Generic placeholder image

Drug Metabolism Letters

Editor-in-Chief

ISSN (Print): 1872-3128
ISSN (Online): 1874-0758

Research Article

“Branched Tail” Oxyquinoline Inhibitors of HIF Prolyl Hydroxylase: Early Evaluation of Toxicity and Metabolism Using Liver-on-a-chip

Author(s): Andrey A. Poloznikov*, Sergey V. Nikulin, Arpenik A. Zakhariants, Anna Y. Khristichenko, Dmitry M. Hushpulian, Ildar N. Gazizov, Vladimir I. Tishkov and Irina G. Gazaryan

Volume 13, Issue 1, 2019

Page: [45 - 52] Pages: 8

DOI: 10.2174/1872312813666181129100950

Abstract

Background: “Branched tail” oxyquinolines, and adaptaquin in particular, are potent HIF prolyl hydroxylase inhibitors showing promising results in in vivo hemorrhagic stroke models. The further improvement of the potency resulted in identification of a number of adaptaquin analogs. Early evaluation of toxicity and metabolism is desired right at the step of lead selection.

Objective: The aim of the study is to characterize the toxicity and metabolism of adaptaquin and its new improved analogs.

Method: Liver-on-a-chip technology with differentiated HepaRG cells followed by LC-MS detection of the studied compounds and metabolites of the P450 substrate-inhibitor panel for CYP2B6, CYP2C9, CYP2C19, and CYP3A4.

Results: The optimized adaptaquin analogs show no toxicity up to a 100-fold increased range over EC50. The drugs are metabolized by CYP3A4 and CYP2B6 as shown with the use of the cytochrome P450 substrate-inhibitor panel designed and optimized for preclinical evaluation of drugs’ in vitro biotransformation on a 3D human histotypical cell model using “liver-on-a-chip” technology. Activation of CYP2B6 with the drugs tested has been observed. A scheme for adaptaquin oxidative conversion is proposed.

Conclusion: The optimized adaptaquin analogs are suitable for further preclinical trials. Activation of CYP2B6 with adaptaquin and its variants points to a potential increase in Tylenol toxicity if administered together.

Keywords: CYP2B6 induction, early drug-discovery stage, HepaRG cells, HIF prolyl hydroxylase inhibitor, adaptaquin, oxyquinolines.

Graphical Abstract

[1]
Poloznikov, A.; Gazaryan, I.; Shkurnikov, M.; Nikulin, S.; Drapkina, O.; Baranova, A.; Tonevitsky, A. In vitro and in silico liver models: current trends, challenges and opportunities. ALTEX, 2018, 35, 397-412.
[2]
Smirnova, N.A.; Rakhman, I.; Moroz, N.; Basso, M.; Payappilly, J.; Kazakov, S.; Hernandez-Guzman, F.; Gaisina, I.N.; Kozikowski, A.P.; Ratan, R.R.; Gazaryan, I.G. Utilization of an in vivo reporter for high throughput identification of branched small molecule regulators of hypoxic adaptation. Chem. Biol., 2010, 17, 380-391.
[3]
Neitemeier, S.; Dolga, A.M.; Honrath, B.; Karuppagounder, S.S.; Alim, I.; Ratan, R.R.; Culmsee, C. Inhibition of HIF-Prolyl-4-hydroxylases prevents mitochondrial impairment and cell death in a model of neuronal oxytosis. Cell Death Dis., 2016, 7, e2214.
[4]
Karuppagounder, S.S.; Alim, I.; Khim, S.J.; Bourassa, M.W.; Sleiman, S.F.; John, R.; Thinnes, C.C.; Yeh, T-L.; Demetriades, M.; Neitemeier, S.; Cruz, D.; Gazaryan, I.; Killilea, D.W.; Morgenstern, L.; Xi, G.; Keep, R.F.; Schallert, T.; Tappero, R.V.; Zhong, J.; Cho, S.; Maxfield, F.R.; Holman, T.R.; Culmsee, C.; Fong, G-H.; Su, Y.; Ming, G.; Song, H.; Cave, J.W.; Schofield, C.J.; Colbourne, F.; Coppola, G.; Ratan, R.R. Therapeutic targeting of oxygen-sensing prolyl hydroxylases abrogates ATF4-Dependent neuronal death and improves outcomes after brain hemorrhage in several rodent models. Sci. Transl. Med., 2016, 8, 328ra29.
[5]
Poloznikov, A.A.; Zakhariants, A.A.; Nikulin, S.V.; Smirnova, N.A.; Hushpulian, D.M.; Gaisina, I.N.; Tonevitsky, A.G.; Tishkov, V.I.; Gazaryan, I.G. Structure-activity relationship for branched oxyquinoline HIF activators: effect of modifications to phenylacetamide “Tail”. Biochimie, 2017, 133, 74-79.
[6]
Osipyants, A.I.; Smirnova, N.A.; Khristichenko, A.Y.; Hushpulian, D.M.; Nikulin, S.V.; Chubar, T.A.; Zakhariants, A.A.; Tishkov, V.I.; Gazaryan, I.G.; Poloznikov, A.A. Enzyme-substrate reporters for evaluation of substrate specificity of HIF prolyl hydroxylase isoforms. Biochem., 2017, 82, 1207-1214.
[7]
Aleksandrova, A.V.; Burmistrova, O.A.; Fomicheva, K.A.; Sakharov, D.A. Maintenance of high cytochrome P450 expression in HepaRG cell spheroids in DMSO-Free medium. Bull. Exp. Biol. Med., 2016, 161, 120-124.
[8]
Zakhariants, A.A.; Burmistrova, O.A.; Shkurnikov, M.Y.; Poloznikov, A.A.; Sakharov, D.A. Development of a specific substrate-inhibitor panel (Liver-on-a-Chip) for evaluation of cytochrome P450 activity. Bull. Exp. Biol. Med., 2016, 162, 170-174.
[9]
Zakharyants, A.A.; Burmistrova, O.A.; Poloznikov, A.A. The use of human liver cell model and cytochrome p450 substrate-inhibitor panel for studies of dasatinib and warfarin interactions. Bull. Exp. Biol. Med., 2017, 162, 515-519.
[10]
Semenova, O.V.; Petrov, V.A.; Gerasimenko, T.N.; Aleksandrova, A.V.; Burmistrova, O.A.; Khutornenko, A.A.; Osipyants, A.I.; Poloznikov, A.A.; Sakharov, D.A. Effect of circulation parameters on functional status of HepaRG spheroids cultured in microbioreactor. Bull. Exp. Biol. Med., 2016, 161, 425-429.
[11]
Shirasaka, Y.; Sager, J.E.; Lutz, J.D.; Davis, C.; Isoherranen, N. Inhibition of CYP2C19 and CYP3A4 by omeprazole metabolites and their contribution to drug-drug interactions. Drug Metab. Dispos., 2013, 41, 1414-1424.
[12]
Hedrich, W.D.; Hassan, H.E.; Wang, H. Insights into CYP2B6-mediated drug-drug interactions. Acta Pharm. Sin. B, 2016, 6, 413-425.
[13]
Zanger, U.M.; Klein, K. Pharmacogenetics of cytochrome P450 2B6 (CYP2B6): Advances on polymorphisms, mechanisms, and clinical relevance. Front. Genet., 2013, 4, 24.
[14]
Kharasch, E.D.; Regina, K.J.; Blood, J.; Friedel, C. Methadone pharmacogenetics. Anesthesiology, 2015, 123, 1142-1153.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy