Review Article

Opportunities of Bacterial Cellulose to Treat Epithelial Tissues

Author(s): Irene Anton-Sales, Uwe Beekmann, Anna Laromaine*, Anna Roig* and Dana Kralisch

Volume 20, Issue 8, 2019

Page: [808 - 822] Pages: 15

DOI: 10.2174/1389450120666181129092144

open access plus

Abstract

In this mini-review, we highlight the potential of the biopolymer bacterial cellulose to treat damaged epithelial tissues. Epithelial tissues are cell sheets that delimitate both the external body surfaces and the internal cavities and organs. Epithelia serve as physical protection to underlying organs, regulate the diffusion of molecules and ions, secrete substances and filtrate body fluids, among other vital functions. Because of their continuous exposure to environmental stressors, damage to epithelial tissues is highly prevalent. Here, we first compare the properties of bacterial cellulose to the current gold standard, collagen, and then we examine the use of bacterial cellulose patches to heal specific epithelial tissues; the outer skin, the ocular surface, the oral mucosa and other epithelial surfaces. Special emphasis is made on the dermis since, to date, this is the most widespread medical use of bacterial cellulose. It is important to note that some epithelial tissues represent only the outermost layer of more complex structures such as the skin or the cornea. In these situations, depending on the penetration of the lesion, bacterial cellulose might also be involved in the regeneration of, for instance, inner connective tissue.

Keywords: Biomaterials, bacterial cellulose, epithelial tissues, wound dressing, cell carrier, drug delivery, epithelial regeneration.

Graphical Abstract

[1]
Frykberg RG, Banks J. Challenges in the treatment of chronic wounds. Adv Wound Care 2015; 4(9): 560-82.
[2]
Okonkwo UA, DiPietro LA. Diabetes and wound angiogenesis. Int J Mol Sci 2017. 3; 18(7).
[3]
Sun G, Zhang X, Shen Y-I, et al. Dextran hydrogel scaffolds enhance angiogenic responses and promote complete skin regeneration during burn wound healing. Proc Natl Acad Sci 2011; 108(52): 20976-81.
[4]
MacNeil S. Biomaterials for tissue engineering of skin. Mater Today 2008; 11(5): 26-35.
[5]
Araña M, Peña E, Abizanda G, et al. Preparation and characterization of collagen-based ADSC-carrier sheets for cardiovascular application. Acta Biomater 2013; 9(4): 6075-83.
[6]
Qi C, Yan X, Huang C, Melerzanov A, Du Y. Biomaterials as carrier, barrier and reactor for cell-based regenerative medicine. Protein Cell 2015; 6(9): 638-53.
[7]
D’Este M, Eglin D, Alini M, Kyllonen L. Bone regeneration with biomaterials and active molecules delivery. Curr Pharm Biotechnol 2015; 16(7): 582-605.
[8]
Gagner JE, Kim W, Chaikof EL. Designing protein-based biomaterials for medical applications. Acta Biomater 2014; 10(4): 1542-57.
[9]
Green JJ, Elisseeff JH. Mimicking biological functionality with polymers for biomedical applications. Nature 2016; 540(7633): 386-94.
[10]
Sugihara H, Toda S, Miyabara S, Fujiyama C, Yonemitsu N. Reconstruction of Alveolus-Like Structure from Alveolar Type II Epithelial Cells in Three-Dimensional Collagen Gel Matrix Culture. AMJ Pathol 1993. 142: 783-92.
[11]
Wang Y, Wang X, Shi J, et al. A biomimetic silk fibroin/sodium alginate composite scaffold for soft tissue engineering. Nat Publ Gr 2016; 6(39477) doi: 10.1038/srep39477 (2016)
[12]
Dou Y, Zhang B, He M, et al. Keratin/polyvinyl alcohol blend films cross-linked by dialdehyde starch and their potential application for drug release. Polymers (Basel) 2015; 7(3): 580-91.
[13]
Dong C, Lv Y. Application of collagen scaffold in tissue engineering: Recent advances and new perspectives. Polymers (Basel) 2016; 8(2): 1-20.
[14]
Yamada S, Yamamoto K, Ikeda T, Yanagiguchi K, Hayashi Y. Potency of fish collagen as a scaffold for regenerative medicine. BioMed Res Int 2014; 2014: 302932.
[15]
Mullins RJ, Richards C, Walker T. Allergic reactions to oral, surgical and topical bovine collagen Anaphylactic risk for surgeons. Aust N Z J Ophthalmol 1996; 24(3): 257-60.
[16]
Eriksson A, Burcharth J, Rosenberg J. Animal derived products may conflict with religious patients’ beliefs. Med Ethics 2013; 1: 14-8.
[17]
Willard JJ, Drexler JW, Das A, et al. Plant-derived human collagen scaffolds for skin tissue engineering. Tissue Eng Part A 2013; 19(13-14): 1507-18.
[18]
Industry Analysis Report 2025. Global Collagen Market Size By Source. Grand View Research ; 2017.
[19]
Mundada AS, Avari JG. Novel biomaterial for transdermal application: in vitro and in vivo characterization. Drug Deliv 2011; 18(6): 424-31.
[20]
Yunoki S, Hatayama H, Ebisawa M, Kondo E, Yasuda K. A novel fabrication method to create a thick collagen bundle composed of uniaxially aligned fibrils: An essential technology for the development of artificial tendon/ligament matrices. J Biomed Mater Res-Part A 2015; 103(9): 3054-65.
[21]
Baldwin M, Snelling S, Dakin S, Carr A. Augmenting endogenous repair of soft tissues with nanofibre scaffolds. J R Soc Interface 2018; 15(141): 20180019.
[22]
Mihai MM, Preda M, Lungu I, et al. Nanocoatings for chronic wound repair-modulation of microbial colonization and biofilm formation. Int J Mol Sci 2018; 19(4): 1179.
[23]
Mofazzal Jahromi MA, Sahandi Zangabad P, Moosavi Basri SM, et al. Nanomedicine and advanced technologies for burns: Preventing infection and facilitating wound healing. Adv Drug Deliv Rev 2018; 123: 33-64.
[24]
Andreu V, Mendoza G, Arruebo M, Irusta S. Smart dressings based on nanostructured fibers containing natural origin antimicrobial, anti-inflammatory, and regenerative compounds. Mater 2015; 8(8): 5154-93.
[25]
Gomes SR, Rodrigues G, Martins GG, Henriques CMR, Silva JC. In vitro evaluation of crosslinked electrospun fish gelatin scaffolds. Mater Sci Eng C 2013; 33: 1219-27.
[26]
Tonsomboon K, Butcher AL, Oyen ML. Strong and tough nanofibrous hydrogel composites based on biomimetic principles. Mater Sci Eng C 2017; 72: 220-7.
[27]
Ju HW, Lee OJ, Lee JM, et al. Wound healing effect of electrospun silk fibroin nanomatrix in burn-model. Int J Biol Macromol 2016; 85: 29-39.
[28]
Klemm D, Cranston ED, Fischer D, et al. Nanocellulose as a natural source for groundbreaking applications in materials science: Today’s state. Mater Today 2018; 21(7): 720-48.
[29]
Zeng M, Laromaine Sagué A, Roig Serra A. Bacterial cellulose: fabrication, characterization and biocompatibility studies. Autonomous University of Barcelona 2014; p. 148.
[30]
Hakkarainen T, Koivuniemi R, Kosonen M, et al. Nanofibrillar cellulose wound dressing in skin graft donor site treatment. J Control Release 2016; 244: 292-301.
[31]
Paukkonen H, Kunnari M, Laurén P, et al. Nanofibrillar cellulose hydrogels and reconstructed hydrogels as matrices for controlled drug release. Int J Pharm 2017; 532(1): 269-80.
[32]
Picheth GF, Pirich CL, Sierakowski MR, et al. Bacterial cellulose in biomedical applications: A review. Int J Biol Macromol 2017; 104: 97-106.
[33]
Sulaeva I, Henniges U, Rosenau T, Potthast A. Bacterial cellulose as a material for wound treatment: Properties and modifications. A review. Biotechnol Adv 2015; 33(8): 1547-71.
[34]
Brown AJ. XLIII.-On an acetic ferment which forms cellulose. J Chem Soc Trans 1886; 49: 432-9.
[35]
Müller A, Ni Z, Hessler N, et al. The biopolymer bacterial nanocellulose as drug delivery system: investigation of drug loading and release using the model protein albumin. J Pharm Sci 2013; 102(2): 579-92.
[36]
Rajwade JM, Paknikar KM, Kumbhar JV. Applications of bacterial cellulose and its composites in biomedicine. Appl Microbiol Biotechnol 2015; 99(6): 2491-511.
[37]
Lee KY, Buldum G, Mantalaris A, Bismarck A. More than meets the eye in bacterial cellulose: Biosynthesis, bioprocessing, and applications in advanced fiber composites. Macromol Biosci 2014; 14(1): 10-32.
[38]
Kralisch D, Hessler N, Klemm D, Erdmann R, Schmidt W. White biotechnology for cellulose manufacturing-the HoLiR concept. Biotechnol Bioeng 2010; 105(4): 740-7.
[39]
Klemm D, Kramer F, Moritz S, et al. Nanocelluloses: A new family of nature-based materials. Angew Chem Int Ed Engl 2011; 50(24): 5438-66.
[40]
Chen L, Hong F, Yang XX, Han SF. Biotransformation of wheat straw to bacterial cellulose and its mechanism. Bioresour Technol 2013; 135: 464-8.
[41]
Abeer MM, Mohd Amin MCI, Martin C. A review of bacterial cellulose-based drug delivery systems: Their biochemistry, current approaches and future prospects. J Pharm Pharmacol 2014; 66(8): 1047-61.
[42]
Gardner KH, Blackwell J. The structure of native cellulose. Biopolymers 1974; 13(10): 1975-2001.
[43]
Guo J, Catchmark JM. Surface area and porosity of acid hydrolyzed cellulose nanowhiskers and cellulose produced by Gluconacetobacter xylinus. Carbohydr Polym 2012; 87(2): 1026-37.
[44]
Kim D, Nishiyama Y, Kuga S. Surface acetylation of bacterial cellulose. Cellulose 2002; 9(3): 361-7.
[45]
Gatenholm P, Klemm D. Bacterial nanocellulose as a renewable material for biomedical applications. MRS Bull 2010; 35: 208-13.
[46]
Bodin A, Backdahl H, Fink H, et al. Influence of cultivation conditions on mechanical and morphological properties of bacterial cellulose tubes. Biotechnol Bioeng 2007; 97(2): 425-34.
[47]
Pötzinger Y, Kralisch D, Fischer D. Bacterial nanocellulose: The future of controlled drug delivery? 2017; 8(9): 753-61.
[48]
Klemm D, Schuhmann D, Udhardt U, Marsch S. Bacterial synthesized cellulose-artificial blood vessels for microsurgery. Prog Polym Sci 2001; 26(9): 1561-603.
[49]
Nimeskern L, Martínez Ávila H, Sundberg J, et al. Mechanical evaluation of bacterial nanocellulose as an implant material for ear cartilage replacement. J Mech Behav Biomed Mater 2013; 22: 12-21.
[50]
Chan EC, Kuo S-M, Kong AM, et al. Three dimensional collagen scaffold promotes intrinsic vascularisation for tissue engineering applications. Lai J-Y, editor. PLoS One. 2016; 11(2): e0149799.
[51]
Zeng M, Laromaine A, Roig A. Bacterial cellulose films: Influence of bacterial strain and drying route on film properties. Cellulose 2014; 21(6): 4455-69.
[52]
Reese SPP, Farhang N, Poulson R, Parkman G, Weiss JAA. Nanoscale imaging of collagen gels with focused ion beam milling and scanning electron microscopy. Biophys J 2016; 111(8): 1797-804.
[53]
Stein H, Wilensky M, Tsafrir Y, et al. Production of bioactive, post-translationally modified, heterotrimeric, human recombinant type-I collagen in transgenic tobacco. Biomacromol 2009; 10: 2640-5.
[54]
Reese SP, Farhang N, Poulson R, Parkman G, Weiss JA. Nanoscale imaging of collagen gels with focused ion beam milling and scanning electron microscopy. Biophys J 2016; 111: 1797-804.
[55]
Yunoki S, Hatayama H, Ebisawa M, Kondo E, Yasuda K. A novel fabrication method to create a thick collagen bundle composed of uniaxially aligned fibrils: An essential technology for the development of artificial tendon/ligament matrices. J Biomed Mater Res Part A 2015; 103(9): 3054-65.
[56]
Kirkwood JE, Fuller GG. Liquid crystalline collagen: A self-assembled morphology for the orientation of mammalian cells. Langmuir 2009; 25: 3200-6.
[57]
Ahn S, Lee S, Cho Y, Chun W, Kim G. Fabrication of three-dimensional collagen scaffold using an inverse mould-leaching process. Bioprocess Biosyst Eng 2011; 34(7): 903-11.
[58]
Wang S, Jiang F, Xu X, et al. Super-Strong, super-stiff macrofibers with aligned, long bacterial cellulose nanofibers. Adv Mater 2017; 29(35): 1702498.
[59]
Geisel N, Clasohm J, Shi X, et al. Microstructured multilevel bacterial cellulose allows the guided growth of neural stem cells. Small 2016; 12(39): 5407-13.
[60]
Jia Y, Zhu W, Zheng M, Huo M, Zhong C. Bacterial cellulose/hyaluronic acid composite hydrogels with improved viscoelastic properties and good thermodynamic stability. Plast Rubber Compos 2018; 47(4): 165-75.
[61]
Lee S-H, Kang S-S, Jeong C-M, Huh J-B. The effect of bacterial cellulose membrane compared with collagen membrane on guided bone regeneration. J Adv Prosthodont 2015; 7: 484-95.
[62]
Raftery RM, Woods B, Marques ALPP, et al. Multifunctional biomaterials from the sea: Assessing the effects of chitosan incorporation into collagen scaffolds on mechanical and biological functionality. Acta Biomater 2016; 43: 160-9.
[63]
Pertile RAN, Andrade FK, Alves C, Gama M. Surface modification of bacterial cellulose by nitrogen-containing plasma for improved interaction with cells. Carbohydr Polym 2010; 82(3): 692-8.
[64]
Lv X, Yang J, Feng C, et al. Bacterial cellulose-based biomimetic nanofibrous scaffold with muscle cells for hollow organ tissue engineering. ACS Biomater Sci Eng 2016; 2(1): 19-29.
[65]
Heßler N, Klemm D. Alteration of bacterial nanocellulose structure by in situ modification using polyethylene glycol and carbohydrate additives. Cellulose 2009; 16(5): 899-910.
[66]
Madaghiele M, Calò E, Salvatore L, et al. Assessment of collagen crosslinking and denaturation for the design of regenerative scaffolds. J Biomed Mater Res (Part A) 2016; 104(1): 186-94.
[67]
Gonçalves S, Rodrigues IP, Padrão J, et al. Acetylated bacterial cellulose coated with urinary bladder matrix as a substrate for retinal pigment epithelium. Colloids Surf B Biointerfaces 20161(139): 1-9.
[68]
Bottan S, Robotti F, Jayathissa P, et al. Surface-structured bacterial cellulose with guided assembly-based biolithography (GAB). ACS Nano 2014; 9(1): 206-19.
[69]
James CC, Marcus AJ, Fernando G, et al. Surface modified cellulose scaffolds for tissue engineering. Cellulose 2017; 24: 253-67.
[70]
Chua AWC, Khoo YC, Tan BK, et al. Skin tissue engineering advances in severe burns: Review and therapeutic applications. Burns Trauma 2016; 4(1): 3.
[71]
Sundaramurthi D, Krishnan UM, Sethuraman S. Electrospun nanofibers as scaffolds for skin tissue engineering. Polym Rev 2014; 54(2): 348-76.
[72]
Paul W. Advances in wound healing materials. Smithers Rapra 2015.
[73]
Andonova M, Urumova V. Immune surveillance mechanisms of the skin against the stealth infection strategy of Pseudomonas aeruginosa-Review. Comp Immunol Microbiol Infect Dis 2013; 36: 433-48.
[74]
Mühlstädt M, Thomé C, Kunte C. Rapid wound healing of scalp wounds devoid of periosteum with milling of the outer table and split-thickness skin grafting. Br J Dermatol 2012; 167(2): 343-7.
[75]
Siedenbiedel F, Tiller JC. Antimicrobial polymers in solution and on surfaces: Overview and functional principles. Polymers (Basel) 2012; 4(1): 46-71.
[76]
Simões D, Miguel SP, Ribeiro MP, et al. Recent advances on antimicrobial wound dressing: A review. Eur J Pharm Biopharm 2018; 127: 130-41.
[77]
Fontana JD, De Souza AM, Fontana CK, et al. Acetobacter cellulose pellicle as a temporary skin substitute. Appl Biochem Biotechnol 1990; 24(1): 253-64.
[78]
Ring DF, Nashed W, Dow T. Liquid loaded pad for medical applications. Vol. US4588400. Google Patents; 1987.
[79]
Cavalcanti LM, Pinto FCM, Oliveira GM de, et al. Efficacy of bacterial cellulose membrane for the treatment of lower limbs chronic varicose ulcers: A randomized and controlled trial. Rev Col Bras Cir 2017; 44(1): 72-80.
[80]
Picheth G, Pirich C, Sierakowski M, et al. Bacterial cellulose in biomedical applications: A review. Int J Biol Macromol 2017; 114: 97-106.
[81]
Czaja W, Krystynowicz A, Kawecki M, et al. Biomedical applications of microbial cellulose in burn wound recovery. Brown Jr. RM, Saxena I, editors. Cellul Mol Struct Biol 2007; 307-21.
[82]
Frankel VH, Serafica GC, Damien CJ. Development and testing of a novel biosynthesized XCell for treating chronic wounds. Surg Technol Int 2004; 12: 27-33.
[83]
Kwak MH, Kim JE, Go J, et al. Bacterial cellulose membrane produced by Acetobacter sp. A10 for burn wound dressing applications. Carbohydr Polym 2015; 122: 387-98.
[84]
Li Y, Wang S, Huang R, et al. Evaluation of the effect of the structure of bacterial cellulose on full thickness skin wound repair on a microfluidic chip. Biomacromolecules 2015; 16(3): 780-9.
[85]
Bottan S, Robotti F, Jayathissa P, et al. Surface-structured bacterial cellulose with guided assembly-based biolithography (GAB). ACS Nano 2014; 9(1): 206-19.
[86]
Wu H, Williams GR, Wu J, et al. Regenerated chitin fibers reinforced with bacterial cellulose nanocrystals as suture biomaterials. Carbohydr Polym 2018; 180: 304-13.
[87]
Wu C-N, Fuh S-C, Lin S-P, et al. TEMPO-oxidized bacterial cellulose pellicle with silver nanoparticles for wound dressing. Biomacromolecules 2018; 19(2): 544-54.
[88]
Khalid A, Khan R, Ul-Islam M, Khan T, Wahid F. Bacterial cellulose-zinc oxide nanocomposites as a novel dressing system for burn wounds. Carbohydr Polym 2017; 164: 214-21.
[89]
Khalid A, Ullah H, Ul-Islam M, et al. Bacterial cellulose-TiO2 nanocomposites promote healing and tissue regeneration in burn mice model. RSC Advances 2017; 7(75): 47662-8.
[90]
Tsai Y-H, Yang Y-N, Ho Y-C, Tsai M-L, Mi F-L. Drug release and antioxidant/antibacterial activities of silymarin-zein nanoparticle/ bacterial cellulose nanofiber composite films. Carbohydr Polym 2018; 180: 286-96.
[91]
Alkhatib Y, Dewaldt M, Moritz S, et al. Controlled extended octenidine release from a bacterial nanocellulose/Poloxamer hybrid system. Eur J Pharm Biopharm 2017; 12: 164-76.
[92]
de Lima Fontes M, Meneguin AB, Tercjak A, et al. Effect of in situ modification of bacterial cellulose with carboxymethylcellulose on its nano/microstructure and methotrexate release properties. Carbohydr Polym 2018; 179: 126-34.
[93]
Hobzova R, Hrib J, Sirc J, et al. Embedding of bacterial cellulose nanofibers within PHEMA hydrogel matrices: Tunable Stiffness composites with potential for biomedical applications. J Nanomater 2018; 2018: 1-11.
[94]
Fürsatz M, Skog M, Sivlér P, et al. Functionalization of bacterial cellulose wound dressings with the antimicrobial peptide ε -poly-L-Lysine. Biomed Mater 2018; 13(2): 25014.
[95]
Wang J, Gao C, Zhang Y, Wan Y. Preparation and in vitro characterization of BC/PVA hydrogel composite for its potential use as artificial cornea biomaterial. Mater Sci Eng C 2010; 30(1): 214-8.
[96]
Rebelo RA, Archer AJ, Chen X, et al. Dehydration of bacterial cellulose and the water content effects on its viscoelastic and electrochemical properties. Sci Technol Adv Mater 2018; 19(1): 203-11.
[97]
Moraes PRF de S, Saska S, Barud H, et al. Bacterial cellulose/collagen hydrogel for wound healing. Mater Res 2016; 19: 106-16.
[98]
Lamboni L, Li Y, Liu J, Yang G. Silk sericin-functionalized bacterial cellulose as a potential wound-healing biomaterial. Biomacromolecules 2016; 17(9): 3076-84.
[99]
Lin W-C, Lien C-C, Yeh H-J, Yu C-M, Hsu S. Bacterial cellulose and bacterial cellulose-chitosan membranes for wound dressing applications. Carbohydr Polym 2013; 94: 603-11.
[100]
Lin S-P, Kung H-N, Tsai Y-S, et al. Novel dextran modified bacterial cellulose hydrogel accelerating cutaneous wound healing. Cellulose 2017; 24(11): 4927-37.
[101]
Ye S, Jiang L, Wu J, et al. Flexible amoxicillin-grafted bacterial cellulose sponges for wound dressing: In Vitro and in Vivo Evaluation. ACS Appl Mater Interfaces 2018; 10(6): 5862-70.
[102]
Mohamad N, Loh EYX, Fauzi MB, Ng MH, Mohd Amin MCI. In vivo evaluation of bacterial cellulose/acrylic acid wound dressing hydrogel containing keratinocytes and fibroblasts for burn wounds. Drug Deliv Transl Res 2018; 4: 1-9.
[103]
Lace R, Celia M-D, Williams R. Biomaterials for ocular reconstruction. J Mater Sci 2015; 50: 1523-34.
[104]
Alex G. Mcgaughy, BS, Preeya K, Gupta M, Edited by Sharon Fekrat, MD, and Ingrid U. Scott, MD M, McGaughy A, Gupta, MD P. In Office Use of Amniotic Membrane. Cornea 2015; (3): 31-2.
[105]
Parihar JKS, Parihar AS, Jain VK, Kaushik J, Nath P. Allogenic cultivated limbal stem cell transplantation versus cadaveric keratolimbal allograft in ocular surface disorder: 1-year outcome. Int Ophthalmol 2017; 37(6): 1323-31.
[106]
el_ojo_humano_drsoler.com_.jpg (800×592) [Internet]. [cited 2018 Jul 18]. Available from: https://drsoler.com/blog/wp-content/ uploads/2013/06/el_ojo_humano_drsoler.com_.jpg
[107]
Wu Z, Kong B, Liu R, Sun W, Mi S. Engineering of corneal tissue through an aligned pva/collagen composite nanofibrous electrospun scaffold. Nanomaterials 2018; 8(2): 124.
[108]
Isaacson A, Swioklo S, Connon CJ. 3D bioprinting of a corneal stroma equivalent. Exp Eye Res 2018; 173: 188-93.
[109]
Yao Q, Zhang W, Hu Y, et al. Electrospun collagen/poly(L-lactic acid-co-ε-caprolactone) scaffolds for conjunctival tissue engineering. Exp Ther Med 2017; 14(5): 4141-7.
[110]
Williams R, Lace R, Kennedy S, Doherty K, Levis H. Biomaterials for regenerative medicine approaches for the anterior segment of the eye. Adv Healthc Mater 2018; 7(10): 1701328.
[111]
Ullah H, Wahid F, Santos HA, Khan T. Advances in biomedical and pharmaceutical applications of functional bacterial cellulose-based nanocomposites. Carbohydr Polym 2016; 150: 330-52.
[112]
de Oliveira Barud HG, da Silva RR, da Silva Barud H, et al. A multipurpose natural and renewable polymer in medical applications: Bacterial cellulose. Carbohydr Polym 2016; 153: 406-20.
[113]
Laromaine A, Tronser T, Pini I, et al. Free-standing three-dimensional hollow bacterial cellulose structures with controlled geometry via patterned superhydrophobic–hydrophilic surfaces. Soft Matter 2018; 14(19): 3955-62.
[114]
Cao J, Zhang C, Zhao S, Wan Y, Hu D. Feasibility of bacterial cellulose membrane as biological scaffold for construction of tissue engineering corneal epithelium. Chinese J Exp Ophthalmol 2016; 34(2): 121-4.
[115]
Rodrigo VS, Fabrício LV, Emily CCR, et al. Bacterial cellulose and bacterial cellulose/polycaprolactone composite as tissue substitutes in rabbits’ cornea. Pesq Vet Bras 2016; 36(10): 986-92.
[116]
Bourne RRA, Jonas JB, Bron AM, et al. Prevalence and causes of vision loss in high-income countries and in Eastern and Central Europe in 2015: Magnitude, temporal trends and projections. Br J Ophthalmol 2018; 102(5): 575-85.
[117]
Gonçalves S, Padrão J, Rodrigues IP, et al. Bacterial cellulose as a support for the growth of retinal pigment epithelium. Biomacromolecules 2015; 16(4): 1341-51.
[118]
Beekmann U, Weyell P, Küpper C, Dederichs M, Kralisch D. Modified bacterial nanocellulose as biodegradable carrier system for antibiosis in dentistry. In Würzburg; 2017.
[119]
Weyell P, Beekmann U, Kuepper C, et al. Tailor-made material characteristics of bacterial cellulose for drug delivery applications in dentistry. Carbohydr Polym 2019; 207: 1-10.
[120]
Chiaoprakobkij N, Sanchavanakit N, Subbalekha K, Pavasant P, Phisalaphong M. Characterization and biocompatibility of bacterial cellulose/alginate composite sponges with human keratinocytes and gingival fibroblasts. Carbohydr Polym 2011; 85(3): 548-53.
[121]
Biskin S, Damar M, Oktem SN, et al. A new graft material for myringoplasty: Bacterial cellulose. Eur Arch Oto-Rhino- Laryngology 2016; 273(11): 3561-5.
[122]
Angtika RS, Widiyanti P. Aminatun. Bacterial cellulose-chitosan-glycerol biocomposite as artificial dura mater candidates for head trauma. J Biomimetics Biomater Biomed Eng 2018; 36: 7-16.
[123]
Lima F de MT, de , Pinto FCM, et al. Biocompatible bacterial cellulose membrane in dural defect repair of rat. J Mater Sci Mater Med 2017; (28): 37.
[124]
Rosen CL, Steinberg GK, Demonte F, et al. Results of the prospective, randomized, multicenter clinical trial evaluating a biosynthesized cellulose graft for repair of dural defects. Neurosurgery 2011; 69(5): 1093-103.
[125]
Hansson GC. Role of mucus layers in gut infection and inflammation. Curr Opin Microbiol 2012; 15(1): 57-62.
[126]
Yu M, Wang J, Yang Y, et al. Rotation-facilitated rapid transport of nanorods in mucosal tissues. Nano Lett 2016; 16: 7176-82.
[127]
Tronser T, Laromaine A, Roig A, Levkin PA. Bacterial cellulose promotes long-term stemness of mesc. ACS Appl Mater Interfaces 2018; 10(19): 16260-9.

© 2024 Bentham Science Publishers | Privacy Policy