Review Article

Nanonetworks in Biomedical Applications

Author(s): Jose Luis Marzo*, Josep Miquel Jornet and Massimiliano Pierobon

Volume 20, Issue 8, 2019

Page: [800 - 807] Pages: 8

DOI: 10.2174/1389450120666190115152613

Price: $65

Abstract

By interconnecting nanomachines and forming nanonetworks, the capacities of single nanomachines are expected to be enhanced, as the ensuing information exchange will allow them to cooperate towards a common goal. Nowadays, systems normally use electromagnetic signals to encode, send and receive information, however, in a novel communication paradigm, molecular transceivers, channel models or protocols use molecules. This article presents the current developments in nanomachines along with their future architecture to better understand nanonetwork scenarios in biomedical applications. Furthermore, to highlight the communication needs between nanomachines, two applications for nanonetworks are also presented: i) a new networking paradigm, called the Internet of NanoThings, that allows nanoscale devices to interconnect with existing communication networks, and ii) Molecular Communication, where the propagation of chemical compounds like drug particles, carry out the information exchange.

Keywords: Nanonetworks, nanocommunication, nanothings, bionanothings, molecular communication, targeted drug delivery.

Graphical Abstract

[1]
Wong CL, Olivo M. Surface plasmon resonance imaging sensors: A review. Plasmonics 2014; 9(4): 809-24.
[2]
Nguyen HH, Park J, Kang S, Kim M. Surface plasmon resonance: A versatile technique for biosensor applications. Sensors 2015; 15(5): 10481-510.
[3]
Qureshi A, Gurbuz Y, Niazi JH. Biosensors for cardiac biomarkers detection: A review. Sens Actuators B Chem 2012; 171: 62-76.
[4]
Yang M, Yi X, Wang J, Zhou F. Electroanalytical and surface plasmon resonance sensors for detection of breast cancer and Alzheimer’s disease biomarkers in cells and body fluids. Analyst 2014; 139(8): 1814-25.
[5]
Vendrell M, Maiti KK, Dhaliwal K, Chang Y-T. Surface-enhanced Raman scattering in cancer detection and imaging. Trends Biotechnol 2013; 31(4): 249-57.
[6]
Hudson SD, Chumanov G. Bioanalytical applications of sers (surface-enhanced Raman spectroscopy). Anal Bioanal Chem 2009; 394(3): 679-86.
[7]
Wu L, Qu X. Cancer biomarker detection: Recent achievements and challenges. Chem Soc Rev 2015; 44(10): 2963-97.
[8]
Aoki PH, Furini LN, Alessio P, Aliaga AE, Constantino CJ. Surface-enhanced Raman scattering (SERS) applied to cancer diagnosis and detection of pesticides, explosives, and drugs. Rev Anal Chem 2013; 32(1): 55-76.
[9]
Kumar M. Handbook of particulate drug delivery: Applications plus 05em minus 04em. American Scientific Publishers 2008.
[10]
Chahibi Y. Molecular communication for drug delivery systems: A survey. Nano Commun Netw 2017; 11: 90-102.
[11]
Sharma RKK, Anil K, Kesharwani RK. Nanobiomaterials: Applications in Drug Delivery. plus 0.5em minus 0.4em Apple Academic Press, Internet resource, 2017.
[12]
Zhang W, Pei J, Lai L. Computational multitarget drug design. J Chem Inf Model 2017; 57(3): 403-12.
[13]
Akyildiz IF, Brunetti F, Blazquez C. Nanonetworks: A new communication paradigm. Computer Networks (Elsevier) J 2008. 52(12): 2260-79.
[14]
Akyildiz IF, Jornet JM. Electromagnetic wireless nanosensor networks. Nano Commun Networks (Elsevier) J 2010. 1(1): 3-19.
[15]
Akyildiz IF, Jornet JM, Pierobon M. Nanonetworks: A new frontier in communications. Commun ACM 2011; 54(11): 84-9.
[16]
Akyildiz IF, Jornet JM. The internet of nano-things. IEEE Wireless Communications Magazine 2010; 17(6): 58-63.
[17]
Akyildiz IF, Pierobon M, Balasubramaniam S, Koucheryavy Y. The internet of bio-nano things. IEEE Commun Mag 2015; 53(3): 32-40.
[18]
Feynman R. There’s plenty of room at the bottom. Talk, American Physical Society at the California Institute of Technology (Caltech) Pasadena, 29 December 1959). http://www.zyvex.com/nanotech/ feynman.html
[19]
Ferrari AC, Bonaccorso F. Fal’Ko V, et al. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 20185; 7(11): 4598-810.
[20]
Splendiani A, Sun L, Zhang Y, et al. Emerging photoluminescence in monolayer mos2. Nano Lett 2010; 10(4): 1271-5.
[21]
Giovannetti G, Khomyakov PA, Brocks G, Kelly PJ, Van Den Brink J. Substrate-induced band gap in graphene on hexagonal boron nitride: Ab initio density functional calculations. Phys Rev B 2007; 76(7): 073103.
[22]
Geim AK, Grigorieva IV. Van der waals heterostructures. Nat 2013; 499: 419-25.
[23]
Ponomarenko LA, Schedin F, Katsnelson MI, et al. Chaotic dirac billiard in graphene quantum dots. Sci 2008; 320(5874): 356-8.
[24]
Pla JJ, Tan Y, Dehollain JP, et al. A single-atom electron spin qubit in silicon. Nat 2012; 489: 541-5.
[25]
Specht HP, Nölleke C, Reiserer A, et al. A single-atom quantum memory. Nat 2011; 473: 190-3.
[26]
Brazier A, Dupont L, Dantras-Laffont L, et al. First cross-section observation of an all solid-state lithium-ion “nanobattery” by transmission electron microscopy. Chem Mater 2008; 20(6): 2352-9.
[27]
Wang ZL, Jiang T, Xu L. Toward the blue energy dream by triboelectric nanogenerator networks. Nano Energy 2017; 39: 9-23.
[28]
Gadalla M, Abdel-Rahman M, Shamim A. Design, optimization and fabrication of a 28.3 thz nano-rectenna for infrared detection and rectification. Sci Rep 2014; 4: 4270.
[29]
Nafari M, Jornet JM. Modeling and performance analysis of metallic plasmonic nano-antennas for wireless optical communication in nanonetworks. IEEE Access 2017. 5: 6389-98.
[30]
Feng L, Wong ZJ, Ma RM, Wang Y, Zhang X. Single-mode laser by parity-time symmetry breaking. Sci 2014; 346: 972-5.
[31]
Luo L-B, Zou Y-F, Ge C-W, et al. A surface plasmon enhanced near-infrared nanophotodetector. Adv Opt Mater 2016; 4: 763-71.
[32]
Jornet JM, Akyildiz IF. Graphene-based plasmonic nano-transceiver for terahertz band communication. EuCAP 2014.
[33]
Jornet JM, Akyildiz IF. Graphene-based plasmonic nano-antenna for terahertz band communication in nanonetworks. IEEE JSAC 2013; 12(12): 685-94.
[34]
Maune HT, Han S-P, Barish RD, et al. Self-assembly of carbon nanotubes into two-dimensional geometries using dna origami templates. Nat Nanotechnol 2010; 5(1): 61.
[35]
Akyildiz IF, Jornet JM, Pierobon M. Chapter 215-1, Nanonetworks. Springer Nature America, Inc 2018.
[36]
Jornet JM, Akyildiz IF. Channel modeling and capacity analysis of electromagnetic wireless nanonetworks in the terahertz band. IEEE Trans Wirel Commun 2011; 1(10): 3211-21.
[37]
Han C, Bicen AQ, Akyildiz I. Multi-ray channel modeling and wideband characterization for wireless communications in the terahertz band. IEEE Trans Wirel Commun 2015; 14: 2402-12.
[38]
Johari P, Jornet JM. Nanoscale optical wireless channel model for intra-body communications: Geometrical, time, and frequency domain analyses. IEEE Trans Commun 2018; 66: 1579-93.
[39]
Jornet JM, Akyildiz IF. Femtosecond-long pulse-based modulation for terahertz band communication in nanonetworks. IEEE Trans Commun 2014; 62(5): 1742-54.
[40]
Jornet JM. Low-weight error-prevention codes for electromagnetic nanonetworks in the terahertz band. Nano Commun Networks (Elsevier) J 2014. 5(1-2): 35-44.
[41]
Pierobon M, Jornet JM, Akkari N, Almasri S, Akyildiz IF. A routing framework for energy harvesting wireless nanosensor networks in the terahertz band. Wirel Netw 2013; 1-15.
[42]
Tsioliaridou A, Liaskos C, Ioannidis S, Pitsillides A. Corona: A coordinate and routing system for nanonetworks. Proc NANOCUM. 2015; 18.
[43]
Kahl LJ, Endy D. A survey of enabling technologies in synthetic biology. J Biol Eng 2013; 7(1): 13.
[44]
Wu F, Tan C. The engineering of artificial cellular nanosystems using synthetic biology approaches. WIREs Nanomed Nanobiotech 2014; 6(4): 389-83.
[45]
Payne S, You L. Engineered cell-cell communication and its applications. Adv Biochem Eng Biotechnol 2014; 146: 97-121.
[46]
Pierobon M, Akyildiz IF. A physical end-to-end model for molecular communication in nanonetworks. JSAC 2010; 28(4): 602-11.
[47]
Pierobon M, Akyildiz IF. Diffusion-based noise analysis for molecular communication in nanonetworks. Transact Signal Proces 2011; 59(6): 2532-47.
[48]
Pierobon M, Akyildiz IF. Capacity of a diffusion-based molecular communication system with channel memory and molecular noise. Transact Information Theory 2013; 59: 942-54.
[49]
Moore M, Enomoto A, Nakano T, et al. A design of a molecular communication system for nanomachines using molecular motors. PERCOMW 2006; pp. 6-12.
[50]
Nakano T, Suda T, Koujin T, Haraguchi T, Hiraoka Y. Molecular communication through gap junction channels: system design, experiments and modelling. Bionetics 2007; pp. 139-46.
[51]
Gregori M, Akyildiz IF. A new nanonetwork architecture using flagellated bacteria and catalytic nanomotors. JSAC 2010; 28(4): 612-9.
[52]
Chahibi Y, Pierobon M, Song SO, Akyildiz I. A molecular communication system model for particulate drug delivery systems. Transact Biomed Eng 2013; 60(12): 3468-83.
[53]
Pierobon M. A systems-theoretic model of a biological circuit for molecular communication in nanonetworks. Nano Commun Netw 2014; 5(1-2): 25-34.
[54]
Unluturk B, Bicen A, Akyildiz I. Genetically engineered bacteria-based biotransceivers for molecular communication. Transact Commun 2015; 63(4): 1271-81.
[55]
Marcone A, Pierobon M, Magarini M. Parity-check coding based on genetic circuits for engineered molecular communication between biological cells. Transact Commun 2018; 66(12): 6221-36.
[56]
Nelson DL, Cox MM. Lehninger principles of biochemistry. 1em plus 0.5em minus 0.4emW. H. Freeman Company, May 2008.
[57]
Parcerisa L, Akyildiz IF. Molecular communication options for long range nanonetworks. Computer Networks (Elsevier) J 2009. 53(16): 2753-66.
[58]
Pierobon M, Akyildiz IF. Diffusion-based noise analysis for molecular communication in nanonetworks. Transact Sig Process 2011; 59(6): 2532-47.
[59]
Heaton LLM, López E, Maini PK, Fricker MD, Jones NS. Advection, diffusion, and delivery over a network. Phys Rev E 2012; 86: 021905.
[60]
Weltner J, Balboa D, Katayama S, et al. Human pluripotent reprogramming with CRISPR activators. Nat Commun 2018; 9(1): 2643.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy