[1]
Rahman, F.; Langford, K.H.; Scrimshaw, M.D.; Lester, J.N. Polybrominated Diphenyl Ether (PBDE) Flame Retardants. Sci. Total Environ., 2001, 275(1-3), 1-17.
[2]
Cabaleiro, D.; Pastoriza-Gallego, M.J.; Piñeiro, M.M.; Legido, J.L.; Lugo, L. Thermophysical properties of (Diphenyl Ether + Biphenyl) mixtures for their use as heat transfer fluids. J. Chem. Thermodyn., 2012, 50, 80-88.
[3]
Tait, S.; Perugini, M.; La Rocca, C. Relative toxicological ranking of eight polybrominated diphenyl ether congeners using cytotoxicity, chemical properties and exposure data. Food Chem. Toxicol., 2017, 108, 74-84.
[4]
Lu, S.Y.; Hamerton, I. Recent developments in the chemistry of halogen-free flame retardant polymers; Prog. Polymer Sci: Oxford, 2002, pp. 1661-1712.
[5]
Deasy, C.L. The chemistry of phenoxathiin and its derivatives. Chem. Rev., 1943, 32(2), 173-194.
[6]
Campbell, L.; Zirwas, M.J. Triclosan. Dermat. Contact Atopic Occup. Drug, 2006, 17(4), 204-207.
[7]
Heath, R.J.; Rubin, J.R.; Holland, D.R.; Zhang, E.; Snow, M.E.; Rock, C.O. Mechanism of triclosan inhibition of bacterial fatty acid synthesis. J. Biol. Chem., 1999, 274(16), 11110-11114.
[8]
Hargreaves, J.; Park, J.O.; Ghisalberti, E.L.; Sivasithamparam, K.; Skelton, B.W.; White, A.H. New chlorinated diphenyl ethers from an aspergillus species. J. Nat. Prod., 2002, 65, 7-10.
[9]
Stermitz, F.R.; Schroeder, H.A.; Geigert, J. Asterric acid from scytalidium. Phytochemistry, 1973, 12(5), 1173.
[10]
Lee, H.J.; Lee, J.H.; Hwang, B.Y.; Kim, H.S.; Lee, J.J. Fungal metabolites, asterric acid derivatives inhibit Vascular Endothelial Growth Factor (VEGF)-Induced tube formation of HUVECs. J. Antibiot. (Tokyo), 2002, 55(6), 552-556.
[11]
Oh, H.; Kwon, T.O.; Gloer, J.B.; Marvanová, L.; Shearer, C.A. Tenellic acids A-D: New bioactive diphenyl ether derivatives from the aquatic fungus dendrospora tenella. J. Nat. Prod., 1999, 62(4), 580-583.
[12]
Lindley, J. Tetrahedron Report Number 163. Copper assisted nucleophilic substitution of Aryl halogen. Tetrahedron, 1984, 40(9), 1433-1456.
[13]
Ullmann, F. On a new mode of formation of diphenylamine derivatives. Chem. Ber., 1903, 36, 2382-2384.
[14]
Bielecki, J.F.U. About syntheses in the biphenyl series. Chem. Ber., 1901, 34, 2174-2185.
[15]
Sponagel, F.U. P. On the Phenylation of Phenols. Chem. Ber., 1905, 38, 2211-2212.
[16]
Mann, G.; Hartwig, J.F. Nickel- vs Palladium-Catalyzed synthesis of protected phenols from Aryl halides. J. Org. Chem., 1997, 62(16), 5413-5418.
[17]
Widenhoefer, R.A.; Zhong, H.A.; Buchwald, S.L. Direct Observation of C-O reductive elimination from Palladium Aryl alkoxide complexes to form Aryl Ethers. J. Am. Chem. Soc., 1997, 119(29), 6787-6795.
[18]
Chen, G.; Chan, A.S.C.; Kwong, F.Y. Palladium-Catalyzed C-O bond formation: Direct synthesis of phenols and aryl/alkyl ethers from activated Aryl halides. Tetrahedron Lett., 2007, 48(3), 473-476.
[19]
Burgos, C.H.; Barder, T.E.; Huang, X.; Buchwald, S.L. Significantly improved method for the Pd-Catalyzed coupling of phenols with Aryl halides: Understanding ligand effects. Angew. Chem. Int. Ed., 2006, 45(26), 4321-4326.
[20]
Marcoux, J.F.; Doye, S.; Buchwald, S.L. A general copper-catalyzed synthesis of diaryl ethers. J. Am. Chem. Soc., 1997, 119(43), 10539-10540.
[21]
Ma, D.; Cai, Q.N. N-Dimethyl Glycine-Promoted ullmann coupling reaction of phenols and Aryl halides. Org. Lett., 2003, 5(21), 3799-3802.
[22]
Zou, B.; Yuan, Q.; Ma, D. Synthesis of 1,2-Disubstituted benzimidazoles by a cu-catalyzed Cascade Aryl amination/ condensation process. Angew. Chem. Int. Ed., 2007, 46(15), 2598-2601.
[23]
Lv, X.; Bao, W. A β-Keto Ester as a novel, efficient, and versatile ligand for Copper(I)-Catalyzed C-N, C-O, and C-S coupling reactions. J. Org. Chem., 2007, 72(10), 3863-3867.
[24]
Ouali, A.; Spindler, J.F.; Jutand, A.; Taillefer, M. nitrogen ligands in copper-catalyzed arylation of phenols: Structure/activity relationships and applications. Adv. Synth. Catal., 2007, 349(11-12), 1906-1916.
[25]
Hosseinzadeh, R.; Tajbakhsh, M.; Alikarami, M. Copper-Catalyzed N-Arylation of diazoles with Aryl bromides using KF/Al2O3: An improved protocol. Tetrahedron Lett., 2006, 47(29), 5203-5205.
[26]
Xia, N.; Taillefer, M. Copper- or Iron-Catalyzed arylation of phenols from respectively Aryl chlorides and Aryl iodides. Chemistry. - Eur. J, 2008, 14(20), 6037-6039.
[27]
Kidwai, M.; Mishra, N.K.; Bansal, V.; Kumar, A.; Mozumdar, S. Cu-Nanoparticle catalyzed O-Arylation of phenols with Aryl halides via ullmann coupling. Tetrahedron Lett., 2007, 48(50), 8883-8887.
[28]
Miao, T.; Wang, L. Immobilization of copper in organic-inorganic hybrid materials: A highly efficient and reusable catalyst for the ullmann diaryl etherification. Tetrahedron Lett., 2007, 48, 95-99.
[29]
Benyahya, S.; Monnier, F.; Taillefer, M.; Man, M.W.C.; Bied, C.; Ouazzani, F. Efficient and versatile Sol-Gel immobilized copper catalyst for ullmann arylation of phenols. Adv. Synth. Catal., 2008, 350(14-15), 2205-2208.
[30]
Choudary, B.M.; Sridhar, C.; Kantam, M.L.; Venkanna, G.T.; Sreedhar, B. Design and evolution of copper apatite catalysts for N-Arylation of heterocycles with Chloro- and Fluoroarenes. J. Am. Chem. Soc., 2005, 127(28), 9948-9949.
[31]
Monnier, F.; Taillefer, M. Catalytic C-C, C-N, and C-O ullmann-type coupling reactions. Angewandte Chemie – Intl. Ed, 2009, 48(38), 6954-6971.
[32]
Sagar, A.D.; Tale, R.H.; Adude, R.N. Synthesis of symmetrical diaryl ethers from arylboronic acids mediated by Copper(II) acetate. Tetrahedron Lett., 2003, 44(37), 7061-7063.
[33]
Evans, D.A.; Katz, J.L.; West, T.R. Synthesis of diaryl ethers through the Copper-Promoted arylation of phenols with arylboronic acids. An expedient synthesis of thyroxine. Tetrahedron Lett., 1998, 39(19), 2937-2940.
[34]
Takise, R.; Isshiki, R.; Muto, K.; Itami, K.; Yamaguchi, J. Decarbonylative diaryl ether synthesis by Pd and Ni catalysis. J. Am. Chem. Soc., 2017, 139(9), 3340-3343.
[35]
Jalalian, N.; Ishikawa, E.E.; Silva, L.F.; Olofsson, B. Room Temperature, metal-free synthesis of diaryl ethers with use of diaryliodonium salts. Org. Lett., 2011, 13(6), 1552-1555.
[36]
Lindstedt, E.; Ghosh, R.; Olofsson, B. Metal-Free synthesis of Aryl Ethers in water. Org. Lett., 2013, 15(23), 6070-6073.
[37]
Li, F.; Wang, Q.; Ding, Z.; Tao, F. Microwave-Assisted synthesis of diaryl ethers without catalyst. Org. Lett., 2003, 5(12), 2169-2171.
[38]
Huang, L.Z.; Han, P.; Li, Y.Q.; Xu, Y.M.; Zhang, T.; Du, Z.T. A facile and efficient synthesis of diaryl amines or ethers under microwave irradiation at presence of KF/AL2O3 without solvent and their anti-fungal biological activities against six phytopathogens. Int. J. Mol. Sci., 2013, 14(9), 18850-18860.
[39]
Lee, H.J.; Duke, S.O. Protoporphyrinogen IX-Oxidizing activities involved in the mode of action of peroxidizing herbicides. J. Agric. Food Chem., 1994, 42(11), 2610-2618.
[40]
Matringe, M.; Camadro, J.M.; Labbe, P.; Scalla, R. Protoporphyrinogen oxidase as a molecular target for diphenyl ether herbicides. Biochem. J., 1989, 260, 231-235.
[41]
Jacobs, J.M.; Jacobs, N.J. Measurement of protoporphyrinogen oxidase activity. Curr. Protoc. Toxicol., 2001, 8, 85.
[42]
Theodoridis, G. Protoporphyrinogen-IX-Oxidase inhibitors. In: Modern Crop Protect; Comp, 2008; pp. 53-186.
[43]
Yu, H.; Yang, H.; Cui, D.; Lv, L.; Li, B. Synthesis and herbicidal activity of diphenyl ether derivatives containing unsaturated carboxylates. J. Agric. Food Chem., 2011, 59(21), 11718-11726.
[44]
Hao, G.F.; Tan, Y.; Yu, N.X.; Yang, G.F. Structure-Activity relationships of diphenyl-ether as protoporphyrinogen oxidase inhibitors: Insights from computational simulations. J. Comput. Aided Mol. Des., 2011, 25(3), 213-222.
[45]
Hao, G.F.; Zhu, X.L.; Ji, F.Q.; Zhang, L.; Yang, G.F.; Zhan, C.G. Understanding the mechanism of drug resistance due to a codon deletion in protoporphyrinogen oxidase through computational modeling. J. Phys. Chem. B, 2009, 113(14), 4865-4875.
[46]
Kochi, A. The global tuberculosis situation and the new control strategy of the world health organization. 1991. Bull. World Health Organ., 2001, 79(1), 71-75.
[47]
WHO. WHO Global Tuberculosis Report, 2016, 2016
[48]
Rattan, A.; Kalia, A.; Ahmad, N. Multidrug-Resistant mycobacterium tuberculosis: Molecular perspectives. Emerg. Infect. Dis., 1998, 4(2), 195-209.
[49]
Bloom, B.R.; Murray, C.J. Tuberculosis: Commentary on a reemergent killer. Science, 1992, 257(5073), 1055-1064.
[50]
Banerjee, A.; Dubnau, E.; Quemard, A.; Balasubramanian, V.; Um, K.; Wilson, T.; Collins, D.; de Lisle, G.; Jacobs, W. InhA, a Gene encoding a target for isoniazid and ethionamide in mycobacterium tuberculosis. Science(80-), 1994, 263(5144), 227-230.
[51]
Bertrand, T.; Eady, N.A.J.; Jones, J.N. Jesmin; Nagy, J.M.; Jamart-Grégoire, B.; Raven, E.L.; Brown, K.A. Crystal structure of mycobacterium tuberculosis catalase-peroxidase. J. Biol. Chem., 2004, 279(37), 38991-38999.
[52]
Ramaswamy, S.; Musser, J.M. Molecular genetic basis of antimicrobial agent resistance inmycobacterium tuberculosis: 1998 update. Tuber. Lung Dis., 1998, 79, 3-29.
[53]
Tonge, P.J.; Kisker, C.; Slayden, R.A. Development of modern InhA inhibitors to combat drug resistant strains of mycobacterium tuberculosis. Curr. Top. Med. Chem., 2007, 7(5), 489-498.
[54]
Sullivan, T.J.; Truglio, J.J.; Boyne, M.E.; Novichenok, P.; Zhang, X.; Stratton, C.F.; Li, H.J.; Kaur, T.; Amin, A.; Johnson, F. High affinity InhA inhibitors with activity against drug-resistant strains of mycobacterium tuberculosis. ACS Chem. Biol., 2006, 1, 43-53.
[56]
Luckner, S.R.; Liu, N.; Am Ende, C.W.; Tonge, P.J.; Kisker, C. A slow, tight binding inhibitor of InhA, the Enoyl-Acyl carrier protein reductase from mycobacterium tuberculosis. J. Biol. Chem., 2010, 285(19), 14330-14337.
[57]
Kini, S.G.; Bhat, A.R.; Bryant, B.; Williamson, J.S.; Dayan, F.E. Synthesis, antitubercular activity and docking study of novel cyclic azole substituted diphenyl ether derivatives. Eur. J. Med. Chem., 2009, 44(2), 492-500.
[58]
Cihlar, T.; Ray, A.S. Nucleoside and nucleotide HIV Reverse transcriptase inhibitors: 25 years after zidovudine. Antiviral Res., 2010, 85, 39-58.
[59]
Azijn, H.; Tirry, I.; Vingerhoets, J.; De Béthune, M.P.; Kraus, G.; Boven, K.; Jochmans, D.; Van Craenenbroeck, E.; Picchio, G.; Rimsky, L.T. TMC278, a next-Generation Nonnucleoside Reverse Transcriptase Inhibitor (NNRTI), active against Wild-Type and NNRTI-Resistant HIV-1. Antimicrob. Agents Chemother., 2010, 54(2), 718-727.
[60]
Mordant, C.; Schmitt, B.; Pasquier, E.; Demestre, C.; Queguiner, L.; Masungi, C.; Peeters, A.; Smeulders, L.; Bettens, E.; Hertogs, K. Synthesis of novel diarylpyrimidine analogues of TMC278 and their antiviral activity against HIV-1 Wild-Type and mutant strains. Eur. J. Med. Chem., 2007, 42(5), 567-579.
[61]
Tucker, T.J.; Saggar, S.; Sisko, J.T.; Tynebor, R.M.; Williams, T.M.; Felock, P.J.; Flynn, J.A.; Lai, M.T.; Liang, Y.; McGaughey, G. The design and synthesis of diaryl ether second generation HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitors (NNRTIs) with enhanced potency versus key clinical mutations. Bioorg. Med. Chem. Lett., 2008, 18(9), 2959-2966.
[62]
Feng, X.Q.; Liang, Y.H.; Zeng, Z.S.; Chen, F.E.; Balzarini, J.; Pannecouque, C.; De Clercq, E. Structural modifications of DAPY analogues with potent Anti-HIV-1 activity. ChemMedChem, 2009, 4(2), 219-224.
[63]
Ferris, R.G.; Hazen, R.J.; Roberts, G.B.; St. Clair, M.H.; Chan, J.H.; Romines, K.R.; Freeman, G.A.; Tidwell, J.H.; Schaller, L.T.; Cowan, J.R. Antiviral activity of gw678248, a novel benzophenone nonnucleoside reverse transcriptase inhibitor. Antimicrob. Agents Chemother., 2005, 49(10), 4046-4051.
[64]
Meng, G.; Chen, F.E.; De Clercq, E.; Balzarini, J.; Pannecouque, C. Nonnucleoside HIV-1 reverse transcriptase inhibitors: Part i. synthesis and structure-activity relationship of 1-alkoxymethyl-5-alkyl-6-naphthylmethyl uracils as HEPT analogues. Chem. Pharm. Bull. , 2003, 51(7), 779-789.
[65]
Ma, X.D.; Zhang, X.; Dai, H.F.; Yang, S.Q.; Yang, L.M.; Gu, S.X.; Zheng, Y.T.; He, Q.Q.; Chen, F.E. Synthesis and Biological Activity of Naphthyl-Substituted (B-Ring) benzophenone derivatives as novel non-nucleoside HIV-1 reverse transcriptase inhibitors. Bioorg. Med. Chem., 2011, 19(15), 4601-4607.
[66]
Liang, Y-H.; Feng, X-Q.; Zeng, Z-S.; Chen, F-E.; Balzarini, J.; Pannecouque, C.; De Clercq, E. Design, synthesis, and sar of naphthyl-substituted diarylpyrimidines as Non-Nucleoside inhibitors of HIV-1 reverse transcriptase. ChemMedChem, 2009, 4(9), 1537-1545.
[67]
Liang, Y.H.; Chen, F.E. ONIOM DFT/PM3 Calculations on the interaction between Dapivirine and HIV-1 reverse transcriptase, a theoretical study. Drug Discov. Ther., 2007, 1, 57-60.
[68]
Kennedy-Smith, J.J.; Arora, N.; Billedeau, J.R.; Fretland, J.; Hang, J.Q.; Heilek, G.M.; Harris, S.F.; Hirschfeld, D.; Javanbakht, H.; Li, Y. Synthesis and biological activity of new pyridone diaryl ether non-nucleoside inhibitors of HIV-1 reverse transcriptase. MedChemComm, 2010, 1, 79-83.
[69]
Tucker, T.J.; Sisko, J.T.; Tynebor, R.M.; Williams, T.M.; Felock, P.J.; Flynn, J.A.; Lai, M.T.; Liang, Y.; McGaughey, G.; Liu, M. Discovery of 3-5-[(6-Amino-1H-Pyrazolo[3,4-b]Pyridine-3-Yl)Methoxy]-2-Chlorophenoxy-5-Chlorobenzonitrile (MK-4965): A potent, orally bioavailable HIV-1 non-nucleoside reverse transcriptase inhibitor with improved potency against key mutant viruses. J. Med. Chem., 2008, 51(20), 6503-6511.
[70]
Côté, B.; Burch, J.D.; Asante-Appiah, E.; Bayly, C.; Bédard, L.; Blouin, M.; Campeau, L.C.; Cauchon, E.; Chan, M.; Chefson, A. Discovery of MK-1439, an orally bioavailable non-nucleoside reverse transcriptase inhibitor potent against a wide range of resistant mutant HIV viruses. Bioorg. Med. Chem. Lett., 2014, 24(3), 917-922.
[71]
Gauthier, D.R.; Sherry, B.D.; Cao, Y.; Journet, M.; Humphrey, G.; Itoh, T.; Mangion, I.; Tschaen, D.M. Highly efficient synthesis of HIV NNRTI doravirine. Org. Lett., 2015, 17(6), 1353-1356.
[72]
David, C. Atkinson, Keith E. Godfrey, Bernard Meek, John F. Saville, and M. R. S. Substituted (2-Phenoxypheny1)acetic acids with antiinflammatory activity. J. Med. Chem., 1983, 26(10), 1353-1360.
[73]
Atkinson, D.C. A Comparison of the systemic anti-inflammatory activity of three different irritants in the rat. Arch. Int. Pharmacodyn. Ther., 1971, 193(2), 391-396.
[74]
Leach, D.C.A. and E.C. Anti-Inflammatory and related properties
of 2-(2, 4-dichlorophenoxy) phenylacetic acid (Fenclofenac)
CH2COOH. Agents Actions, 1976, 6, 657-666.
[75]
Han, Z.; Mei, W.; Zhao, Y.; Deng, Y.; Dai, H. A new cytotoxic isocoumarin from endophytic fungus Penicillium SP. 091402 of the mangrove plant bruguiera sexangula. Chem. Nat. Compd., 2009, 45(6), 805-807.
[76]
Sun, Z.L.; Zhang, M.; Zhang, J.F.; Feng, J. Antifungal and cytotoxic activities of the secondary metabolites from endophytic Fungus Massrison Sp. Phytomedicine, 2011, 18(10), 859-862.
[77]
Peng, W.; You, F.; Li, X.L.; Jia, M.; Zheng, C.J.; Han, T.; Qin, L.P. A new diphenyl ether from the endophytic fungus Verticillium sp. isolated from rehmannia glutinosa. Chin. J. Nat. Med., 2013, 11(6), 673-675.
[78]
Wang, F.W.; Ye, Y.H.; Chen, J.R.; Wang, X.T.; Zhu, H.L.; Song, Y.C.; Tan, R.X. Neoplaether, a new cytotoxic and antifungal endophyte metabolite from neoplaconema napellum IFB-E016. FEMS Microbiol. Lett., 2006, 261(2), 218-223.
[79]
Xing, X.; Padmanaban, D.; Yeh, L.A.; Cuny, G.D. Utilization of a copper-catalyzed diaryl ether synthesis for the preparation of verbenachalcone. Tetrahedron, 2002, 58(39), 7903-7910.
[80]
Wang, J.F.; Zhou, L.M.; Chen, S.T.; Yang, B.; Liao, S.R.; Kong, F.D.; Lin, X.P.; Wang, F.Z.; Zhou, X.F.; Liu, Y.H. New chlorinated diphenyl ethers and xanthones from a deep-sea-derived fungus penicillium chrysogenum SCSIO 41001. Fitoterapia, 2018, 125, 49-54.