Review Article

生物医学应用中的纳米网络

卷 20, 期 8, 2019

页: [800 - 807] 页: 8

弟呕挨: 10.2174/1389450120666190115152613

价格: $65

摘要

通过互连纳米机器和形成纳米网络,预期单个纳米机器的容量将得到增强,因为随后的信息交换将允许它们朝着共同的目标进行合作。 如今,系统通常使用电磁信号来编码,发送和接收信息,然而,在新颖的通信范例中,分子收发器,信道模型或协议使用分子。 本文介绍了纳米机器的当前发展及其未来的架构,以更好地理解生物医学应用中的纳米网络场景。 此外,为了突出纳米机器之间的通信需求,还提出了纳米网络的两种应用:i)一种新的网络范例,称为纳米网络互联网,允许纳米级设备与现有通信网络互连,以及ii)分子通信,其中 药物颗粒等化合物的传播,进行信息交换。

关键词: Nanonetworks,nanocommunication,nanothings,bionanothings,分子通讯,靶向药物输送。

图形摘要

[1]
Wong CL, Olivo M. Surface plasmon resonance imaging sensors: A review. Plasmonics 2014; 9(4): 809-24.
[2]
Nguyen HH, Park J, Kang S, Kim M. Surface plasmon resonance: A versatile technique for biosensor applications. Sensors 2015; 15(5): 10481-510.
[3]
Qureshi A, Gurbuz Y, Niazi JH. Biosensors for cardiac biomarkers detection: A review. Sens Actuators B Chem 2012; 171: 62-76.
[4]
Yang M, Yi X, Wang J, Zhou F. Electroanalytical and surface plasmon resonance sensors for detection of breast cancer and Alzheimer’s disease biomarkers in cells and body fluids. Analyst 2014; 139(8): 1814-25.
[5]
Vendrell M, Maiti KK, Dhaliwal K, Chang Y-T. Surface-enhanced Raman scattering in cancer detection and imaging. Trends Biotechnol 2013; 31(4): 249-57.
[6]
Hudson SD, Chumanov G. Bioanalytical applications of sers (surface-enhanced Raman spectroscopy). Anal Bioanal Chem 2009; 394(3): 679-86.
[7]
Wu L, Qu X. Cancer biomarker detection: Recent achievements and challenges. Chem Soc Rev 2015; 44(10): 2963-97.
[8]
Aoki PH, Furini LN, Alessio P, Aliaga AE, Constantino CJ. Surface-enhanced Raman scattering (SERS) applied to cancer diagnosis and detection of pesticides, explosives, and drugs. Rev Anal Chem 2013; 32(1): 55-76.
[9]
Kumar M. Handbook of particulate drug delivery: Applications plus 05em minus 04em. American Scientific Publishers 2008.
[10]
Chahibi Y. Molecular communication for drug delivery systems: A survey. Nano Commun Netw 2017; 11: 90-102.
[11]
Sharma RKK, Anil K, Kesharwani RK. Nanobiomaterials: Applications in Drug Delivery. plus 0.5em minus 0.4em Apple Academic Press, Internet resource, 2017.
[12]
Zhang W, Pei J, Lai L. Computational multitarget drug design. J Chem Inf Model 2017; 57(3): 403-12.
[13]
Akyildiz IF, Brunetti F, Blazquez C. Nanonetworks: A new communication paradigm. Computer Networks (Elsevier) J 2008. 52(12): 2260-79.
[14]
Akyildiz IF, Jornet JM. Electromagnetic wireless nanosensor networks. Nano Commun Networks (Elsevier) J 2010. 1(1): 3-19.
[15]
Akyildiz IF, Jornet JM, Pierobon M. Nanonetworks: A new frontier in communications. Commun ACM 2011; 54(11): 84-9.
[16]
Akyildiz IF, Jornet JM. The internet of nano-things. IEEE Wireless Communications Magazine 2010; 17(6): 58-63.
[17]
Akyildiz IF, Pierobon M, Balasubramaniam S, Koucheryavy Y. The internet of bio-nano things. IEEE Commun Mag 2015; 53(3): 32-40.
[18]
Feynman R. There’s plenty of room at the bottom. Talk, American Physical Society at the California Institute of Technology (Caltech) Pasadena, 29 December 1959). http://www.zyvex.com/nanotech/ feynman.html
[19]
Ferrari AC, Bonaccorso F. Fal’Ko V, et al. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 20185; 7(11): 4598-810.
[20]
Splendiani A, Sun L, Zhang Y, et al. Emerging photoluminescence in monolayer mos2. Nano Lett 2010; 10(4): 1271-5.
[21]
Giovannetti G, Khomyakov PA, Brocks G, Kelly PJ, Van Den Brink J. Substrate-induced band gap in graphene on hexagonal boron nitride: Ab initio density functional calculations. Phys Rev B 2007; 76(7): 073103.
[22]
Geim AK, Grigorieva IV. Van der waals heterostructures. Nat 2013; 499: 419-25.
[23]
Ponomarenko LA, Schedin F, Katsnelson MI, et al. Chaotic dirac billiard in graphene quantum dots. Sci 2008; 320(5874): 356-8.
[24]
Pla JJ, Tan Y, Dehollain JP, et al. A single-atom electron spin qubit in silicon. Nat 2012; 489: 541-5.
[25]
Specht HP, Nölleke C, Reiserer A, et al. A single-atom quantum memory. Nat 2011; 473: 190-3.
[26]
Brazier A, Dupont L, Dantras-Laffont L, et al. First cross-section observation of an all solid-state lithium-ion “nanobattery” by transmission electron microscopy. Chem Mater 2008; 20(6): 2352-9.
[27]
Wang ZL, Jiang T, Xu L. Toward the blue energy dream by triboelectric nanogenerator networks. Nano Energy 2017; 39: 9-23.
[28]
Gadalla M, Abdel-Rahman M, Shamim A. Design, optimization and fabrication of a 28.3 thz nano-rectenna for infrared detection and rectification. Sci Rep 2014; 4: 4270.
[29]
Nafari M, Jornet JM. Modeling and performance analysis of metallic plasmonic nano-antennas for wireless optical communication in nanonetworks. IEEE Access 2017. 5: 6389-98.
[30]
Feng L, Wong ZJ, Ma RM, Wang Y, Zhang X. Single-mode laser by parity-time symmetry breaking. Sci 2014; 346: 972-5.
[31]
Luo L-B, Zou Y-F, Ge C-W, et al. A surface plasmon enhanced near-infrared nanophotodetector. Adv Opt Mater 2016; 4: 763-71.
[32]
Jornet JM, Akyildiz IF. Graphene-based plasmonic nano-transceiver for terahertz band communication. EuCAP 2014.
[33]
Jornet JM, Akyildiz IF. Graphene-based plasmonic nano-antenna for terahertz band communication in nanonetworks. IEEE JSAC 2013; 12(12): 685-94.
[34]
Maune HT, Han S-P, Barish RD, et al. Self-assembly of carbon nanotubes into two-dimensional geometries using dna origami templates. Nat Nanotechnol 2010; 5(1): 61.
[35]
Akyildiz IF, Jornet JM, Pierobon M. Chapter 215-1, Nanonetworks. Springer Nature America, Inc 2018.
[36]
Jornet JM, Akyildiz IF. Channel modeling and capacity analysis of electromagnetic wireless nanonetworks in the terahertz band. IEEE Trans Wirel Commun 2011; 1(10): 3211-21.
[37]
Han C, Bicen AQ, Akyildiz I. Multi-ray channel modeling and wideband characterization for wireless communications in the terahertz band. IEEE Trans Wirel Commun 2015; 14: 2402-12.
[38]
Johari P, Jornet JM. Nanoscale optical wireless channel model for intra-body communications: Geometrical, time, and frequency domain analyses. IEEE Trans Commun 2018; 66: 1579-93.
[39]
Jornet JM, Akyildiz IF. Femtosecond-long pulse-based modulation for terahertz band communication in nanonetworks. IEEE Trans Commun 2014; 62(5): 1742-54.
[40]
Jornet JM. Low-weight error-prevention codes for electromagnetic nanonetworks in the terahertz band. Nano Commun Networks (Elsevier) J 2014. 5(1-2): 35-44.
[41]
Pierobon M, Jornet JM, Akkari N, Almasri S, Akyildiz IF. A routing framework for energy harvesting wireless nanosensor networks in the terahertz band. Wirel Netw 2013; 1-15.
[42]
Tsioliaridou A, Liaskos C, Ioannidis S, Pitsillides A. Corona: A coordinate and routing system for nanonetworks. Proc NANOCUM. 2015; 18.
[43]
Kahl LJ, Endy D. A survey of enabling technologies in synthetic biology. J Biol Eng 2013; 7(1): 13.
[44]
Wu F, Tan C. The engineering of artificial cellular nanosystems using synthetic biology approaches. WIREs Nanomed Nanobiotech 2014; 6(4): 389-83.
[45]
Payne S, You L. Engineered cell-cell communication and its applications. Adv Biochem Eng Biotechnol 2014; 146: 97-121.
[46]
Pierobon M, Akyildiz IF. A physical end-to-end model for molecular communication in nanonetworks. JSAC 2010; 28(4): 602-11.
[47]
Pierobon M, Akyildiz IF. Diffusion-based noise analysis for molecular communication in nanonetworks. Transact Signal Proces 2011; 59(6): 2532-47.
[48]
Pierobon M, Akyildiz IF. Capacity of a diffusion-based molecular communication system with channel memory and molecular noise. Transact Information Theory 2013; 59: 942-54.
[49]
Moore M, Enomoto A, Nakano T, et al. A design of a molecular communication system for nanomachines using molecular motors. PERCOMW 2006; pp. 6-12.
[50]
Nakano T, Suda T, Koujin T, Haraguchi T, Hiraoka Y. Molecular communication through gap junction channels: system design, experiments and modelling. Bionetics 2007; pp. 139-46.
[51]
Gregori M, Akyildiz IF. A new nanonetwork architecture using flagellated bacteria and catalytic nanomotors. JSAC 2010; 28(4): 612-9.
[52]
Chahibi Y, Pierobon M, Song SO, Akyildiz I. A molecular communication system model for particulate drug delivery systems. Transact Biomed Eng 2013; 60(12): 3468-83.
[53]
Pierobon M. A systems-theoretic model of a biological circuit for molecular communication in nanonetworks. Nano Commun Netw 2014; 5(1-2): 25-34.
[54]
Unluturk B, Bicen A, Akyildiz I. Genetically engineered bacteria-based biotransceivers for molecular communication. Transact Commun 2015; 63(4): 1271-81.
[55]
Marcone A, Pierobon M, Magarini M. Parity-check coding based on genetic circuits for engineered molecular communication between biological cells. Transact Commun 2018; 66(12): 6221-36.
[56]
Nelson DL, Cox MM. Lehninger principles of biochemistry. 1em plus 0.5em minus 0.4emW. H. Freeman Company, May 2008.
[57]
Parcerisa L, Akyildiz IF. Molecular communication options for long range nanonetworks. Computer Networks (Elsevier) J 2009. 53(16): 2753-66.
[58]
Pierobon M, Akyildiz IF. Diffusion-based noise analysis for molecular communication in nanonetworks. Transact Sig Process 2011; 59(6): 2532-47.
[59]
Heaton LLM, López E, Maini PK, Fricker MD, Jones NS. Advection, diffusion, and delivery over a network. Phys Rev E 2012; 86: 021905.
[60]
Weltner J, Balboa D, Katayama S, et al. Human pluripotent reprogramming with CRISPR activators. Nat Commun 2018; 9(1): 2643.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy