Generic placeholder image

Current Vascular Pharmacology

Editor-in-Chief

ISSN (Print): 1570-1611
ISSN (Online): 1875-6212

Review Article

Cardioprotective Effects of Natural Products via the Nrf2 Signaling Pathway

Author(s): Rasool Tavakoli, Jamshid Tabeshpour, Javad Asili, Abolfazl Shakeri* and Amirhossein Sahebkar*

Volume 19, Issue 5, 2021

Published on: 03 November, 2020

Page: [525 - 541] Pages: 17

DOI: 10.2174/1570161119999201103191242

Price: $65

Abstract

Due to its poor regenerative capacity, the heart is specifically vulnerable to xenobiotic- induced cardiotoxicity, myocardial ischaemia/reperfusion injury and other pathologies. Nuclear factor erythroid-2-related factor 2 (Nrf2) is considered as an essential factor in protecting cardiomyocytes against oxidative stress resulting from free radicals and reactive oxygen species. It also serves as a key regulator of antioxidant enzyme expression via the antioxidant response element, a cis-regulatory element, which is found in the promoter region of several genes encoding detoxification enzymes and cytoprotective proteins. It has been reported that a variety of natural products are capable of activating Nrf2 expression, and in this way, increase the antioxidant potential of cardiomyocytes. In the present review, we consider the cardioprotective activities of natural products and their possible therapeutic potential.

Keywords: Natural products, Antioxidant, Cardioprotective, Nuclear factor erythroid-2-related factor 2, Anti-apoptotic, Cardiovascular diseases.

Graphical Abstract

[1]
Bamalan OA. Anatomy, Thorax, Heart Great Vessels. Available at: https://www.ncbi.nlm.nih.gov/books/NBK547680/
[2]
Force T, Krause DS, Van Etten RA. Molecular mechanisms of cardiotoxicity of tyrosine kinase inhibition. Nat Rev Cancer 2007; 7(5): 332-44.
[http://dx.doi.org/10.1038/nrc2106] [PMID: 17457301]
[3]
Kang YJ. New understanding in cardiotoxicity. Curr Opin Drug Discov Devel 2003; 6(1): 110-6.
[PMID: 12613282]
[4]
Suter TM, Ewer MS. Cancer drugs and the heart: importance and management. Eur Heart J 2013; 34(15): 1102-11.
[http://dx.doi.org/10.1093/eurheartj/ehs181] [PMID: 22789916]
[5]
Schimmel KJM, Richel DJ, van den Brink RBA, Guchelaar H-J. Cardiotoxicity of cytotoxic drugs. Cancer Treat Rev 2004; 30(2): 181-91.
[http://dx.doi.org/10.1016/j.ctrv.2003.07.003] [PMID: 15023436]
[6]
Costa VM, Carvalho F, Duarte JA, Bastos MdeL, Remião F. The heart as a target for xenobiotic toxicity: the cardiac susceptibility to oxidative stress. Chem Res Toxicol 2013; 26(9): 1285-311.
[http://dx.doi.org/10.1021/tx400130v] [PMID: 23902227]
[7]
Chirumbolo S, Bjørklund G. Sulforaphane and 5-fluorouracil synergistically inducing autophagy in breast cancer: A possible role for the Nrf2-Keap1-ARE signaling? Food Chem Toxicol 2018; 112: 414-5.
[http://dx.doi.org/10.1016/j.fct.2017.12.061] [PMID: 29305271]
[8]
Osburn WO, Kensler TW. Nrf2 signaling: an adaptive response pathway for protection against environmental toxic insults. Mutat Res 2008; 659(1-2): 31-9.
[http://dx.doi.org/10.1016/j.mrrev.2007.11.006] [PMID: 18164232]
[9]
Zhou Y, Jiang Z, Lu H, et al. Recent Advances of Natural Polyphenols Activators for Keap1-Nrf2 Signaling Pathway. Chem Biodivers 2019; 16(11): e1900400.
[http://dx.doi.org/10.1002/cbdv.201900400] [PMID: 31482617]
[10]
Wu W-Y, Li Y-D, Cui Y-K, et al. The natural flavone acacetin confers cardiomyocyte protection against hypoxia/reoxygenation injury via AMPK-mediated activation of Nrf2 signaling pathway. Front Pharmacol 2018; 9: 497.
[http://dx.doi.org/10.3389/fphar.2018.00497] [PMID: 29867499]
[11]
Liang E, Liu X, Du Z, Yang R, Zhao Y. Andrographolide Ameliorates Diabetic Cardiomyopathy in Mice by Blockage of Oxidative Damage and NF-κB-Mediated Inflammation. Oxid Med Cell Longev 2018; 2018: 9086747.
[http://dx.doi.org/10.1155/2018/9086747] [PMID: 30046380]
[12]
Xue Y, Sun C, Hao Q, Cheng J. Astaxanthin ameliorates cardiomyocyte apoptosis after coronary microembolization by inhibiting oxidative stress via Nrf2/HO-1 pathway in rats. Naunyn Schmiedebergs Arch Pharmacol 2019; 392(3): 341-8.
[http://dx.doi.org/10.1007/s00210-018-1595-0] [PMID: 30506291]
[13]
Kunimasa K, Kobayashi T, Kaji K, Ohta T. Antiangiogenic effects of indole-3-carbinol and 3,3′-diindolylmethane are associated with their differential regulation of ERK1/2 and Akt in tube-forming HUVEC. J Nutr 2010; 140(1): 1-6.
[http://dx.doi.org/10.3945/jn.109.112359] [PMID: 19889811]
[14]
Zong J, Deng W, Zhou H, et al. 3,3′-Diindolylmethane protects against cardiac hypertrophy via 5′-adenosine monophosphate-activated protein kinase-α2. PLoS One 2013; 8(1): e53427.
[http://dx.doi.org/10.1371/journal.pone.0053427] [PMID: 23326427]
[15]
Liu H, Yang L, Wu H-J, et al. Water-soluble acacetin prodrug confers significant cardioprotection against ischemia/reperfusion injury. Sci Rep 2016; 6(1): 36435.
[http://dx.doi.org/10.1038/srep36435] [PMID: 27819271]
[16]
Liu H, Wang Y-J, Yang L, et al. Synthesis of a highly water-soluble acacetin prodrug for treating experimental atrial fibrillation in beagle dogs. Sci Rep 2016; 6(1): 25743.
[http://dx.doi.org/10.1038/srep25743] [PMID: 27160397]
[17]
Ding G, Zhao J, Jiang D. Allicin inhibits oxidative stress-induced mitochondrial dysfunction and apoptosis by promoting PI3K/AKT and CREB/ERK signaling in osteoblast cells. Exp Ther Med 2016; 11(6): 2553-60.
[http://dx.doi.org/10.3892/etm.2016.3179] [PMID: 27284348]
[18]
Zhang M, Pan H, Xu Y, Wang X, Qiu Z, Jiang L. Allicin Decreases Lipopolysaccharide-Induced Oxidative Stress and Inflammation in Human Umbilical Vein Endothelial Cells through Suppression of Mitochondrial Dysfunction and Activation of Nrf2. Cell Physiol Biochem 2017; 41(6): 2255-67.
[http://dx.doi.org/10.1159/000475640] [PMID: 28456799]
[19]
García-Trejo EM, Arellano-Buendía AS, Argüello-García R, et al. Effects of Allicin on Hypertension and Cardiac Function in Chronic Kidney Disease. Oxid Med Cell Longev 2016; 2016: 3850402.
[http://dx.doi.org/10.1155/2016/3850402] [PMID: 27990229]
[20]
Cabrera D, Wree A, Povero D, et al. Andrographolide Ameliorates Inflammation and Fibrogenesis and Attenuates Inflammasome Activation in Experimental Non-Alcoholic Steatohepatitis. Sci Rep 2017; 7(1): 3491.
[http://dx.doi.org/10.1038/s41598-017-03675-z] [PMID: 28615649]
[21]
Xi M, Hai C, Tang H, et al. Antioxidant and antiglycation properties of triterpenoid saponins from Aralia taibaiensis traditionally used for treating diabetes mellitus. Redox Rep 2010; 15(1): 20-8.
[http://dx.doi.org/10.1179/174329210X12650506623041] [PMID: 20196925]
[22]
Duan J, Wei G, Guo C, et al. Aralia taibaiensis Protects Cardiac Myocytes against High Glucose-Induced Oxidative Stress and Apoptosis. Am J Chin Med 2015; 43(6): 1159-75.
[http://dx.doi.org/10.1142/S0192415X15500664] [PMID: 26446201]
[23]
Choi S, Koo S. Efficient syntheses of the keto-carotenoids canthaxanthin, astaxanthin, and astacene. J Org Chem 2005; 70(8): 3328-31.
[http://dx.doi.org/10.1021/jo050101l] [PMID: 15823009]
[24]
Chen Y, Zhang H, Tian X, et al. Antioxidant potential of crocins and ethanol extracts of Gardenia jasminoides ELLIS and Crocus sativus L.: A relationship investigation between antioxidant activity and crocin contents. Food Chem 2008; 109(3): 484-92.
[http://dx.doi.org/10.1016/j.foodchem.2007.09.080]
[25]
Yang S, Chou G, Li Q. Cardioprotective role of azafrin in against myocardial injury in rats via activation of the Nrf2-ARE pathway. Phytomedicine 2018; 47: 12-22.
[http://dx.doi.org/10.1016/j.phymed.2018.04.042] [PMID: 30166096]
[26]
Li XX, He GR, Mu X, et al. Protective effects of baicalein against rotenone-induced neurotoxicity in PC12 cells and isolated rat brain mitochondria. Eur J Pharmacol 2012; 674(2-3): 227-33.
[http://dx.doi.org/10.1016/j.ejphar.2011.09.181] [PMID: 21996316]
[27]
Cui G, Luk SC, Li RA, et al. Cytoprotection of baicalein against oxidative stress-induced cardiomyocytes injury through the Nrf2/Keap1 pathway. J Cardiovasc Pharmacol 2015; 65(1): 39-46.
[http://dx.doi.org/10.1097/FJC.0000000000000161] [PMID: 25343567]
[28]
Satoh T, McKercher SR, Lipton SA. Nrf2/ARE-mediated antioxidant actions of pro-electrophilic drugs. Free Radic Biol Med 2013; 65: 645-57.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.07.022] [PMID: 23892355]
[29]
Sahu BD, Putcha UK, Kuncha M, Rachamalla SS, Sistla R. Carnosic acid promotes myocardial antioxidant response and prevents isoproterenol-induced myocardial oxidative stress and apoptosis in mice. Mol Cell Biochem 2014; 394(1-2): 163-76.
[http://dx.doi.org/10.1007/s11010-014-2092-5] [PMID: 24903830]
[30]
Prasad S, Gupta SC, Tyagi AK, Aggarwal BB. Curcumin, a component of golden spice: from bedside to bench and back. Biotechnol Adv 2014; 32(6): 1053-64.
[http://dx.doi.org/10.1016/j.biotechadv.2014.04.004] [PMID: 24793420]
[31]
Mollazadeh H, Cicero AFG, Blesso CN, Pirro M, Majeed M, Sahebkar A. Immune modulation by curcumin: The role of interleukin-10. Crit Rev Food Sci Nutr 2019; 59(1): 89-101.
[http://dx.doi.org/10.1080/10408398.2017.1358139] [PMID: 28799796]
[32]
Sahebkar A, Serban MC, Ursoniu S, Banach M. Effect of curcuminoids on oxidative stress: A systematic review and meta-analysis of randomized controlled trials. J Funct Foods 2015; 18: 898-909.
[http://dx.doi.org/10.1016/j.jff.2015.01.005]
[33]
Soleimani V, Sahebkar A, Hosseinzadeh H. Turmeric (Curcuma longa) and its major constituent (curcumin) as nontoxic and safe substances Review Phytother Res 2018; 32(6): 985-95.
[http://dx.doi.org/10.1002/ptr.6054] [PMID: 28059453]
[34]
Momtazi AA, Derosa G, Maffioli P, Banach M, Sahebkar A. Role of microRNAs in the Therapeutic Effects of Curcumin in Non-Cancer Diseases. Mol Diagn Ther 2016; 20(4): 335-45.
[http://dx.doi.org/10.1007/s40291-016-0202-7] [PMID: 27241179]
[35]
Momtazi AA, Sahebkar A. Difluorinated curcumin: A promising curcumin analogue with improved anti-tumor activity and pharmacokinetic profile. Curr Pharm Des 2016; 22(28): 4386-97.
[http://dx.doi.org/10.2174/1381612822666160527113501] [PMID: 27229723]
[36]
Teymouri M, Pirro M, Johnston TP, Sahebkar A. Curcumin as a multifaceted compound against human papilloma virus infection and cervical cancers: A review of chemistry, cellular, molecular, and preclinical features. Biofactors 2017; 43(3): 331-46.
[http://dx.doi.org/10.1002/biof.1344] [PMID: 27896883]
[37]
Abdelsamia EM, Khaleel SA, Balah A, Abdel Baky NA. Curcumin augments the cardioprotective effect of metformin in an experimental model of type I diabetes mellitus; Impact of Nrf2/HO-1 and JAK/STAT pathways. Biomed Pharmacother 2019; 109: 2136-44.
[http://dx.doi.org/10.1016/j.biopha.2018.11.064] [PMID: 30551471]
[38]
Zeng C, Zhong P, Zhao Y, et al. Curcumin protects hearts from FFA-induced injury by activating Nrf2 and inactivating NF-κB both in vitro and in vivo. J Mol Cell Cardiol 2015; 79: 1-12.
[http://dx.doi.org/10.1016/j.yjmcc.2014.10.002] [PMID: 25444713]
[39]
Zhou L, Zuo Z, Chow MS. Danshen: an overview of its chemistry, pharmacology, pharmacokinetics, and clinical use. J Clin Pharmacol 2005; 45(12): 1345-59.
[http://dx.doi.org/10.1177/0091270005282630] [PMID: 16291709]
[40]
Cui G, Shan L, Hung M, et al. A novel Danshensu derivative confers cardioprotection via PI3K/Akt and Nrf2 pathways. Int J Cardiol 2013; 168(2): 1349-59.
[http://dx.doi.org/10.1016/j.ijcard.2012.12.012] [PMID: 23290949]
[41]
Yu J, Wang L, Akinyi M, et al. Danshensu protects isolated heart against ischemia reperfusion injury through activation of Akt/ERK1/2/Nrf2 signaling. Int J Clin Exp Med 2015; 8(9): 14793-804.
[PMID: 26628961]
[42]
Li H, Xie YH, Yang Q, et al. Cardioprotective effect of paeonol and danshensu combination on isoproterenol-induced myocardial injury in rats. PLoS One 2012; 7(11): e48872.
[http://dx.doi.org/10.1371/journal.pone.0048872] [PMID: 23139821]
[43]
Li H, Song F, Duan L-R, et al. Paeonol and danshensu combination attenuates apoptosis in myocardial infarcted rats by inhibiting oxidative stress: Roles of Nrf2/HO-1 and PI3K/Akt pathway. Sci Rep 2016; 6: 23693-3.
[http://dx.doi.org/10.1038/srep23693] [PMID: 27021411]
[44]
Zhang X, Hu H, Luo J, et al. A Novel Danshensu-Tetramethylpyrazine Conjugate DT-010 Provides Cardioprotection through the PGC-1α/Nrf2/HO-1 Pathway. Biol Pharm Bull 2017; 40(9): 1490-8.
[http://dx.doi.org/10.1248/bpb.b17-00313] [PMID: 28637941]
[45]
Wang YG, Li Y, Wang CY, et al. L-3-n-Butylphthalide protects rats’ cardiomyocytes from ischaemia/reperfusion-induced apoptosis by affecting the mitochondrial apoptosis pathway. Acta Physiol (Oxf) 2014; 210(3): 524-33.
[http://dx.doi.org/10.1111/apha.12186] [PMID: 24286671]
[46]
Qiu H, Ma J, Wu H, Ding C. DL-3-n-butylphthalide improves ventricular function, and prevents ventricular remodeling and arrhythmias in post-MI rats. Naunyn Schmiedebergs Arch Pharmacol 2018; 391(6): 627-37.
[http://dx.doi.org/10.1007/s00210-018-1490-8] [PMID: 29602954]
[47]
Umezu T. Evidence for dopamine involvement in ambulation promoted by menthone in mice. Pharmacol Biochem Behav 2009; 91(3): 315-20.
[http://dx.doi.org/10.1016/j.pbb.2008.07.017] [PMID: 18718482]
[48]
Xu J, Lin C, Wang T, Zhang P, Liu Z, Lu C. Ergosterol Attenuates LPS-Induced Myocardial Injury by Modulating Oxidative Stress and Apoptosis in Rats. Cell Physiol Biochem 2018; 48(2): 583-92.
[http://dx.doi.org/10.1159/000491887] [PMID: 30021198]
[49]
Zhu Y, Di S, Hu W, et al. A new flavonoid glycoside (APG) isolated from Clematis tangutica attenuates myocardial ischemia/reperfusion injury via activating PKCε signaling. Biochim Biophys Acta Mol Basis Dis 2017; 1863(3): 701-11.
[http://dx.doi.org/10.1016/j.bbadis.2016.12.013] [PMID: 28024940]
[50]
Zhang YX, Wang L, Xiao EL, et al. Ginsenoside-Rd exhibits anti-inflammatory activities through elevation of antioxidant enzyme activities and inhibition of JNK and ERK activation in vivo. Int Immunopharmacol 2013; 17(4): 1094-100.
[http://dx.doi.org/10.1016/j.intimp.2013.10.013] [PMID: 24455777]
[51]
Zeng X, Li J, Li Z. Ginsenoside Rd mitigates myocardial ischemia-reperfusion injury via Nrf2/HO-1 signaling pathway. Int J Clin Exp Med 2015; 8(8): 14497-504.
[PMID: 26550440]
[52]
Wang QW, Yu XF, Xu HL, Jiang YC, Zhao XZ, Sui DY. Ginsenoside Re Attenuates Isoproterenol-Induced Myocardial Injury in Rats. Evid Based Complement Alternat Med 2018; 2018: 8637134.
[http://dx.doi.org/10.1155/2018/8637134] [PMID: 29849732]
[53]
Wang X, Chen L, Wang T, et al. Ginsenoside Rg3 antagonizes adriamycin-induced cardiotoxicity by improving endothelial dysfunction from oxidative stress via upregulating the Nrf2-ARE pathway through the activation of akt. Phytomedicine 2015; 22(10): 875-84.
[http://dx.doi.org/10.1016/j.phymed.2015.06.010] [PMID: 26321736]
[54]
Liu L, Ning B, Cui J, Zhang T, Chen Y. miR-29c is implicated in the cardioprotective activity of Panax notoginseng saponins against isoproterenol-induced myocardial fibrogenesis. J Ethnopharmacol 2017; 198: 1-4.
[http://dx.doi.org/10.1016/j.jep.2016.12.036] [PMID: 28017695]
[55]
Zhang B, Zhang J, Zhang C, et al. Notoginsenoside R1 Protects Against Diabetic Cardiomyopathy Through Activating Estrogen Receptor α and Its Downstream Signaling. Front Pharmacol 2018; 9: 1227-7.
[http://dx.doi.org/10.3389/fphar.2018.01227] [PMID: 30450046]
[56]
Su X, Wu L, Hu M, Dong W, Xu M, Zhang P. Glycyrrhizic acid: A promising carrier material for anticancer therapy. Biomed Pharmacother 2017; 95: 670-8.
[http://dx.doi.org/10.1016/j.biopha.2017.08.123] [PMID: 28886526]
[57]
Xu C, Liang C, Sun W, Chen J, Chen X. Glycyrrhizic acid ameliorates myocardial ischemic injury by the regulation of inflammation and oxidative state. Drug Des Devel Ther 2018; 12: 1311-9.
[http://dx.doi.org/10.2147/DDDT.S165225] [PMID: 29849452]
[58]
Han SY, Li HX, Ma X, Zhang K, Ma ZZ, Tu PF. Protective effects of purified safflower extract on myocardial ischemia in vivo and in vitro. Phytomedicine 2009; 16(8): 694-702.
[http://dx.doi.org/10.1016/j.phymed.2009.02.019] [PMID: 19394208]
[59]
Henkel A, Kather N, Mönch B, Northoff H, Jauch J, Werz O. Boswellic acids from frankincense inhibit lipopolysaccharide functionality through direct molecular interference. Biochem Pharmacol 2012; 83(1): 115-21.
[http://dx.doi.org/10.1016/j.bcp.2011.09.026] [PMID: 22001311]
[60]
Chen M, Wang M, Yang Q, et al. Antioxidant effects of hydroxysafflor yellow A and acetyl-11-keto-β-boswellic acid in combination on isoproterenol-induced myocardial injury in rats. Int J Mol Med 2016; 37(6): 1501-10.
[http://dx.doi.org/10.3892/ijmm.2016.2571] [PMID: 27121241]
[61]
Wang Z, Wang H, Wu J, et al. Enhanced co-expression of β-tubulin III and choline acetyltransferase in neurons from mouse embryonic stem cells promoted by icaritin in an estrogen receptor-independent manner. Chem Biol Interact 2009; 179(2-3): 375-85.
[http://dx.doi.org/10.1016/j.cbi.2008.12.007] [PMID: 19135036]
[62]
Lei SW, Cui G, Leung GPH, et al. Icaritin protects against oxidative stress-induced injury in cardiac H9c2 cells via Akt/Nrf2/HO-1 and calcium signalling pathways. J Funct Foods 2015; 18: 213-23.
[http://dx.doi.org/10.1016/j.jff.2015.06.054]
[63]
Bian QY, Wang SY, Xu LJ, Chan CO, Mok DK, Chen SB. Two new antioxidant diarylheptanoids from the fruits of Alpinia oxyphylla. J Asian Nat Prod Res 2013; 15(10): 1094-9.
[http://dx.doi.org/10.1080/10286020.2013.816297] [PMID: 23869536]
[64]
Wang D, Zhang X, Li D, et al. Kaempferide Protects against Myocardial Ischemia/Reperfusion Injury through Activation of the PI3K/Akt/GSK-3β Pathway. Mediators Inflamm 2017; 2017: 5278218.
[http://dx.doi.org/10.1155/2017/5278218] [PMID: 28928604]
[65]
Stohs SJ, Miller H, Kaats GR. A review of the efficacy and safety of banaba (Lagerstroemia speciosa L.) and corosolic acid. Phytother Res 2012; 26(3): 317-24.
[http://dx.doi.org/10.1002/ptr.3664] [PMID: 22095937]
[66]
Sahu BD, Kuncha M, Rachamalla SS, Sistla R. Lagerstroemia speciosa L. attenuates apoptosis in isoproterenol-induced cardiotoxic mice by inhibiting oxidative stress: possible role of Nrf2/HO-1. Cardiovasc Toxicol 2015; 15(1): 10-22.
[http://dx.doi.org/10.1007/s12012-014-9263-1] [PMID: 24853613]
[67]
Mishra A, Reddy IJ, Gupta PS, Mondal S. L-carnitine Mediated Reduction in Oxidative Stress and Alteration in Transcript Level of Antioxidant Enzymes in Sheep Embryos Produced In Vitro. Reprod Domest Anim 2016; 51(2): 311-21.
[http://dx.doi.org/10.1111/rda.12682] [PMID: 26934867]
[68]
Fan Z, Han Y, Ye Y, Liu C, Cai H. l-carnitine preserves cardiac function by activating p38 MAPK/Nrf2 signalling in hearts exposed to irradiation. Eur J Pharmacol 2017; 804: 7-12.
[http://dx.doi.org/10.1016/j.ejphar.2017.04.003] [PMID: 28392465]
[69]
Wang G, Liu Y, Hou XF, Ke ZC, Feng L, Jia XB. Prevention effect of Ligusticum chuanxiong extraction against oxidative stress injury induced by myocardial ischemia through activation of Nrf2 signaling pathway. Zhongguo Zhongyao Zazhi 2017; 42(24): 4834-40.
[PMID: 29493155]
[70]
Choi BH, Kang K-S, Kwak M-K. Effect of redox modulating NRF2 activators on chronic kidney disease. Molecules 2014; 19(8): 12727-59.
[http://dx.doi.org/10.3390/molecules190812727] [PMID: 25140450]
[71]
Nathania J, Soetikno V. The effect of Mastin® on expression of Nrf2 in the rat heart with subtotally nephrectomy chronic Kidney disease model. J Phys Conf Ser 2017; 884: 012124.
[http://dx.doi.org/10.1088/1742-6596/884/1/012124]
[72]
Wang M, Wang F, Xu F, et al. Two pairs of farnesyl phenolic enantiomers as natural nitric oxide inhibitors from Ganoderma sinense. Bioorg Med Chem Lett 2016; 26(14): 3342-5.
[http://dx.doi.org/10.1016/j.bmcl.2016.05.037] [PMID: 27256914]
[73]
Gao S, Zhang P, Zhang C, Bao F, Li H, Chen L. Meroterpenoids from Ganoderma sinense protect hepatocytes and cardiomyocytes from oxidative stress induced injuries. Fitoterapia 2018; 131: 73-9.
[http://dx.doi.org/10.1016/j.fitote.2018.10.009] [PMID: 30308230]
[74]
Arabshahi-D S, Vishalakshi Devi D, Urooj A. Evaluation of antioxidant activity of some plant extracts and their heat, pH and storage stability. Food Chem 2007; 100(3): 1100-5.
[http://dx.doi.org/10.1016/j.foodchem.2005.11.014]
[75]
Liu Y, Zhao YB, Wang SW, Zhou Y, Tang ZS, Li F. Mulberry granules protect against diabetic cardiomyopathy through the AMPK/Nrf2 pathway. Int J Mol Med 2017; 40(3): 913-21.
[http://dx.doi.org/10.3892/ijmm.2017.3050] [PMID: 28677741]
[76]
Domitrović R, Rashed K, Cvijanović O, Vladimir-Knežević S, Škoda M, Višnić A. Myricitrin exhibits antioxidant, anti-inflammatory and antifibrotic activity in carbon tetrachloride-intoxicated mice. Chem Biol Interact 2015; 230: 21-9.
[http://dx.doi.org/10.1016/j.cbi.2015.01.030] [PMID: 25656916]
[77]
Zhang B, Shen Q, Chen Y, et al. Myricitrin Alleviates Oxidative Stress-induced Inflammation and Apoptosis and Protects Mice against Diabetic Cardiomyopathy. Sci Rep 2017; 7: 44239.
[http://dx.doi.org/10.1038/srep44239] [PMID: 28287141]
[78]
Gopinath K, Sudhandiran G. Naringin modulates oxidative stress and inflammation in 3-nitropropionic acid-induced neurodegeneration through the activation of nuclear factor-erythroid 2-related factor-2 signalling pathway. Neuroscience 2012; 227: 134-43.
[http://dx.doi.org/10.1016/j.neuroscience.2012.07.060] [PMID: 22871521]
[79]
Chen RC, Sun GB, Wang J, Zhang HJ, Sun XB. Naringin protects against anoxia/reoxygenation-induced apoptosis in H9c2 cells via the Nrf2 signaling pathway. Food Funct 2015; 6(4): 1331-44.
[http://dx.doi.org/10.1039/C4FO01164C] [PMID: 25773745]
[80]
Liu Y, An W, Gao A. Protective effects of naringenin in cardiorenal syndrome. J Surg Res 2016; 203(2): 416-23.
[http://dx.doi.org/10.1016/j.jss.2016.03.003] [PMID: 27363651]
[81]
Benavides GA, Squadrito GL, Mills RW, et al. Hydrogen sulfide mediates the vasoactivity of garlic. Proc Natl Acad Sci USA 2007; 104(46): 17977-82.
[http://dx.doi.org/10.1073/pnas.0705710104] [PMID: 17951430]
[82]
Predmore BL, Kondo K, Bhushan S, et al. The polysulfide diallyl trisulfide protects the ischemic myocardium by preservation of endogenous hydrogen sulfide and increasing nitric oxide bioavailability. Am J Physiol Heart Circ Physiol 2012; 302(11): H2410-8.
[http://dx.doi.org/10.1152/ajpheart.00044.2012] [PMID: 22467307]
[83]
Testai L. Flavonoids and mitochondrial pharmacology: A new paradigm for cardioprotection. Life Sci 2015; 135: 68-76.
[http://dx.doi.org/10.1016/j.lfs.2015.04.017] [PMID: 26006042]
[84]
Enayati A, Yassa N, Mazaheri Z, et al. Cardioprotective and anti-apoptotic effects of Potentilla reptans L. root via Nrf2 pathway in an isolated rat heart ischemia/reperfusion model. Life Sci 2018; 215: 216-26.
[http://dx.doi.org/10.1016/j.lfs.2018.11.021] [PMID: 30419282]
[85]
Tong L, Nanjundaiah SM, Venkatesha SH, Astry B, Yu H, Moudgil KD. Pristimerin, a naturally occurring triterpenoid, protects against autoimmune arthritis by modulating the cellular and soluble immune mediators of inflammation and tissue damage. Clin Immunol 2014; 155(2): 220-30.
[http://dx.doi.org/10.1016/j.clim.2014.09.014] [PMID: 25308129]
[86]
El-Agamy DS, El-Harbi KM, Khoshhal S, et al. Pristimerin protects against doxorubicin-induced cardiotoxicity and fibrosis through modulation of Nrf2 and MAPK/NF-kB signaling pathways. Cancer Manag Res 2018; 11: 47-61.
[http://dx.doi.org/10.2147/CMAR.S186696] [PMID: 30588110]
[87]
Bagchi D, Bagchi M, Stohs Sj, Ray SD, Sen CK, Preuss HG. Cellular protection with proanthocyanidins derived from grape seeds. Ann N Y Acad Sci 2002; 957: 260-70.
[http://dx.doi.org/10.1111/j.1749-6632.2002.tb02922.x] [PMID: 12074978]
[88]
Nazimabashir , Manoharan V, Miltonprabu S. Cadmium induced cardiac oxidative stress in rats and its attenuation by GSP through the activation of Nrf2 signaling pathway. Chem Biol Interact 2015; 242: 179-93.
[http://dx.doi.org/10.1016/j.cbi.2015.10.005] [PMID: 26462792]
[89]
D’Andrea G. Quercetin: A flavonol with multifaceted therapeutic applications? Fitoterapia 2015; 106: 256-71.
[http://dx.doi.org/10.1016/j.fitote.2015.09.018] [PMID: 26393898]
[90]
Serban MC, Sahebkar A, Zanchetti A, et al. Lipid and Blood Pressure Meta‐analysis Collaboration (LBPMC) Group. Effects of Quercetin on Blood Pressure: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J Am Heart Assoc 2016; 5(7): e002713.
[http://dx.doi.org/10.1161/JAHA.115.002713] [PMID: 27405810]
[91]
Batiha GE, Beshbishy AM, Ikram M, et al. The Pharmacological Activity, Biochemical Properties, and Pharmacokinetics of the Major Natural Polyphenolic Flavonoid: Quercetin. Foods 2020; 9(3): 374.
[http://dx.doi.org/10.3390/foods9030374] [PMID: 32210182]
[92]
Castillo RL, Herrera EA, Gonzalez-Candia A, et al. Quercetin Prevents Diastolic Dysfunction Induced by a High-Cholesterol Diet: Role of Oxidative Stress and Bioenergetics in Hyperglycemic Rats. Oxid Med Cell Longev 2018; 2018: 7239123.
[http://dx.doi.org/10.1155/2018/7239123] [PMID: 29576853]
[93]
Shu Z, Yang Y, Yang L, Jiang H, Yu X, Wang Y. Cardioprotective effects of dihydroquercetin against ischemia reperfusion injury by inhibiting oxidative stress and endoplasmic reticulum stress-induced apoptosis via the PI3K/Akt pathway. Food Funct 2019; 10(1): 203-15.
[http://dx.doi.org/10.1039/C8FO01256C] [PMID: 30525169]
[94]
Renaud S, de Lorgeril M. Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet 1992; 339(8808): 1523-6.
[http://dx.doi.org/10.1016/0140-6736(92)91277-F] [PMID: 1351198]
[95]
Cheng L, Jin Z, Zhao R, Ren K, Deng C, Yu S. Resveratrol attenuates inflammation and oxidative stress induced by myocardial ischemia-reperfusion injury: role of Nrf2/ARE pathway. Int J Clin Exp Med 2015; 8(7): 10420-8.
[PMID: 26379832]
[96]
You S, Qian J, Sun C, et al. An Aza resveratrol-chalcone derivative 6b protects mice against diabetic cardiomyopathy by alleviating inflammation and oxidative stress. J Cell Mol Med 2018; 22(3): 1931-43.
[http://dx.doi.org/10.1111/jcmm.13477] [PMID: 29327811]
[97]
Ola MS, Ahmed MM, Ahmad R, Abuohashish HM, Al-Rejaie SS, Alhomida AS. Neuroprotective Effects of Rutin in Streptozotocin-Induced Diabetic Rat Retina. J Mol Neurosci 2015; 56(2): 440-8.
[http://dx.doi.org/10.1007/s12031-015-0561-2] [PMID: 25929832]
[98]
Lin Q, Chen X-Y, Zhang J, Yuan Y-L, Zhao W, Wei B. Upregulation of SIRT1 contributes to the cardioprotective effect of Rutin against myocardial ischemia-reperfusion injury in rats. J Funct Foods 2018; 46: 227-36.
[http://dx.doi.org/10.1016/j.jff.2018.05.007]
[99]
He H, Xu J, Xu Y, et al. Cardioprotective effects of saponins from Panax japonicus on acute myocardial ischemia against oxidative stress-triggered damage and cardiac cell death in rats. J Ethnopharmacol 2012; 140(1): 73-82.
[http://dx.doi.org/10.1016/j.jep.2011.12.024] [PMID: 22226974]
[100]
Wei N. Yuan, D.; He, H. B.; Xu, Y. Q.; Zhang, C. C.; Wang, T.; Liu, C. Q.; Liu, G. Y.Saponins from Panax japonicas reduces myocardial infarction induced reactive oxygen species production and cardiomyocyte apoptosis via activation of the NRF-2 pathway. Advanced Materials Research 2014; pp. 339-46.
[101]
SONG. X.-m.; LIU, Y.; CAI, B.-c. Chemical constituents of rhizome of Panacis Majoris. J Shenyang Pharm Univ 2010; 27(8): 62630.
[102]
He H-B, Li X-M, Li D-J, et al. Saponins from Rhizoma Panacis Majoris attenuate myocardial ischemia/reperfusion injury via the activation of the Sirt1/Foxo1/Pgc-1α and Nrf2/antioxidant defense pathways in rats. Pharmacogn Mag 2018; 14(56): 297-307.
[http://dx.doi.org/10.4103/pm.pm_467_17]
[103]
Bai Y, Wang X, Zhao S, Ma C, Cui J, Zheng Y. Sulforaphane Protects against Cardiovascular Disease via Nrf2 Activation. Oxid Med Cell Longev 2015; 2015: 407580.
[http://dx.doi.org/10.1155/2015/407580] [PMID: 26583056]
[104]
Bose C, Awasthi S, Sharma R, et al. Sulforaphane potentiates anticancer effects of doxorubicin and attenuates its cardiotoxicity in a breast cancer model. PLoS One 2018; 13(3): e0193918.
[http://dx.doi.org/10.1371/journal.pone.0193918] [PMID: 29518137]
[105]
Li B, Kim DS, Yadav RK, Kim HR, Chae HJ. Sulforaphane prevents doxorubicin-induced oxidative stress and cell death in rat H9c2 cells. Int J Mol Med 2015; 36(1): 53-64.
[http://dx.doi.org/10.3892/ijmm.2015.2199] [PMID: 25936432]
[106]
Yang R, Liu A, Ma X, Li L, Su D, Liu J. Sodium tanshinone IIA sulfonate protects cardiomyocytes against oxidative stress-mediated apoptosis through inhibiting JNK activation. J Cardiovasc Pharmacol 2008; 51(4): 396-401.
[http://dx.doi.org/10.1097/FJC.0b013e3181671439] [PMID: 18427283]
[107]
Wei B, You MG, Ling JJ, et al. Regulation of antioxidant system, lipids and fatty acid β-oxidation contributes to the cardioprotective effect of sodium tanshinone IIA sulphonate in isoproterenol-induced myocardial infarction in rats. Atherosclerosis 2013; 230(1): 148-56.
[http://dx.doi.org/10.1016/j.atherosclerosis.2013.07.005] [PMID: 23958267]
[108]
Li XJ, Jiang ZZ, Zhang LY. Triptolide: progress on research in pharmacodynamics and toxicology. J Ethnopharmacol 2014; 155(1): 67-79.
[http://dx.doi.org/10.1016/j.jep.2014.06.006] [PMID: 24933225]
[109]
Yu H, Shi L, Zhao S, et al. Triptolide Attenuates Myocardial Ischemia/Reperfusion Injuries in Rats by Inducing the Activation of Nrf2/HO-1 Defense Pathway. Cardiovasc Toxicol 2016; 16(4): 325-35.
[http://dx.doi.org/10.1007/s12012-015-9342-y] [PMID: 26391895]
[110]
Zhang A, Hui A. Inhibition of coxsackie virus and effect on the treatment of viral myocarditis of Xinji Pill in mice. Shanxi Tradit Chin Med 1998; 12: 563564.
[111]
Yuan Q, Chen R, Zheng X, et al. Chinese herbal medicine Xinji pill protects the heart from ischemia/reperfusion injury through the Akt/Nrf2 pathway. Mol Med Rep 2017; 16(2): 1551-8.
[http://dx.doi.org/10.3892/mmr.2017.6732] [PMID: 28627591]
[112]
Cicero AFG, Colletti A, von Haehling S, et al. International Lipid Expert Panel. Nutraceutical support in heart failure: a position paper of the International Lipid Expert Panel (ILEP). Nutr Res Rev 2020; 33(1): 155-79.
[http://dx.doi.org/10.1017/S0954422420000049] [PMID: 32172721]
[113]
Banach M, Patti AM, Giglio RV, et al. International Lipid Expert Panel (ILEP). The Role of Nutraceuticals in Statin Intolerant Patients. J Am Coll Cardiol 2018; 72(1): 96-118.
[http://dx.doi.org/10.1016/j.jacc.2018.04.040] [PMID: 29957236]
[114]
Momtazi-Borojeni AA, Katsiki N, Pirro M, Banach M, Rasadi KA, Sahebkar A. Dietary natural products as emerging lipoprotein(a)-lowering agents. J Cell Physiol 2019; 234(8): 12581-94.
[http://dx.doi.org/10.1002/jcp.28134] [PMID: 30637725]
[115]
Sahebkar A, Serban MC, Gluba-Brzózka A, et al. Lipid-modifying effects of nutraceuticals: An evidence-based approach. Nutrition 2016; 32(11-12): 1179-92.
[http://dx.doi.org/10.1016/j.nut.2016.04.007] [PMID: 27324061]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy