[1]
Thygesen, K.; Alpert, J.S.; Jaffe, A.S.; Simoons, M.L.; Chaitman, B.R.; White, H.D.; Katus, H.A.; Apple, F.S.; Lindahl, B.; Morrow, D.A.; Chaitman, B.A.; Clemmensen, P.M.; Johanson, P.; Hod, H.; Underwood, R.; Bax, J.J.; Bonow, R.O.; Pinto, F.; Gibbons, R.J.; Fox, K.A.; Atar, D.; Newby, L.K.; Galvani, M.; Hamm, C.W.; Uretsky, B.F.; Steg, P.G.; Wijns, W.; Bassand, J.P.; Menasché, P.; Ravkilde, J.; Ohman, E.M.; Antman, E.M.; Wallentin, L.C.; Armstrong, P.W.; Simoons, M.L.; Januzzi, J.L.; Nieminen, M.S.; Gheorghiade, M.; Filippatos, G.; Luepker, R.V.; Fortmann, S.P.; Rosamond, W.D.; Levy, D.; Wood, D.; Smith, S.C.; Hu, D.; Lopez-Sendon, J.L.; Robertson, R.M.; Weaver, D.; Tendera, M.; Bove, A.A.; Parkhomenko, A.N.; Vasilieva, E.J.; Mendis, S. Third universal definition of myocardial infarction. Eur. Heart J., 2012, 33(20), 2551-2567.
[3]
Sanchis-Gomar, F.; Perez-Quilis, C.; Leischik, R.; Lucia, A. Epidemiology of coronary heart disease and acute coronary syndrome. Ann. Transl. Med., 2016, 4(13), 256-256.
[6]
Finegold, J.A.; Asaria, P.; Francis, D.P. Mortality from ischaemic heart disease by country, region, and age: statistics from World Health Organisation and United Nations. Int. J. Cardiol., 2013, 168(2), 934-945.
[7]
Roth, G.A.; Huffman, M.D.; Moran, A.E.; Feigin, V.; Mensah, G.A.; Naghavi, M.; Murray, C.J.L. Global and regional patterns in cardiovascular mortality from 1990 to 2013. Circulation, 2015, 132(17), 1667-1678.
[8]
Roth, G.A.; Johnson, C.; Abajobir, A.; Abd-Allah, F.; Abera, S.F.; Abyu, G.; Ahmed, M.; Aksut, B.; Alam, T.; Alam, K. Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015. J. Am. Coll. Cardiol., 2017, 70(1), 1-25.
[9]
World Health Organization. Non-communicable Diseases in the South-East Asia Region: Situation and Response. WHO Regional
Office for South-East Asia, 2011.
[12]
Haber, E.P.; Procópio, J.; Carvalho, C.R.O.; Carpinelli, A.R.; Newsholme, P.; Curi, R. New insights into fatty acid modulation of pancreatic β-cell function. Int. Rev. Cytol., 2006, 248, 1-41.
[13]
DeSantis, D.A.; Ko, C.; Liu, Y.; Liu, X.; Hise, A.G.; Nunez, G.; Croniger, C.M. Alcohol-induced liver injury is modulated by Nlrp3 and Nlrc4 inflammasomes in mice. Mediators Inflamm., 2013, 2013751374
[14]
Livero, F.A.; Acco, A. Molecular basis of alcoholic fatty liver disease: from incidence to treatment. Hepatol. Res., 2016, 46(1), 111-123.
[15]
Song, X.; Qian, X.; Shen, M.; Jiang, R.; Wagner, M.B.; Ding, G.; Chen, G.; Shen, B. Protein kinase C promotes cardiac fibrosis and heart failure by modulating galectin-3 expression. Biochim. Biophys. Acta Mol. Cell Res., 2015, 1853(2), 513-521.
[16]
Touyz, R.M.; Fareh, J.; Thibault, G.; Schiffrin, E.L. Intracellular Ca2+ modulation by angiotensin II and endothelin-1 in cardiomyocytes and fibroblasts from hypertrophied hearts of spontaneously hypertensive rats. Hypertens., 1996, 28(5), 797-805.
[18]
Lopaschuk, G.D.; Ussher, J.R. Evolving concepts of myocardial energy metabolism. Circ. Res., 2016, 119(11), 1173-1176.
[19]
Fillmore, N.; Mori, J.; Lopaschuk, G.D. Mitochondrial fatty acid oxidation alterations in heart failure, ischaemic heart disease and diabetic cardiomyopathy. Br. J. Pharmacol., 2014, 171(8), 2080-2090.
[20]
Mashek, D.G.; Li, L.O.; Coleman, R.A. Long-chain acyl-Coa synthetases and fatty acid channeling. Future Lipidol., 2007, 2(4), 465-476.
[21]
Rufer, A.C.; Thoma, R.; Benz, J.; Stihle, M.; Gsell, B.; De Roo, E.; Banner, D.W.; Mueller, F.; Chomienne, O.; Hennig, M. The crystal structure of carnitine palmitoyltransferase 2 and implications for diabetes treatment. Structure, 2006, 14(4), 713-723.
[22]
Nsiah-Sefaa, A.; McKenzie, M. Combined defects in oxidative phosphorylation and fatty acid β-oxidation in mitochondrial disease. Biosci. Rep., 2016, 36(2)e00313
[23]
Doenst, T.; Nguyen, T.D.; Abel, E.D. Cardiac metabolism in heart failure: implications beyond ATP production. Circ. Res., 2013, 113(6), 709-724.
[24]
Shao, D.; Tian, R. Glucose transporters in cardiac metabolism and hypertrophy. Compr. Physiol., 2016, 6(1), 331-351.
[25]
Patel, K.P.; O’Brien, T.W.; Subramony, S.H.; Shuster, J.; Stacpoole, P.W. The spectrum of pyruvate dehydrogenase complex deficiency: Clinical, biochemical and genetic features in 371 patients. Mol. Genet. Metab., 2012, 106(3), 385-394.
[26]
Depre, C.; Vanoverschelde, J.L.; Taegtmeyer, H. Glucose for the heart. Circulation, 1999, 99(4), 578-588.
[27]
Rodwell, V.W.; Botham, K.M.; Kennelly, P.J.; Weil, P.A.; Bender, D.A. Harper’s Illustrated Biochemistry, 30th ed; McGraw-Hill Education LLC: New York, 2015.
[28]
Mailloux, R.J. Teaching the fundamentals of electron transfer reactions in mitochondria and the production and detection of reactive oxygen species. Redox Biol., 2015, 4, 381-398.
[29]
Chapman, A.R.; Adamson, P.D.; Mills, N.L. Assessment and classification of patients with myocardial injury and infarction in clinical practice. Heart, 2017, 103(1), 10-18.
[30]
Whitmer, J.T.; Idell-Wenger, J.A.; Rovetto, M.J.; Neely, J.R. Control of fatty acid metabolism in ischemic and hypoxic hearts. J. Biol. Chem., 1978, 253(12), 4305-4309.
[31]
Stanley, W.C. Myocardial energy metabolism during ischemia and the mechanisms of metabolic therapies. J. Cardiovasc. Pharmacol. Ther., 2004, 9(Suppl. 1), S31-S45.
[32]
Mitra, A.; Basak, T.; Ahmad, S.; Datta, K.; Datta, R.; Sengupta, S.; Sarkar, S. Comparative proteome profiling during cardiac hypertrophy and myocardial infarction reveals altered glucose oxidation by differential activation of pyruvate dehydrogenase E1 component subunit β. J. Mol. Biol., 2015, 427(11), 2104-2120.
[33]
Vermeulen, R.P.; Hoekstra, M.; Nijsten, M.W.; van der Horst, I.C.; van Pelt, L.J.; Jessurun, G.A.; Jaarsma, T.; Zijlstra, F.; van den Heuvel, A.F. Clinical correlates of arterial lactate levels in patients with ST-segment elevation myocardial infarction at admission: A descriptive study. Crit. Care, 2010, 14, R164.
[34]
Gandhi, A.A.; Akholkar, P.J. Metabolic acidosis in acute myocardial infarction. Int. J. Adv. Med., 2015, 2(3), 260-263.
[36]
Kalogeris, T.; Baines, C.P.; Krenz, M.; Korthuis, R.J. Cell biology of ischemia/reperfusion injury. Int. Rev. Cell Mol. Biol., 2012, 298, 229-317.
[37]
Bell, J.R.; Vila-Petroff, M.; Delbridge, L.M.D. CaMKII-dependent responses to ischemia and reperfusion challenges in the heart. Front. Pharmacol., 2014, 5, 96.
[38]
Pinnell, J.; Turner, S.; Howell, S. Cardiac muscle physiology. Contin. Educ. Anaesth. Crit. Care Pain, 2007, 7(3), 85-88.
[39]
Sanada, S.; Komuro, I.; Kitakaze, M. Pathophysiology of myocardial reperfusion injury: preconditioning, postconditioning, and translational aspects of protective measures. AJP Hear. Circ. Physiol., 2011, 301(5), H1723-H1741.
[40]
Ibáñez, B.; Heusch, G.; Ovize, M.; Van de Werf, F. Evolving therapies for myocardial ischemia/reperfusion injury. J. Am. Coll. Cardiol., 2015, 65(14), 1454-1471.
[41]
Wei, B.; You, M.G.; Ling, J.J.; Wei, L.L.; Wang, K.; Li, W.W.; Chen, T.; Du, Q.M.; Ji, H. Regulation of antioxidant system, lipids and fatty acid β-oxidation contributes to the cardioprotective effect of sodium tanshinone IIA sulphonate in isoproterenol-induced myocardial infarction in rats. Atherosclerosis, 2013, 230(1), 148-156.
[42]
Snyder, C.M.; Chandel, N.S. Mitochondrial regulation of cell survival and death during low-oxygen conditions. Antioxid. Redox Signal., 2009, 11(11), 2673-2683.
[43]
Semenza, G.L. Hypoxia-inducible factor 1 (HIF-1) pathway. Sci. STKE, 2007, 2007(407), cm8-cm8.
[44]
Dengler, V.L.; Galbraith, M.; Espinosa, J.M. Transcriptional regulation by hypoxia inducible factors. Crit. Rev. Biochem. Mol. Biol., 2014, 49(1), 1-15.
[45]
Jiang, B.; Dong, H.; Zhang, Z.; Wang, W.; Zhang, Y.; Xu, X. Hypoxic response elements control expression of human vascular endothelial growth factor (165) genes transferred to ischemia myocardium in vivo and in vitro. J. Gene Med., 2007, 9(9), 788-796.
[46]
Ruas, J.L.; Berchner-Pfannschmidt, U.; Malik, S.; Gradin, K.; Fandrey, J.; Roeder, R.G.; Pereira, T.; Poellinger, L. Complex regulation of the transactivation function of hypoxia-inducible factor-1 alpha by direct interaction with two distinct domains of the CREB-binding protein/P300. J. Biol. Chem., 2010, 285(4), 2601-2609.
[47]
Sharp, F.R.; Bernaudin, M. HIF-1 and oxygen sensing in the brain. Nat. Rev. Neurosci., 2004, 5(6), 437-448.
[48]
Krishnan, J.; Suter, M.; Windak, R.; Krebs, T.; Felley, A.; Montessuit, C.; Tokarska-Schlattner, M.; Aasum, E.; Bogdanova, A.; Perriard, E. Activation of a HIF-1α-PPARγ axis underlies the integration of glycolytic and lipid anabolic pathways in pathologic cardiac hypertrophy. Cell Metab., 2009, 9(6), 512-524.
[49]
Masson, N.; Singleton, R.S.; Sekirnik, R.; Trudgian, D.C.; Ambrose, L.J.; Miranda, M.X.; Tian, Y-M.; Kessler, B.M.; Schofield, C.J.; Ratcliffe, P.J. The FIH hydroxylase is a cellular peroxide sensor that modulates HIF transcriptional activity. EMBO Rep., 2012, 13(3), 251-257.
[50]
Huang, M.; Nguyen, P.; Jia, F.; Hu, S.; Gong, Y.; De Almeida, P.E.; Wang, L.; Nag, D.; Kay, M.A.; Giaccia, A.J.; Robbins, R.C.; Wu, J.C. Double knockdown of prolyl hydroxylase and factor-inhibiting hypoxia-inducible factor with nonviral minicircle gene therapy enhances stem cell mobilization and angiogenesis after myocardial infarction. Circulation, 2011, 124(11)(Suppl. 1), S46-S54.
[51]
Lee, S.H.; Wolf, P.L.; Escudero, R.; Deutsch, R.; Jamieson, S.W.; Thistlethwaite, P.A. Early expression of angiogenesis factors in acute myocardial ischemia and infarction. N. Engl. J. Med., 2000, 342(9), 626-633.
[52]
Hyvärinen, J.; Hassinen, I.E.; Sormunen, R.; Mäki, J.M.; Kivirikko, K.I.; Koivunen, P.; Myllyharju, J. Hearts of hypoxia-inducible factor prolyl 4-hydroxylase-2 hypomorphic mice show protection against acute ischemia-reperfusion injury. J. Biol. Chem., 2010, 285(18), 13646-13657.
[53]
Miró-Murillo, M.; Elorza, A.; Soro-Arnáiz, I.; Albacete-Albacete, L.; Ordoñez, A.; Balsa, E.; Vara-Vega, A.; Vázquez, S.; Fuertes, E.; Fernández-Criado, C.; Landázuri, M.O.; Aragonés, J. Acute Vhl gene inactivation induces cardiac HIF-dependent erythropoietin gene expression. PLoS One, 2011, 6(7)e22589
[54]
Kussmaul, L.; Hirst, J. The mechanism of superoxide production by NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria. Proc. Natl. Acad. Sci. USA, 2006, 103(20), 7607-7612.
[55]
Heather, L.C.; Carr, C.A.; Stuckey, D.J.; Pope, S.; Morten, K.J.; Carter, E.E.; Edwards, L.M.; Clarke, K. Critical role of complex III in the early metabolic changes following myocardial infarction. Cardiovasc. Res., 2010, 85(1), 127-136.
[56]
Paradies, G.; Petrosillo, G.; Pistolese, M.; Di Venosa, N.; Federici, A.; Ruggiero, F.M. Decrease in mitochondrial complex I activity in ischemic/reperfused rat heart. Circ. Res., 2004, 94(1), 53-59.
[57]
Murphy, M.P. How mitochondria produce reactive oxygen species. Biochem. J., 2009, 417(1), 1-13.
[58]
Meitzler, J.L.; Antony, S.; Wu, Y.; Juhasz, A.; Liu, H.; Jiang, G.; Lu, J.; Roy, K.; Doroshow, J.H. NADPH oxidases: A perspective on reactive oxygen species production in tumor biology. Antioxid. Redox Signal., 2014, 20(17), 2873-2889.
[59]
Lassègue, B.; San Martín, A.; Griendling, K.K. Biochemistry, physiology and pathophysiology of NADPH oxidases in the cardiovascular system. Circ. Res., 2012, 110(10), 1364-1390.
[60]
Braunersreuther, V.; Montecucco, F.; Asrih, M.; Pelli, G.; Galan, K.; Frias, M.; Burger, F.; Quindere, A.L.G.; Montessuit, C.; Krause, K-H.; Mach, F.; Jaquet, V. Role of NADPH oxidase isoforms NOX1, NOX2 and NOX4 in myocardial ischemia/reperfusion injury. J. Mol. Cell. Cardiol., 2013, 64, 99-107.
[61]
Kuroda, J.; Ago, T.; Matsushima, S.; Zhai, P.; Schneider, M.D.; Sadoshima, J. NADPH oxidase 4 (Nox4) is a major source of oxidative stress in the failing heart. Proc. Natl. Acad. Sci. USA, 2010, 107(35), 1-6.
[62]
Tziomalos, K.; Hare, J.M. Role of xanthine oxidoreductase in cardiac nitroso-redox imbalance. Front. Biosci., 2009, 14, 237-262.
[63]
Pandey, N.R.; Kaur, G.; Chandra, M.; Sanwal, G.G.; Misra, M.K. Enzymatic oxidant and antioxidants of human blood platelets in unstable angina and myocardial infarction. Int. J. Cardiol., 2000, 76, 33-38.
[64]
Chambers, D.E.; Parks, D.A.; Patterson, G.; Roy, R.; McCord, J.M.; Yoshida, S.; Parmley, L.F.; Downey, J.M. Xanthine oxidase as a source of free radical damage in myocardial ischemia. J. Mol. Cell. Cardiol., 1985, 17(2), 145-152.
[65]
Shintani, H. Determination of xanthine oxidase. Pharm. Anal. Acta, 2013, S7, 004.
[66]
Raghuvanshi, R.; Kaul, A.; Bhakuni, P.; Mishra, A.; Misra, M.K. Xanthine oxidase as a marker of myocardial infarction. Indian J. Clin. Biochem., 2007, 22(2), 90-92.
[67]
Singh, J.A.; Yu, S. Allopurinol reduces the risk of myocardial infarction (MI) in the elderly: A study of Medicare claims. Arthritis Res. Ther., 2016, 18, 209.
[68]
Strijdom, H.; Chamane, N.; Lochner, A. Nitric oxide in the cardiovascular system: A simple molecule with complex actions. Cardiovasc. J. Afr., 2009, 20(5), 303-310.
[69]
Janssens, S.; Pokreisz, P.; Schoonjans, L.; Pellens, M.; Vermeersch, P.; Tjwa, M.; Jans, P.; Scherrer-Crosbie, M.; Picard, M.H.; Szelid, Z.; Gillijns, H.; Van de Werf, F.; Collen, D.; Bloch, K.D. Cardiomyocyte-specific overexpression of nitric oxide synthase 3 improves left ventricular performance and reduces compensatory hypertrophy after myocardial infarction. Circ. Res., 2004, 94(9), 1256-1262.
[70]
Grandi, E.; Govoni, M.; Furini, S.; Severi, S.; Giordano, E.; Santoro, A.; Cavalcanti, S. Induction of NO synthase 2 in ventricular cardiomyocytes incubated with a conventional bicarbonate dialysis bath. Nephrol. Dial. Transplant., 2008, 23(7), 2192-2197.
[71]
Beigi, F.; Oskouei, B.N.; Zheng, M.; Cooke, C.A.; Lamirault, G.; Hare, J.M. Cardiac nitric oxide synthase-1 localization within the cardiomyocyte is accompanied by the adaptor protein, CAPON. Nitric Oxide, 2009, 21(3-4), 226-233.
[72]
Crane, B.R.; Arvai, A.S.; Ghosh, D.K.; Wu, C.; Getzoff, E.D.; Stuehr, D.J.; Tainer, J.A. Structure of nitric oxide synthase oxygenase dimer with pterin and substrate. Science, 1998, 279(5359), 2121-2126.
[73]
Ash, D.E. Structure and function of arginases. J. Nutr., 2004, 134(10), 2760S-2764S.
[74]
Harpster, M.H.; Bandyopadhyay, S.; Thomas, D.P.; Ivanov, P.S.; Keele, J.A.; Pineguina, N.; Gao, B.; Amarendran, V.; Gomelsky, M.; McCormick, R.J.; Stayton, M.M. Earliest changes in the left ventricular transcriptome postmyocardial infarction. Mamm. Genome, 2006, 17(7), 701-715.
[75]
Sankaralingam, S.; Arenas, I.A.; Lalu, M.M.; Davidge, S.T. Preeclampsia: current understanding of the molecular basis of vascular dysfunction. Expert Rev. Mol. Med., 2006, 8(3), 1-20.
[76]
Grönros, J.; Kiss, A.; Palmer, M.; Jung, C.; Berkowitz, D.; Pernow, J. Arginase inhibition improves coronary microvascular function and reduces infarct size following ischaemia-reperfusion in a rat model. Acta Physiol. , 2013, 208(2), 172-179.
[77]
Piñeiro, V.; Ortiz-Moreno, A.; Mora-Escobedo, R.; Hernandez-Navarro, M.D.; Ceballos-Reyes, G.; Chamorro-Cevallos, G. Effect of L-arginine oral supplementation on response to myocardial infarction in hypercholesterolemic and hypertensive rats. Plant Foods Hum. Nutr., 2010, 65, 31-37.
[78]
Kobayashi, A.; Kang, M-I.; Okawa, H.; Ohtsuji, M.; Zenke, Y.; Chiba, T.; Igarashi, K.; Yamamoto, M. Oxidative stress sensor keap1 functions as an adaptor for cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Mol. Cell. Biol., 2004, 24(16), 7130-7139.
[79]
Nioi, P.; McMahon, M.; Itoh, K.; Yamamoto, M.; Hayes, J.D. Identification of a novel Nrf2-regulated antioxidant response element (ARE) in the mouse NAD(P)H: Quinone oxidoreductase 1 gene: Reassessment of the ARE consensus sequence. Biochem. J., 2003, 374(Pt 2), 337-348.
[80]
Gorrini, C.; Harris, I.S.; Mak, T.W. Modulation of oxidative stress as an anticancer strategy. Nat. Rev. Drug Discov., 2013, 12(12), 931-947.
[81]
Ma, Q. Role of Nrf2 in oxidative stress and toxicity. Annu. Rev. Pharmacol. Toxicol., 2013, 53, 401-426.
[82]
Fourquet, S.; Guerois, R.; Biard, D.; Toledano, M.B. Activation of NRF2 by nitrosative agents and H2O2 involves KEAP1 disulfide formation. J. Biol. Chem., 2010, 285(11), 8463-8471.
[83]
Rachakonda, G.; Xiong, Y.; Sekhar, K.R.; Stamer, S.L.; Liebler, D.C.; Freeman, M.L. Covalent modification at cys151 dissociates the electrophile sensor keap1 from the ubiquitin ligase CUL3. Chem. Res. Toxicol., 2008, 21(3), 705-710.
[84]
Li, H.; Xie, Y-H.; Yang, Q.; Wang, S-W.; Zhang, B-L.; Wang, J-B.; Cao, W.; Bi, L-L.; Sun, J-Y.; Miao, S.; Hu, J.; Zhou, X.X.; Qiu, P.C. Cardioprotective effect of paeonol and danshensu combination on isoproterenol-induced myocardial injury in rats. PLoS One, 2012, 7(11)e48872
[85]
Strom, J.; Chen, Q.M. Loss of Nrf2 promotes rapid progression to heart failure following myocardial infarction. Toxicol. Appl. Pharmacol., 2017, 327, 52-58.
[86]
Xu, B.; Zhang, J.; Strom, J.; Lee, S.; Chen, Q.M. Myocardial ischemic reperfusion induces de novo Nrf2 protein translation. Biochim. Biophys. Acta, 2014, 1842(9), 1638-1647.
[87]
Tong, X.; Yin, L.; Washington, R.; Rosenberg, D.W.; Giardina, C. The p50-p50 NF-κB complex as a stimulus-specific repressor of gene activation. Mol. Cell. Biochem., 2004, 265(1-2), 171-183.
[88]
Zeng, M.; Yan, H.; Chen, Y.; Zhao, H.; Lv, Y.; Liu, C.; Zhou, P.; Zhao, B. Suppression of NF-κB reduces myocardial no-reflow. PLoS One, 2012, 7(10)e47306
[89]
Oeckinghaus, A.; Ghosh, S. The NF-κB family of transcription factors and its regulation. Cold Spring Harb. Perspect. Biol., 2009, 1(4)a000034
[90]
Maier, H.J.; Schips, T.G.; Wietelmann, A.; Krüger, M.; Brunner, C.; Sauter, M.; Klingel, K.; Böttger, T.; Braun, T.; Wirth, T. Cardiomyocyte-specific IκB kinase (IKK)/NF-κB activation induces reversible inflammatory cardiomyopathy and heart failure. Proc. Natl. Acad. Sci. USA, 2012, 109(29), 11794-11799.
[91]
Zambon, A.; Gervois, P.; Pauletto, P.; Fruchart, J-C.; Staels, B. Modulation of hepatic inflammatory risk markers of cardiovascular diseases by PPAR-α activators. Arterioscler. Thromb. Vasc. Biol., 2006, 26(5), 977-986.
[92]
Pahl, H.L. Activators and target genes of Rel/NF-κB transcription factors. Oncogene, 1999, 18(49), 6853-6866.
[93]
Ruparelia, N.; Digby, J.E.; Jefferson, A.; Medway, D.J.; Neubauer, S.; Lygate, C.A.; Choudhury, R.P. Myocardial infarction causes inflammation and leukocyte recruitment at remote sites in the myocardium and in the renal glomerulus. Inflamm. Res., 2013, 62(5), 515-525.
[94]
Kamata, H.; Manabe, T.; Oka, S.; Kamata, K.; Hirata, H. Hydrogen peroxide activates IκB kinases through phosphorylation of serine residues in the activation loops. FEBS Lett., 2002, 519(1-3), 231-237.
[95]
Defer, N.; Azroyan, A.; Pecker, F.; Pavoine, C. TNFR1 and TNFR2 signaling interplay in cardiac myocytes. J. Biol. Chem., 2007, 282(49), 35564-35573.
[96]
Devin, A.; Cook, A.; Lin, Y.; Rodriguez, Y.; Kelliher, M.; Liu, Z. The distinct roles of TRAF2 and RIP in IKK activation by TNF-R1: TRAF2 recruits IKK to TNF-R1 while RIP mediates IKK activation. Immunity, 2000, 12(4), 419-429.
[97]
Zhang, L.; Blackwell, K.; Altaeva, A.; Shi, Z.; Habelhah, H. TRAF2 phosphorylation promotes NF-κB-dependent gene expression and inhibits oxidative stress-induced cell death. Mol. Biol. Cell, 2011, 22, 128-140.
[98]
Bhatia, M. Apoptosis versus necrosis in acute pancreatitis. Am. J. Physiol. Gastrointest. Liver Physiol., 2004, 286(2), G189-G196.
[99]
Hotchkiss, R.S.; Strasser, A.; McDunn, J.E.; Swanson, P.E. Cell death. N. Engl. J. Med., 2009, 361(16), 1570-1583.
[100]
Casey, T.M.; Arthur, P.G.; Bogoyevitch, M.A. Necrotic death without mitochondrial dysfunction-delayed death of cardiac myocytes following oxidative stress. Biochim. Biophys. Acta Mol. Cell Res., 2007, 1773(3), 342-351.
[101]
Krautwald, S.; Ziegler, E.; Rölver, L.; Linkermann, A.; Keyser, K.A.; Steen, P.; Wollert, K.C.; Korf-Klingebiel, M.; Kunzendorf, U. Effective blockage of both the extrinsic and intrinsic pathways of apoptosis in mice by TAT-CrmA. J. Biol. Chem., 2010, 285(26), 19997-20005.
[102]
Elmore, S. Apoptosis: A review of programmed cell death. Toxicol. Pathol., 2007, 35(4), 495-516.
[103]
Boatright, K.M.; Salvesen, G.S. Mechanisms of caspase activation. Curr. Opin. Cell Biol., 2003, 15(6), 725-731.
[104]
Borutaite, V.; Budriunaite, A.; Morkuniene, R.; Brown, G.C. Release of mitochondrial cytochrome c and activation of cytosolic caspases induced by myocardial ischaemia. Biochim. Biophys. Acta Mol. Basis Dis., 2001, 1537(2), 101-109.
[105]
Todor, A.; Sharov, V.G.; Tanhehco, E.J.; Silverman, N.; Bernabei, A.; Sabbah, H.N. Hypoxia-induced cleavage of caspase-3 and DFF45/ICAD in human failed cardiomyocytes. Am. J. Physiol. Heart Circ. Physiol., 2002, 283(3), H990-H995.
[106]
Lakhani, S.A.; Masud, A.; Kuida, K.; Porter, G.A.; Booth, C.J.; Mehal, W.Z.; Inayat, I.; Flavell, R.A. Caspases 3 and 7: Key mediators of mitochondrial events of apoptosis. Science, 2006, 311(5762), 847-851.
[107]
Dumont, E.A.; Reutelingsperger, C.P.M.; Smits, J.F.M.; Daemen, M.J.A.P.; Doevendans, P.A.F.; Wellens, H.J.J.; Hofstra, L. Real-time imaging of apoptotic cell-membrane changes at the single-cell level in the beating murine heart. Nat. Med., 2001, 7(12), 1352-1355.
[108]
Niu, X.; Brahmbhatt, H.; Mergenthaler, P.; Zhang, Z.; Sang, J.; Daude, M.; Ehlert, F.G.R.; Diederich, W.E.; Wong, E.; Zhu, W.; Pogmore, J.; Nandy, J.P.; Satyanarayana, M.; Jimmidi, R.K.; Arya, P.; Leber, B.; Lin, J.; Culmsee, C.; Yi, J.; Andrews, D.W. A Small-molecule inhibitor of Bax and Bak oligomerization prevents genotoxic cell death and promotes neuroprotection. Cell Chem. Biol., 2017, 24(4), 493-506.e5.
[109]
Li, H.; Zhu, H.; Xu, C.; Yuan, J. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell, 1998, 94(4), 491-501.
[110]
Haudek, S.B.; Taffet, G.E.; Schneider, M.D.; Mann, D.L. TNF provokes cardiomyocyte apoptosis and cardiac remodeling through activation of multiple cell death pathways. J. Clin. Invest., 2007, 117(9), 2692-2701.
[111]
Fauconnier, J.; Meli, A.C.; Thireau, J.; Roberge, S.; Shan, J.; Sassi, Y.; Reiken, S.R.; Rauzier, J-M.; Marchand, A.; Chauvier, D.; Cassan, C.; Crozier, C.; Bideaux, P.; Lompré, A.M.; Jacotot, E.; Marks, A.R.; Lacampagne, A. Ryanodine receptor leak mediated by caspase-8 activation leads to left ventricular injury after myocardial ischemia-reperfusion. Proc. Natl. Acad. Sci. USA, 2011, 108(32), 13258-13263.
[112]
Sharma, G.P.; Varley, K.G.; Kim, S.W.; Barwinsky, J.; Cohen, M.; Dhalla, N.S. Alterations in energy metabolism and ultrastructure upon reperfusion of the ischemic myocardium after coronary occlusion. Am. J. Cardiol., 1975, 36(2), 234-243.
[113]
Schmiedl, A.; Schnabel, P.A.; Mall, G.; Gebhard, M.M.; Hunneman, D.H.; Richter, J.; Bretschneider, H.J. The surface to volume ratio of mitochondria, a suitable parameter for evaluating mitochondrial swelling. Correlations during the course of myocardial global ischaemia. Virchows Arch. A Pathol. Anat. Histopathol., 1990, 416(4), 305-315.
[114]
Yanagiya, N.; Usuda, N.; Hayashi, K.; Nagata, T. Ultrastructural changes in myocardial and endothelial cells in the microvasculature of the rat heart after global ischemia. Med. Electron Microsc., 1994, 27(2), 73-79.
[115]
Filho, H.G.L.; Ferreira, N.L.; de Sousa, R.B.; de Carvalho, E.R.; Lobo, P.L.D.; Filho, J.G.L. Experimental model of myocardial infarction induced by isoproterenol in rats. Rev. Bras. Cir. Cardiovasc., 2011, 26(3), 469-476.
[117]
Peh, H.Y.; Tan, W.S.D.; Liao, W.; Wong, W.S.F. Vitamin E therapy beyond cancer: Tocopherol versus tocotrienol. Pharmacol. Ther., 2016, 162, 152-169.
[118]
Ahsan, H.; Ahad, A.; Siddiqui, W.A. A review of characterization of tocotrienols from plant oils and foods. J. Chem. Biol., 2015, 8(2), 45-59.
[119]
Yamamoto, Y.; Fujisawa, A.; Hara, A.; Dunlap, W.C. An unusual vitamin E constituent (α-tocomonoenol) provides enhanced antioxidant protection in marine organisms adapted to cold-water environments. Proc. Natl. Acad. Sci. USA, 2001, 98(23), 13144-13148.
[120]
Ng, M.H.; Choo, Y.M.; Ma, A.N.; Chuah, C.H.; Hashim, M.A. Separation of vitamin E (tocopherol, tocotrienol, and tocomonoenol) in palm oil. Lipids, 2004, 39(10), 1031-1035.
[121]
Aggarwal, B.B.; Sundaram, C.; Prasad, S.; Kannappan, R. Tocotrienols, the vitamin E of the 21st century: Its potential against cancer and other chronic diseases. Biochem. Pharmacol., 2010, 80(11), 1613-1631.
[122]
Saito, Y.; Yoshida, Y.; Nishio, K.; Hayakawa, M.; Niki, E. Characterization of cellular uptake and distribution of vitamin E. Ann. N. Y. Acad. Sci., 2004, 1031, 368-375.
[123]
Serbinova, E.; Kagan, V.; Han, D.; Packer, L. Free radical recycling and intramembrane mobility in the antioxidant properties of α-tocopherol and α-tocotrienol. Free Radic. Biol. Med., 1991, 10(5), 263-275.
[124]
Fairus, S.; Nor, R.M.; Cheng, H.M.; Sundram, K. Postprandial metabolic fate of tocotrienol-rich vitamin E differs significantly from that of α-tocopherol. Am. J. Clin. Nutr., 2006, 84(4), 835-842.
[125]
Borel, P.; Pasquier, B.; Armand, M.; Tyssandier, V.; Grolier, P.; Alexandre-Gouabau, M.C.; Andre, M.; Senft, M.; Peyrot, J.; Jaussan, V.; Lairon, D.; Azais-Braesco, V. Processing of vitamin A and E in the human gastrointestinal tract. Am. J. Physiol. Gastrointest. Liver Physiol., 2001, 280, G95-G103.
[126]
Schmölz, L.; Birringer, M.; Lorkowski, S.; Wallert, M. Complexity of vitamin E metabolism. World J. Biol. Chem., 2016, 7, 14-43.
[127]
Reboul, E.; Klein, A.; Bietrix, F.; Gleize, B.; Malezet-Desmoulins, C.; Schneider, M.; Margotat, A.; Lagrost, L.; Collet, X.; Borel, P. Scavenger receptor class B type I (SR-BI) is involved in vitamin E transport across the enterocyte. J. Biol. Chem., 2006, 281(8), 4739-4745.
[128]
Abuasal, B.S.; Qosa, H.; Sylvester, P.W.; Kaddoumi, A. Comparison of the intestinal absorption and bioavailability of gamma-tocotrienol and alpha-tocopherol: In vitro, in situ and in vivo studies. Biopharm. Drug Dispos., 2012, 33(5), 246-256.
[129]
Dixon, J.B. Mechanisms of chylomicron uptake into lacteals. Ann. N. Y. Acad. Sci., 2010, 1207(Suppl. 1), E52-E57.
[130]
Reboul, E.; Trompier, D.; Moussa, M.; Klein, A.; Landrier, J-F.; Chimini, G.; Borel, P. ATP-binding cassette transporter A1 is significantly involved in the intestinal absorption of alpha- and gamma-tocopherol but not in that of retinyl palmitate in mice. Am. J. Clin. Nutr., 2009, 89, 177-184.
[131]
Mallick, A.; Bodenham, A.R. Disorders of the lymph circulation: Their relevance to anaesthesia and intensive care. Br. J. Anaesth., 2003, 91(2), 265-272.
[132]
Herrera, E.; Barbas, C.; Vitamin, E. Action, metabolism and perspectives. J. Physiol. Biochem., 2001, 57, 43-56.
[133]
Harvey, R.A.; Ferrier, D.R. Lippincott’s Illustrated Reviews: Biochemistry, 5th ed; Lippincott Williams & Wilkins: Philadelphia, Pennsylvania, 2011.
[134]
Hosomi, A.; Arita, M.; Sato, Y.; Kiyose, C.; Ueda, T.; Igarashi, O.; Arai, H.; Inoue, K. Affinity for alpha-tocopherol transfer protein as a determinant of the biological activities of vitamin E analogs. FEBS Lett., 1997, 409, 105-108.
[135]
Kuhlenkamp, J.; Ronk, M.; Yusin, M.; Stolz, A.; Kaplowitz, N. Identification and purification of a human liver cytosolic tocopherol binding protein. Protein Expr. Purif., 1993, 4(5), 382-389.
[136]
Zimmer, S.; Stocker, A.; Sarbolouki, M.N.; Spycher, S.E.; Sassoon, J.; Azzi, A. A novel human tocopherol-associated protein: Cloning, in vitro expression, and characterization. J. Biol. Chem., 2000, 275(33), 25672-25680.
[137]
Mezzetti, A.; Zuliani, G.; Romano, F.; Costantini, F.; Pierdomenico, S.D.; Cuccurullo, F.; Fellin, R. Vitamin E and lipid peroxide plasma levels predict the risk of cardiovascular events in a group of healthy very old people. J. Am. Geriatr. Soc., 2001, 49(5), 533-537.
[138]
Costacou, T.; Zgibor, J.C.; Evans, R.W.; Tyurina, Y.Y.; Kagan, V.E.; Orchard, T.J. Antioxidants and coronary artery disease among individuals with type 1 diabetes: Findings from the Pittsburgh Epidemiology of Diabetes Complications Study. J. Diabetes Complications, 2006, 20(6), 387-394.
[139]
Loffredo, L.; Perri, L.; Di Castelnuovo, A.; Iacoviello, L.; De Gaetano, G.; Violi, F. Supplementation with vitamin E alone is associated with reduced myocardial infarction: A meta-analysis. Nutr. Metab. Cardiovasc. Dis., 2015, 25(4), 354-363.
[140]
Sethi, R.; Takeda, N.; Nagano, M.; Dhalla, N.S. Beneficial effects of vitamin E treatment in acute myocardial infarction. J. Cardiovasc. Pharmacol. Ther., 2000, 5, 51-58.
[141]
Saleh, N.K.; Saleh, H.A. Protective effects of vitamin E against myocardial ischemia/reperfusion injury in rats. Saudi Med. J., 2010, 31(2), 142-147.
[142]
Upaganlawar, A.; Gandhi, H.; Balaraman, R. Effect of vitamin E alone and in combination with lycopene on biochemical and histopathological alterations in isoproterenol-induced myocardial infarction in rats. J. Pharmacol. Pharmacother., 2010, 1, 24-31.
[143]
Ithayarasi, A.P.; Devi, C.S. Effect of alpha-tocopherol on lipid peroxidation in isoproterenol induced myocardial infarction in rats. Indian J. Physiol. Pharmacol., 1997, 41(4), 369-376.
[144]
Lúcio, M.; Nunes, C.; Gaspar, D.; Ferreira, H.; Lima, J.L.F.C.; Reis, S. Antioxidant activity of vitamin E and trolox: Understanding of the factors that govern lipid peroxidation studies in vitro. Food Biophys., 2009, 4(4), 312-320.
[145]
Packer, L.; Weber, S.U.; Rimbach, G. Molecular aspects of α-Tocotrienol antioxidant action and cell signalling. J. Nutr., 2001, 131(2), 369S-373S.
[146]
Scarpa, M.; Rigo, A.; Maiorino, M.; Ursini, F.; Gregolin, C. Formation of alpha-tocopherol radical and recycling of alpha-tocopherol by ascorbate during peroxidation of phosphatidylcholine liposomes. An electron paramagnetic resonance study. Biochim. Biophys. Acta, 1984, 801(2), 215-219.
[147]
Goh, S.H.; Hew, N.F.; Ong, A.S.H.; Choo, Y.M.; Brumby, S. Tocotrienols from palm oil: Electron spin resonance spectra of tocotrienoxyl radicals. J. Am. Oil Chem. Soc., 1990, 67(4), 250-254.
[148]
Bardhan, J.; Chatterjee, A.; Das, S.; Bandyopadhyay, S.K.; Chakraborty, R.; Raychaudhuri, U. Evaluation of cardioprotective effect of tocotrienol rich fraction from rice bran oil. Int. J. Pharm. Sci. Rev. Res., 2015, 30, 143-149.
[149]
Huwait, E.A.; Al-Ghamdi, M.A. Protective role of carnitine synergized with vitamin E against isoproterenol induced cardiac infarction in rats. Afr. J. Tradit. Complement. Altern. Med., 2017, 14(2), 25-32.
[150]
Wei, J.; Bhattacharyya, S.; Jain, M.; Varga, J. Regulation of matrix remodeling by peroxisome proliferator-activated receptor-gamma: A novel link between metabolism and fibrogenesis. Open Rheumatol. J., 2012, 6, 103-115.
[151]
Yoo, H.Y.; Chang, M.S.; Rho, H.M. Induction of the rat Cu/Zn superoxide dismutase gene through the peroxisome proliferator-responsive element by arachidonic acid. Gene, 1999, 234, 87-91.
[152]
Inoue, I.; Goto, S.; Matsunaga, T.; Nakajima, T.; Awata, T.; Hokari, S.; Komoda, T.; Katayama, S. The ligands/activators for peroxisome proliferator-activated receptor alpha (PPAR-α) and PPAR-γ increase Cu2+/Zn2+-superoxide dismutase and decrease p22phox message expressions in primary endothelial cells. Metabolism, 2001, 50, 3-11.
[153]
Girnun, G.D.; Domann, F.E.; Moore, S.A.; Robbins, M.E.C. Identification of a functional peroxisome proliferator-activated receptor response element in the rat catalase promoter. Mol. Endocrinol., 2002, 16(12), 2793-2801.
[154]
Wayman, N.S.; Hattori, Y.; McDonald, M.C.; Mota-Filipe, H.; Cuzzocrea, S.; Pisano, B.; Chatterjee, P.K.; Thiemermann, C. Ligands of the peroxisome proliferator-activated receptors (PPAR-γ and PPAR-α) reduce myocardial infarct size. FASEB J., 2002, 16(9), 1027-1040.
[155]
Campbell, S.E.; Stone, W.L.; Whaley, S.G.; Qui, M.; Krishnan, K. Gamma (γ) tocopherol upregulates peroxisome proliferator activated receptor (PPAR) gamma (γ) expression in SW 480 human colon cancer cell lines. BMC Cancer, 2003, 3, 25.
[156]
Fang, F.; Kang, Z.; Wong, C. Vitamin E tocotrienols improve insulin sensitivity through activating peroxisome proliferator-activated receptors. Mol. Nutr. Food Res., 2010, 54(3), 345-352.
[157]
Yoder, B.A.; Albertine, K.H. Inflammation and lung disease in the neonatal period. Neoreviews, 2008, 9(10), e447-e457.
[158]
Huey, K.A.; Fiscus, G.; Richwine, A.F.; Johnson, R.W.; Meador, B.M. In vivo vitamin E administration attenuates interleukin-6 and interleukin-1β responses to an acute inflammatory insult in mouse skeletal and cardiac muscle. Exp. Physiol., 2008, 93(12), 1263-1272.
[159]
Nakamura, Y.K.; Omaye, S.T. Alpha-tocopherol modulates human umbilical vein endothelial cell expression of Cu/Zn superoxide dismutase and catalase and lipid peroxidation. Nutr. Res., 2008, 28(10), 671-680.
[160]
Zhong, H.; May, M.J.; Jimi, E.; Ghosh, S. The phosphorylation status of nuclear NF-κB determines its association with CBP/P300 or HDAC-1. Mol. Cell, 2002, 9(3), 625-636.
[161]
Cao, S.; Zhang, X.; Edwards, J.P.; Mosser, D.M. NF-κB1 (p50) homodimers differentially regulate pro- and anti-inflammatory cytokines in macrophages. J. Biol. Chem., 2006, 281(36), 26041-26050.
[162]
Li, L.; Wu, Z.; Li, E.; Zhang, L.; Li, L. Protective mechanism of A20 protein overexpression in acute myocardial infarction rats. West Indian Med. J., 2017, 66(6), 690-696.
[163]
Wang, Y.; Park, N-Y.; Jang, Y.; Ma, A.; Jiang, Q. Vitamin E γ-tocotrienol inhibits cytokine-stimulated NF-κB activation by induction of anti-inflammatory A20 via stress adaptive response due to modulation of sphingolipids. J. Immunol., 2015, 195, 126-133.
[164]
Dworski, R.; Han, W.; Blackwell, T.S.; Hoskins, A.; Freeman, M.L. Vitamin E prevents NRF2-suppression by allergen in asthmatic alveolar macrophages in vivo. Free Radic. Biol. Med., 2011, 51(2), 516-521.
[165]
Bozaykut, P.; Karademir, B.; Yazgan, B.; Sozen, E.; Siow, R.C.M.; Mann, G.E.; Ozer, N.K. Effects of vitamin E on peroxisome proliferator-activated receptor γ and nuclear factor-erythroid 2-related factor 2 in hypercholesterolemia-induced atherosclerosis. Free Radic. Biol. Med., 2014, 70, 174-181.
[166]
Zhang, B.; Tanaka, J.; Yang, L.; Yang, L.; Sakanaka, M.; Hata, R.; Maeda, N.; Mitsuda, N. Protective effect of vitamin E against focal brain ischemia and neuronal death through induction of target genes of hypoxia-inducible factor-1. Neuroscience, 2004, 126(2), 433-440.
[167]
Vassilopoulos, A.; Papazafiri, P. Attenuation of oxidative stress in HL-1 cardiomyocytes improves mitochondrial function and stabilizes HIF-1α. Free Radic. Res., 2005, 39(12), 1273-1284.
[168]
Kim, S-Y.; Kim, S-J.; Kim, B-J.; Rah, S-Y.; Chung, S.M. Im, M.-J.; Kim, U.-H. Doxorubicin-induced reactive oxygen species generation and intracellular Ca2+ increase are reciprocally modulated in rat cardiomyocytes. Exp. Mol. Med., 2006, 38(5), 535-545.
[169]
Nandave, M.; Mohanty, I.; Nag, T.C.; Ojha, S.K.; Mittal, R.; Kumari, S.; Arya, D.S. Cardioprotective response to chronic administration of vitamin E in isoproterenol induced myocardial necrosis: Hemodynamic, biochemical and ultrastructural studies. Indian J. Clin. Biochem., 2007, 22, 22-28.
[170]
Hu, X-X.; Fu, L.; Li, Y.; Lin, Z-B.; Liu, X.; Wang, J-F.; Chen, Y-X.; Wang, Z-P.; Zhang, X.; Ou, Z-J.; Ou, J.S. The cardioprotective effect of vitamin E (alpha-tocopherol) is strongly related to age and gender in mice. PLoS One, 2015, 10(9) e0137405