http://dx.doi.org/10.1038/nri1027] [PMID: 12658268]
[101]
Romano M, Tung SL, Smyth LA, Lombardi G. Treg therapy in transplantation: A general overview. Transpl Int 2017; 30(8): 745-53.
[http://dx.doi.org/10.1111/tri.12909] [PMID: 28012226]
[http://dx.doi.org/10.1111/tri.12909] [PMID: 28012226]
[102]
Huang B, Pan PY, Li Q, et al. Gr-1+CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Res 2006; 66(2): 1123-31.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-1299] [PMID: 16424049]
[http://dx.doi.org/10.1158/0008-5472.CAN-05-1299] [PMID: 16424049]
[103]
MacDonald KP, Rowe V, Clouston AD, et al. Cytokine expanded myeloid precursors function as regulatory antigen-presenting cells and promote tolerance through IL-10-producing regulatory T cells. J Immunol 2005; 174(4): 1841-50.
[104]
Luan Y, Mosheir E, Menon MC, et al. Monocytic myeloid-derived suppressor cells accumulate in renal transplant patients and mediate CD4(+) Foxp3(+) Treg expansion. Am J Transplant 2013; 13(12): 3123-31.
[http://dx.doi.org/10.1111/ajt.12461] [PMID: 24103111]
[http://dx.doi.org/10.1111/ajt.12461] [PMID: 24103111]
[105]
Yang R, Cai Z, Zhang Y, Yutzy WH IV, Roby KF, Roden RB. CD80 in immune suppression by mouse ovarian carcinoma-associated Gr-1+CD11b+ myeloid cells. Cancer Res 2006; 66(13): 6807-15.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-3755] [PMID: 16818658]
[http://dx.doi.org/10.1158/0008-5472.CAN-05-3755] [PMID: 16818658]
[106]
Okano S, Abu-Elmagd K, Kish DD, et al. Myeloid-derived suppressor cells increase and inhibit donor-reactive T cell responses to graft intestinal epithelium in intestinal transplant patients. Am J Transplant 2018; 18(10): 2544-58.
[http://dx.doi.org/10.1111/ajt.14718] [PMID: 29509288]
[http://dx.doi.org/10.1111/ajt.14718] [PMID: 29509288]
[107]
Kim JI, Lee MK IV, Moore DJ, et al. Regulatory T-cell counter-regulation by innate immunity is a barrier to transplantation tolerance. Am J Transplant 2009; 9(12): 2736-44.
[http://dx.doi.org/10.1111/j.1600-6143.2009.02847.x] [PMID: 19845585]
[http://dx.doi.org/10.1111/j.1600-6143.2009.02847.x] [PMID: 19845585]
[108]
Dupuis M, De Jesus Ibarra-Sanchez M, Tremblay ML, Duplay P. Gr-1+ myeloid cells lacking T cell protein tyrosine phosphatase inhibit lymphocyte proliferation by an IFN-gamma- and nitric oxide-dependent mechanism. J Immunol 2003; 171(2): 726-32.
[109]
Nagaraj S, Schrum AG, Cho HI, Celis E, Gabrilovich DI. Mechanism of T cell tolerance induced by myeloid-derived suppressor cells. J Immunol 2010; 184(6): 3106-16.
[http://dx.doi.org/10.4049/jimmunol.0902661]
[http://dx.doi.org/10.4049/jimmunol.0902661]
[110]
Sinha P, Clements VK, Bunt SK, Albelda SM, Ostrand-Rosenberg S. Cross-talk between myeloid-derived suppressor cells and macrophages subverts tumor immunity toward a type 2 response. J Immunol 2007; 179(2): 977-83.
[http://dx.doi.org/10.4049/jimmunol.179.2.977]
[http://dx.doi.org/10.4049/jimmunol.179.2.977]
[111]
Talmadge JE. Pathways mediating the expansion and immunosuppressive activity of myeloid-derived suppressor cells and their relevance to cancer therapy. Clin Cancer Res 2007; 13: 5243-8.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-0182]
[http://dx.doi.org/10.1158/1078-0432.CCR-07-0182]
[112]
Peranzoni E, Zilio S, Marigo I, et al. Myeloid-derived suppressor cell heterogeneity and subset definition. Curr Opin Immunol 2010; 22(2): 238-44.
[http://dx.doi.org/10.1016/j.coi.2010.01.021] [PMID: 20171075]
[http://dx.doi.org/10.1016/j.coi.2010.01.021] [PMID: 20171075]
[113]
Chevalier MF, Trabanelli S, Racle J, et al. ILC2-modulated T cell-to-MDSC balance is associated with bladder cancer recurrence. J Clin Invest 2017; 127(8): 2916-29.
[http://dx.doi.org/10.1172/JCI89717] [PMID: 28650339]
[http://dx.doi.org/10.1172/JCI89717] [PMID: 28650339]
[114]
Wu D, Shi Y, Wang C, et al. Activated NKT cells facilitated functional switch of myeloid-derived suppressor cells at inflammation sites in fulminant hepatitis mice. Immunobiology 2017; 222(2): 440-9.
[http://dx.doi.org/10.1016/j.imbio.2016.08.005] [PMID: 27523745]
[http://dx.doi.org/10.1016/j.imbio.2016.08.005] [PMID: 27523745]
[115]
Mussai F, De Santo C, Cerundolo V. Interaction between invariant NKT cells and myeloid-derived suppressor cells in cancer patients: Evidence and therapeutic opportunities. J Immunother 2012; 35(6): 449-59.
[http://dx.doi.org/10.1097/CJI.0b013e31825be926]
[http://dx.doi.org/10.1097/CJI.0b013e31825be926]
[116]
Hongo D, Tang X, Baker J, Engleman EG, Strober S. Requirement for interactions of natural killer T cells and myeloid-derived suppressor cells for transplantation tolerance. Am J Transplant 2014; 14(11): 2467-77.
[http://dx.doi.org/10.1111/ajt.12914] [PMID: 25311657]
[http://dx.doi.org/10.1111/ajt.12914] [PMID: 25311657]
[117]
Niederkorn JY. Emerging concepts in CD8(+) T regulatory cells. Curr Opin Immunol 2008; 20(3): 327-31.
[http://dx.doi.org/10.1016/j.coi.2008.02.003] [PMID: 18406591]
[http://dx.doi.org/10.1016/j.coi.2008.02.003] [PMID: 18406591]
[118]
Picarda E, Anegon I, Guillonneau C. T-cell receptor specificity of CD8(+) Tregs in allotransplantation. Immunotherapy 2011; 3(4): 35-7.
[http://dx.doi.org/10.2217/imt.11.37] [PMID: 21524168]
[http://dx.doi.org/10.2217/imt.11.37] [PMID: 21524168]
[119]
Cao X, Cai SF, Fehniger TA, et al. Granzyme B and perforin are important for regulatory T cell-mediated suppression of tumor clearance. Immunity 2007; 27(4): 635-46.
[http://dx.doi.org/10.1016/j.immuni.2007.08.014] [PMID: 17919943]
[http://dx.doi.org/10.1016/j.immuni.2007.08.014] [PMID: 17919943]
[120]
Bézie S, Picarda E, Ossart J, et al. IL-34 is a Treg-specific cytokine and mediates transplant tolerance. J Clin Invest 2015; 125(10): 3952-64.
[http://dx.doi.org/10.1172/JCI81227] [PMID: 26389674]
[http://dx.doi.org/10.1172/JCI81227] [PMID: 26389674]
[121]
Issa F, Robb RJ, Wood KJ. The where and when of T cell regulation in transplantation. Trends Immunol 2013; 34(3): 107-13.
[http://dx.doi.org/10.1016/j.it.2012.11.003] [PMID: 23228885]
[http://dx.doi.org/10.1016/j.it.2012.11.003] [PMID: 23228885]
[122]
Horikawa N, Abiko K, Matsumura N, et al. Expression of vascular endothelial growth factor in ovarian cancer inhibits tumor immunity through the accumulation of Myeloid-Derived suppressor cells. Clin Cancer Res 2017; 23(2): 587-99.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-0387]
[http://dx.doi.org/10.1158/1078-0432.CCR-16-0387]
[123]
Rodríguez-Ubreva J, Català-Moll F, Obermajer N, et al. Prostaglandin E2 leads to the acquisition of DNMT3A-dependent tolerogenic functions in human myeloid-derived suppressor cells. Cell Rep 2017; 21(1): 154-67.
[http://dx.doi.org/10.1016/j.celrep.2017.09.018] [PMID: 28978469]
[http://dx.doi.org/10.1016/j.celrep.2017.09.018] [PMID: 28978469]
[124]
Wondimu A, Liu Y, Su Y, et al. Gangliosides drive the tumor infiltration and function of myeloid-derived suppressor cells. Cancer Res 2014; 74(19): 5449-57.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-0927] [PMID: 25115301]
[http://dx.doi.org/10.1158/0008-5472.CAN-14-0927] [PMID: 25115301]
[125]
Shao L, Zhang B, Wang L, Wu L, Kan Q, Fan K. MMP-9-cleaved osteopontin isoform mediates tumor immune escape by inducing expansion of myeloid-derived suppressor cells. Biochem Biophys Res Commun 2017; 493(4): 1478-84.
[http://dx.doi.org/10.1016/j.bbrc.2017.10.009] [PMID: 28986261]
[http://dx.doi.org/10.1016/j.bbrc.2017.10.009] [PMID: 28986261]
[126]
Lee SE, Lim JY, Kim TW, et al. Matrix Metalloproteinase-9 in Monocytic Myeloid-Derived Suppressor Cells correlate with early infections and clinical outcomes in allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 2018; 24(1): 32-42.
[http://dx.doi.org/10.1016/j.bbmt.2017.08.017]
[http://dx.doi.org/10.1016/j.bbmt.2017.08.017]
[127]
Kusmartsev S, Nefedova Y, Yoder D, Gabrilovich DI. Antigen-specific inhibition of CD8+ T cell response by immature myeloid cells in cancer is mediated by reactive oxygen species. J Immunol 2004; 172(2): 989. 9.
[128]
Schmielau J, Finn OJ. Activated granulocytes and granulocyte-derived hydrogen peroxide are the underlying mechanism of suppression of t-cell function in advanced cancer patients. Cancer Res 2001; 61(12): 4756-60.
[PMID: 11406548]
[PMID: 11406548]
[129]
Mantovani G, Macciò A, Madeddu C, et al. Antioxidant agents are effective in inducing lymphocyte progression through cell cycle in advanced cancer patients: Assessment of the most important laboratory indexes of cachexia and oxidative stress. J Mol Med (Berl) 2003; 81(10): 664-73.
[http://dx.doi.org/10.1007/s00109-003-0476-1] [PMID: 12928788]
[http://dx.doi.org/10.1007/s00109-003-0476-1] [PMID: 12928788]
[130]
Wortel CM, Heidt S. Regulatory B cells: Phenotype, function and role in transplantation. Transpl Immunol 2017; 41: 1-9.
[http://dx.doi.org/10.1016/j.trim.2017.02.004] [PMID: 28257995]
[http://dx.doi.org/10.1016/j.trim.2017.02.004] [PMID: 28257995]
[131]
Park MJ, Lee SH, Kim EK, et al. Interleukin-10 produced by myeloid-derived suppressor cells is critical for the induction of Tregs and attenuation of rheumatoid inflammation in mice. Sci Rep 2018; 8(1): 3753.
[http://dx.doi.org/10.1038/s41598-018-21856-2] [PMID: 29491381]
[http://dx.doi.org/10.1038/s41598-018-21856-2] [PMID: 29491381]
[132]
Nakamura T, Ushigome H. Myeloid-Derived Suppressor cells as a regulator of immunity in organ transplantation. Int J Mol Sci 2018; 19(8)E2357
[http://dx.doi.org/10.3390/ijms19082357] [PMID: 30103447]
[http://dx.doi.org/10.3390/ijms19082357] [PMID: 30103447]
[133]
Zhang C, Wang S, Yang C, Rong R. The Crosstalk between Myeloid Derived Suppressor Cells and immune cells: To establish immune tolerance in transplantation. J Immunol Res 2016; 20164986797
[http://dx.doi.org/10.1155/2016/4986797] [PMID: 27868073]
[http://dx.doi.org/10.1155/2016/4986797] [PMID: 27868073]
[134]
Heim CE, Vidlak D, Scherr TD, et al. Myeloid-derived suppressor cells contribute to Staphylococcus aureus orthopedic biofilm infection. J Immunol 2014; 192(8): 3778-92.
[http://dx.doi.org/10.4049/jimmunol.1303408]
[http://dx.doi.org/10.4049/jimmunol.1303408]
[135]
Ostrand-Rosenberg S, Sinha P, Beury DW, Clements VK. Cross-talk between myeloid-derived suppressor cells (MDSC), macrophages, and dendritic cells enhances tumor-induced immune suppression. Semin Cancer Biol 2012; 22(4): 275-81.
[http://dx.doi.org/10.1016/j.semcancer.2012.01.011] [PMID: 22313874]
[http://dx.doi.org/10.1016/j.semcancer.2012.01.011] [PMID: 22313874]
[136]
Vaknin I, Blinder L, Wang L, et al. A common pathway mediated through Toll-like receptors leads to T- and natural killer-cell immunosuppression. Blood 2008; 111(3): 1437-47.
[http://dx.doi.org/10.1182/blood-2007-07-100404] [PMID: 17991807]
[http://dx.doi.org/10.1182/blood-2007-07-100404] [PMID: 17991807]
[137]
Liu J, Wang H, Yu Q, et al. Aberrant frequency of IL-10-producing B cells and its association with Treg and MDSC cells in non small cell lung carcinoma patients. Hum Immunol 2016; 77(1): 84-9.
[http://dx.doi.org/10.1016/j.humimm.2015.10.015] [PMID: 26527508]
[http://dx.doi.org/10.1016/j.humimm.2015.10.015] [PMID: 26527508]