Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Nanodiagnostic Attainments and Clinical Perspectives on C-Reactive Protein: Cardiovascular Disease Risks Assessment

Author(s): Iswary Letchumanan, M.K. Md Arshad and Subash C.B. Gopinath*

Volume 28, Issue 5, 2021

Published on: 23 January, 2020

Page: [986 - 1002] Pages: 17

DOI: 10.2174/0929867327666200123092648

Price: $65

Abstract

Cardiovascular disease (CVD) has become one of the leading causes of morbidity and mortality in both men and women. According to the World Health Organization (WHO), ischemic heart disease is the major issue due to the narrowing of the coronary artery by plaque formation on the artery wall, which causes an inadequate flow of oxygen and blood to the heart and is called ‘coronary artery disease’. The CVD death rate increased by up to 15% in 2016 (~17.6 million) compared to the past decade. This tremendous increment urges the development of a suitable biomarker for rapid and early diagnosis. Currently, C-reactive protein (CRP) is considered an outstanding biomarker for quick and accurate outcomes in clinical analyses. Various techniques have also been used to diagnose CVD, including surface plasmon resonance (SPR), colorimetric assay, enzyme-linked immunosorbent assay (ELISA), fluoro-immunoassays, chemiluminescent assays, and electrical measurements. This review discusses such diagnostic strategies and how current, cutting-edge technologies have enabled the development of high-performance detection methodologies. Concluding remarks have been made concerning the clinical significance and the use of nanomaterial in medical diagnostics towards nanotheranostics.

Keywords: Cardiovascular disease, C-Reactive protein, biosensor, clinical biomarker, nanomaterial, highperformance detection.

[1]
Kivimäki, M.; Steptoe, A. Effects of stress on the development and progression of cardiovascular disease. Nature Rev. Cardiol., 2018, 15(4), 215-229.
[http://dx.doi.org/10.1038/nrcardio.2017] [PMID: 29213140]
[2]
Ultimo, S.; Zauli, G.; Martelli, A.M.; Vitale, M.; McCubrey, J.A.; Capitani, S.; Neri, L.M. Cardiovascular disease-related miRNAs expression: potential role as biomarkers and effects of training exercise. Oncotarget, 2018, 9(24), 17238-17254.
[http://dx.doi.org/10.18632/oncotarget.24428] [PMID: 29682219]
[3]
Letchumanan, I.; Gopinath, S.C.B.; Md Arshad, M.K.; Voon, C.H.; Saheed, M.S.M.; Perumal, V.; Hashim, U. Gold-nanohybrid biosensors for analyzing blood circulating clinical biomarkers: current trend towards future remote digital monitoring. Critical Rev. Anal. Chem., 2020. Epub ahead of print
[http://dx.doi.org/10.1080/10408347.2020.1812373] [PMID: 32897761]
[4]
Dalila, N.R.; Md Arshad, M.K.; Gopinath, S.C.B. Nuzaihan. M.N.M; Fathil, M.K.M. Molybdenum disulfide - gold nanoparticle nanocomposite in field-effect transistor back-gate for enhanced C-reactive protein detection. Microchimica Acta, 2020, 187(11), 588.
[http://dx.doi.org/10.1007/s00604-020-04562-7] [PMID: 33015730]
[5]
Lee, H.S.; Seong, T.Y.; Kim, W.M.; Kim, I.; Hwang, G.W.; Lee, W.S.; Lee, K.S. Enhanced resolution of a surface plasmon resonance sensor detecting C-reactive protein via a Bimetallic Waveguide-coupled mode approach. Sens. Actuators B Chem., 2018, 266, 311-317.
[http://dx.doi.org/10.1016/j.snb.2018.03.136]
[6]
Letchumanan, I.; Md Arshad, M.K.; Balakrishnan, S.R.; Gopinath, S.C.B. Gold-nanorod enhances dielectric voltammetry detection of C-reactive protein: a predictive strategy for cardiac failure. Biosens. Bioelectron., 2019, 130(130), 40-47.
[http://dx.doi.org/10.1016/j.bios.2019.01.042] [PMID: 30716591]
[7]
Lakshmipriya, T.; Gopinath, S.C.B. An introduction to biosensors and biomolecules. In: Nanobiosensors for Biomolecular Targeting; Elsevier Inc., 2019; pp. 1-21.
[http://dx.doi.org/10.1016/B978-0-12-813900-4.00001-4]
[8]
Maduraiveeran, G.; Sasidharan, M.; Ganesan, V. Electrochemical sensor and biosensor platforms based on advanced nanomaterials for biological and biomedical applications. Biosens. Bioelectron., 2018, 103(103), 113-129.
[http://dx.doi.org/10.1016/j.bios.2017.12.031] [PMID: 29289816]
[9]
Mehrotra, P. Biosensors and their applications - a review. J. Oral Biol. Craniofac. Res., 2016, 6(2), 153-159.
[http://dx.doi.org/10.1016/j.jobcr.2015.12.002] [PMID: 27195214]
[10]
Fonseca, F.A.H.; Izar, M.C. High-sensitivity C-reactive protein and cardiovascular disease across countries and ethnicities. Clinics (São Paulo), 2016, 71(4), 235-242.
[http://dx.doi.org/10.6061/clinics/2016(04)11] [PMID: 27166776]
[11]
Gouvea, C. Biosensors for health applications. In: In. Biosensors for Health, Environment and Biosecurity. Pier Andrea Serra (Ed.); University of Sassari, Italy, Intech Open, 2011; Chapter 3, pp. 71-86.
[http://dx.doi.org/10.5772/17103]
[12]
Ouyang, M.; Di Carlo, D. Nanoplasmonic swarm biosensing using single nanoparticle colorimetry. Biosens. Bioelectron., 2019, 132, 162-170.
[http://dx.doi.org/10.1016/j.bios.2019.02.056] [PMID: 30875628]
[13]
Madhurantakam, S.; Babu, K.J.; Rayappan, J.B.B.; Krishnan, U.M. Nanotechnology-based electrochemical detection strategies for hypertension markers. Biosens. Bioelectron., 2018, 116(February), 67-80.
[http://dx.doi.org/10.1016/j.bios.2018.05.034] [PMID: 29859399]
[14]
Mittal, S.; Kaur, H.; Gautam, N.; Mantha, A.K. Biosensors for breast cancer diagnosis: A review of bioreceptors, biotransducers and signal amplification strategies. Biosens. Bioelectron., 2017, 88, 217-231.
[http://dx.doi.org/10.1016/j.bios.2016.08.028] [PMID: 27567264]
[15]
Uniyal, S.; Sharma, R.K. Technological advancement in electrochemical biosensor based detection of Organophosphate pesticide chlorpyrifos in the environment: A review of status and prospects. Biosens. Bioelectron., 2018, 116, 37-50.
[http://dx.doi.org/10.1016/j.bios.2018.05.039] [PMID: 29857260]
[16]
Gopinath, S.C.B.; Lakshmipriya, T.; Md., Arshad M.K.; Uda, M.N.A.; Al-Douri, Y. Nanoelectronics in biosensing applications. In: Nanobiosensors for Biomolecular Targeting; Elsevier Inc., 2019; pp. 211-224.
[http://dx.doi.org/10.1016/B978-0-12-813900-4.00009-9]
[17]
Nikalje, A.P. Nanotechnology and its applications in medicine. Med. Chem. (Los Angeles), 2015, 5(2), 81-89.
[http://dx.doi.org/10.4172/2161-0444.1000247]
[18]
Taniselass, S.; Md Arshad, M.K.; Gopinath, S.C.B. Current state of green reduction strategies: Solution-processed reduced graphene oxide for healthcare biodetection. Mater. Sci. Eng. C, 2019, 96(96), 904-914.
[http://dx.doi.org/10.1016/j.msec.2018.11.062] [PMID: 30606604]
[19]
Dalila, R. N.; Md Arshad, M.K.; Gopinath, S.C.B.; Norhaimi, W.M.W.; Fathil, M.F.M. Current and future envision on developing biosensors aided by 2D molybdenum disulfide (MoS2) productions. Biosens. Bioelectron., 2019, 132, 248-264.
[http://dx.doi.org/10.1016/j.bios.2019.03.005] [PMID: 30878725]
[20]
Ramanathan, S.; Gopinath, S.C.B. Potentials in synthesizing nanostructured silver particles. Microsyst. Technol., 2017, 23(10), 4345-4357.
[http://dx.doi.org/10.1007/s00542-017-3382-0]
[21]
Ramanathan, S.; Gopinath, S.C.B.; Md Arshad, M.K.; Poopalan, P. Multidimensional (0D-3D) nanostructures for lung cancer biomarker analysis: Comprehensive assessment on current diagnostics. Biosens. Bioelectron., 2019, 141(May)111434
[http://dx.doi.org/10.1016/j.bios.2019.111434] [PMID: 31238281]
[22]
Zhang, J.; Zhang, W.; Guo, J.; Wang, J.; Zhang, Y. Electrochemical detection of C-reactive protein using Copper nanoparticles and hybridization chain reaction amplifying signal. Anal. Biochem., 2017, 539, 1-7.
[http://dx.doi.org/10.1016/j.ab.2017.09.017] [PMID: 28965840]
[23]
Pundir, C.S.; Narwal, V. Biosensing methods for determination of triglycerides: a review. Biosens. Bioelectron., 2018, 100, 214-227.
[http://dx.doi.org/10.1016/j.bios.2017.09.008] [PMID: 28918230]
[24]
Jolly, P.; Zhurauski, P.; Hammond, J.L.; Miodek, A.; Liébana, S.; Bertok, T.; Tkáč, J.; Estrela, P. Self-assembled gold nanoparticles for impedimetric and amperometric detection of a prostate cancer biomarker. Sens. Actuators B Chem., 2017, 251, 637-643.
[http://dx.doi.org/10.1016/j.snb.2017.05.040]
[25]
Gopinath, S.C.B.; Perumal, V.; Rao, B.S.; Md Arshad, M.K.; Voon, C.H.; Lakshmipriya, T.; Haarindraprasad, R.; Vijayakumar, T.; Chen, Y.; Hashim, U. Voltammetric immunoassay for the human blood clotting factor IX by using nanogapped dielectrode junctions modified with gold nanoparticle-conjugated antibody. Mikrochim. Acta, 2017, 184(10), 3739-3745.
[http://dx.doi.org/10.1007/s00604-017-2389-7]
[26]
Salazar, J.; Martínez, M.S.; Chávez-castillo, M.; Núñez, V.; Añez, R.; Torres, Y.; Toledo, A.; Chacín, M.; Silva, C.; Pacheco, E. C-reactive protein: an in-depth look into structure, function, and regulation. Int. Sch. Res. Notices, 2014, 2014653045
[http://dx.doi.org/10.1155/2014/653045] [PMID: 27433484]
[27]
Braig, D.; Nero, T.L.; Koch, H.G.; Kaiser, B.; Wang, X.; Thiele, J.R.; Morton, C.J.; Zeller, J.; Kiefer, J.; Potempa, L.A.; Mellett, N.A.; Miles, L.A.; Du, X.J.; Meikle, P.J.; Huber-Lang, M.; Stark, G.B.; Parker, M.W.; Peter, K.; Eisenhardt, S.U. Transitional changes in the CRP structure lead to the exposure of proinflammatory binding sites. Nat. Commun., 2017, 8, 14188.
[http://dx.doi.org/10.1038/ncomms14188] [PMID: 28112148]
[28]
Sproston, N.R.; Ashworth, J.J. Role of C-reactive protein at sites of inflammation and infection. Front. Immunol., 2018, 9(APR), 754.
[http://dx.doi.org/10.3389/fimmu.2018.00754] [PMID: 29706967]
[29]
Chang, M-K.; Binder, C.J.; Torzewski, M.; Witztum, J.L. C-reactive protein binds to both oxidized LDL and apoptotic cells through recognition of a common ligand: Phosphorylcholine of oxidized phospholipids. Proc. Natl. Acad. Sci. USA, 2002, 99(20), 13043-13048.
[http://dx.doi.org/10.1073/pnas.192399699] [PMID: 12244213]
[30]
Vilian, A.T.E.; Kim, W.; Park, B.; Oh, S.Y.; Kim, T.; Huh, Y.S.; Hwangbo, C.K.; Han, Y-K. Efficient electron-mediated electrochemical biosensor of gold wire for the rapid detection of C-reactive protein: a predictive strategy for heart failure. Biosens. Bioelectron., 2019, 142111549
[http://dx.doi.org/10.1016/j.bios.2019.111549] [PMID: 31400725]
[31]
Algarra, M.; Gomes, D.; Esteves da Silva, J.C.G. Current analytical strategies for C-reactive protein quantification in blood. Clin. Chim. Acta, 2013, 415, 1-9.
[http://dx.doi.org/10.1016/j.cca.2012.09.007] [PMID: 22975530]
[32]
Luan, Y.Y.; Yao, Y.M. The clinical significance and potential role of C-reactive protein in chronic inflammatory and neurodegenerative diseases. Front. Immunol., 2018, 9, 1302.
[http://dx.doi.org/10.3389/fimmu.2018.01302] [PMID: 29951057]
[33]
Lee, S.H.; Choi, S.; Kwon, K.; Bae, N.H.; Kwak, B.S.; Cho, W.C.; Lee, S.J.; Jung, H. Il. A photothermal biosensor for detection of C-reactive protein in human saliva. Sens. Actuators B Chem., 2017, 246, 471-476.
[http://dx.doi.org/10.1016/j.snb.2017.01.188]
[34]
Lakshmipriya, T.; Gopinath, S.C.B.; Hashim, U.; Tang, T.H. Signal enhancement in ELISA: biotin-streptavidin technology against gold nanoparticles. J. Taibah Univ. Med. Sci., 2016, 11(5), 432-438.
[http://dx.doi.org/10.1016/j.jtumed.2016.05.010]
[35]
Perumal, V.; Saheed, M.S.M.; Mohamed, N.M.; Saheed, M.S.M.; Murthe, S.S.; Gopinath, S.C.B.; Chiu, J.M. Gold nanorod embedded novel 3D graphene nanocomposite for selective bio-capture in rapid detection of Mycobacterium tuberculosis. Biosens. Bioelectron., 2018, 116, 116-122.
[http://dx.doi.org/10.1016/j.bios.2018.05.042] [PMID: 29879537]
[36]
Vashist, S.K.; Schneider, E.M.; Luong, J.H.T. Surface plasmon resonance-based immunoassay for human C-reactive protein. Analyst (Lond.), 2015, 140(13), 4445-4452.
[http://dx.doi.org/10.1039/C5AN00690B] [PMID: 25963300]
[37]
Fathil, M.F.M.; Md Arshad, M.K.; Gopinath, S.C.B.; Hashim, U.; Adzhri, R.; Ayub, R.M.; Ruslinda, A.R.; Nuzaihan, M N M.; Azman, A.H.; Zaki, M.; Tang, T.H. Diagnostics on acute myocardial infarction: cardiac troponin biomarkers. Biosens. Bioelectron., 2015, 70, 209-220.
[http://dx.doi.org/10.1016/j.bios.2015.03.037] [PMID: 25841117]
[38]
Gopinath, S.C.B.; Lakshmipriya, T.; Chen, Y.; Phang, W.M.; Hashim, U. Aptamer-based ‘point-of-care testing’. Biotechnol. Adv., 2016, 34(3), 198-208.
[http://dx.doi.org/10.1016/j.biotechadv.2016.02.003] [PMID: 26876017]
[39]
Tereshchenko, A.; Bechelany, M.; Viter, R.; Khranovskyy, V.; Smyntyna, V.; Starodub, N.; Yakimova, R. Optical biosensors based on ZnO nanostructures: advantages and perspectives. A review. Sens. Actuators B Chem., 2016, 229, 664-677.
[http://dx.doi.org/10.1016/j.snb.2016.01.099]
[40]
Sang, S.; Wang, Y.; Feng, Q.; Wei, Y.; Ji, J.; Zhang, W. Progress of new label-free techniques for biosensors: a review. Crit. Rev. Biotechnol., 2016, 36(3), 465-481.
[http://dx.doi.org/10.3109/07388551.2014.991270] [PMID: 25608959]
[41]
Damborský, P.; Švitel, J. Katrlík, J. Optical biosensors. Essays Biochem., 2016, 60(1), 91-100.
[http://dx.doi.org/10.1042/EBC20150010] [PMID: 27365039]
[42]
Sun, Y-S. Optical Biosensors for label-free detection of biomolecular interactions. Instrum. Sci. Technol., 2014, 42(2), 109-127.
[http://dx.doi.org/10.1080/10739149.2013.843060]
[43]
Olaru, A.; Bala, C.; Jaffrezic-Renault, N.; Aboul-Enein, H.Y. Surface plasmon resonance (SPR) biosensors in pharmaceutical analysis. Crit. Rev. Anal. Chem., 2015, 45(2), 97-105.
[http://dx.doi.org/10.1080/10408347.2014.881250] [PMID: 25558771]
[44]
Fathi, F.; Rashidi, M.R.; Omidi, Y. Ultra-sensitive detection by metal nanoparticles-mediated enhanced SPR biosensors. Talanta, 2019, 192(192), 118-127.
[http://dx.doi.org/10.1016/j.talanta.2018.09.023] [PMID: 30348366]
[45]
Jing, J.Y.; Wang, Q.; Zhao, W.M.; Wang, B.T. Long-range surface plasmon resonance and its sensing applications: a review. Opt. Lasers Eng., 2018, 2019(112), 103-118.
[http://dx.doi.org/10.1016/j.optlaseng.2018.09.013]
[46]
Aray, A.; Chiavaioli, F.; Arjmand, M.; Trono, C.; Tombelli, S.; Giannetti, A.; Cennamo, N.; Soltanolkotabi, M.; Zeni, L.; Baldini, F. SPR-based plastic optical fibre biosensor for the detection of C-reactive protein in serum. J. Biophotonics, 2016, 9(10), 1077-1084.
[http://dx.doi.org/10.1002/jbio.201500315] [PMID: 27089540]
[47]
Wang, W.; Mai, Z.; Chen, Y.; Wang, J.; Li, L.; Su, Q.; Li, X.; Hong, X. A label-free fiber optic SPR biosensor for specific detection of C-reactive protein. Sci. Rep., 2017, 7(1), 16904.
[http://dx.doi.org/10.1038/s41598-017-17276-3] [PMID: 29203814]
[48]
Kumar, A.; Boruah, B.M.; Liang, X. Gold nanoparticles: promising nanomaterials for the diagnosis of cancer and HIV / AIDS. J. Nanomat., 2011, 2011E202187
[http://dx.doi.org/10.1155/2011/202187]
[49]
Gopinath, S.C.B.; Lakshmipriya, T.; Awazu, K. Colorimetric detection of controlled assembly and disassembly of aptamers on unmodified gold nanoparticles. Biosens. Bioelectron., 2014, 51, 115-123.
[http://dx.doi.org/10.1016/j.bios.2013.07.037] [PMID: 23948242]
[50]
Byun, J-Y.; Shin, Y-B.; Kim, D-M.; Kim, M-G. A colorimetric homogeneous immunoassay system for the C-reactive protein. Analyst (Lond.), 2013, 138(5), 1538-1543.
[http://dx.doi.org/10.1039/c3an36592a] [PMID: 23348847]
[51]
Qureshi, A.; Gurbuz, Y.; Niazi, J.H. Biosensors for cardiac biomarkers detection: a review. Sens. Actuators B Chem., 2012, 171-172, 62-76.
[http://dx.doi.org/10.1016/j.snb.2012.05.077]
[52]
Lakshmipriya, T.; Gopinath, S.C.B.; Tang, T-H. Biotin-streptavidin competition mediates sensitive detection of biomolecules in enzyme linked immunosorbent assay. PLoS One, 2016, 11(3)e0151153
[http://dx.doi.org/10.1371/journal.pone.0151153] [PMID: 26954237]
[53]
Zhu, L.; He, J.; Cao, X.; Huang, K.; Luo, Y.; Xu, W. Development of a double-antibody sandwich ELISA for rapid detection of Bacillus cereus in food. Sci. Rep., 2016, 6, 16092.
[http://dx.doi.org/10.1038/srep16092] [PMID: 26976753]
[54]
Erhardt, J.G.; Estes, J.E.; Pfeiffer, C.M.; Biesalski, H.K.; Craft, N.E. Combined measurement of ferritin, soluble transferrin receptor, retinol binding protein, and C-reactive protein by an inexpensive, sensitive, and simple sandwich enzyme-linked immunosorbent assay technique. J. Nutr., 2004, 134(11), 3127-3132.
[http://dx.doi.org/10.1093/jn/134.11.3127] [PMID: 15514286]
[55]
Yoshikawa, H.; Yoshinaga, M.; Tamiya, E. An optical pickup enzyme-linked immunosorbent assay (ELISA) with a microfluidic disk. RSC Adv., 2018, 8(26), 14510-14514.
[http://dx.doi.org/10.1039/C8RA01149D]
[56]
Islam, M.S.; Kang, S.H. Chemiluminescence detection of label-free C-reactive protein based on catalytic activity of gold nanoparticles. Talanta, 2011, 84(3), 752-758.
[http://dx.doi.org/10.1016/j.talanta.2011.02.001] [PMID: 21482278]
[57]
Li, Y.; Yang, P.; Wang, P.; Wang, L. Development of a novel luminol chemiluminescent method catalyzed by gold nanoparticles for determination of estrogens. Anal. Bioanal. Chem., 2007, 387(2), 585-592.
[http://dx.doi.org/10.1007/s00216-006-0925-0] [PMID: 17119937]
[58]
Wu, B.; Jiang, R.; Wang, Q.; Huang, J.; Yang, X.; Wang, K.; Li, W.; Chen, N.; Li, Q. Detection of C-reactive protein using nanoparticle-enhanced surface plasmon resonance using an aptamer-antibody sandwich assay. Chem. Commun. (Camb.), 2016, 52(17), 3568-3571.
[http://dx.doi.org/10.1039/C5CC10486F] [PMID: 26844422]
[59]
Xing, Y.; Gao, Q.; Zhang, Y.; Ma, L.; Loh, K.Y.; Peng, M.; Chen, C.; Cui, Y. The improved sensitive detection of C-reactive protein based on the chemiluminescence immunoassay by employing monodispersed PAA-Au/Fe3O4 nanoparticles and zwitterionic glycerophosphoryl choline. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(21), 3919-3926.
[http://dx.doi.org/10.1039/C7TB00637C] [PMID: 32264253]
[60]
Niu, T.; Liu, Y.; Zhu, F.; Ma, J.; Gao, J. Time-resolved fluorescent immunoassay-based combined detection of procalcitonin, C-reactive protein, heparin binding protein, and serum amyloid A1 to improve the diagnostic accuracy of early infection. J. Clin. Lab. Anal., 2019, 33(2)e22694
[http://dx.doi.org/10.1002/jcla.22694] [PMID: 30338547]
[61]
Zhang, P.; Bao, Y.; Draz, M.S.; Lu, H.; Liu, C.; Han, H. Rapid and quantitative detection of C-reactive protein based on quantum dots and immunofiltration assay. Int. J. Nanomedicine, 2015, 10, 6161-6173.
[http://dx.doi.org/10.2147/IJN.S89307] [PMID: 26491289]
[62]
Zhang, B.; Yu, J.; Liu, C.; Wang, J.; Han, H.; Zhang, P.; Shi, D. Improving detection sensitivity by oriented bioconjugation of antibodies to quantum dots with a flexible spacer arm for immunoassay. RSC Advances, 2016, 6(55), 50119-50127.
[http://dx.doi.org/10.1039/C6RA09279A]
[63]
Cai, Y.; Kang, K.; Liu, Y.; Wang, Y.; He, X. Development of a lateral flow immunoassay of C-reactive protein detection based on red fluorescent nanoparticles. Anal. Biochem., 2018, 556, 129-135.
[http://dx.doi.org/10.1016/j.ab.2018.06.017] [PMID: 29969584]
[64]
Jagadeesh, S.; Chen, L.; Aitchison, S. Fluorescent Detection of C-Reactive Protein Using Polyamide Beads., Proceedings Volume 9715, Optical Diagnostics and Sensing XVI: Toward Point-of-Care Diagnostics; 971505; , 2016. SPIE BiOS, San Francisco, California, United States, 2016
[http://dx.doi.org/10.1117/12.2211373]
[65]
Bakirhan, N.K.; Ozcelikay, G.; Ozkan, S.A. Recent progress on the sensitive detection of cardiovascular disease markers by electrochemical-based biosensors. J. Pharm. Biomed. Anal., 2018, 159, 406-424.
[http://dx.doi.org/10.1016/j.jpba.2018.07.021] [PMID: 30036704]
[66]
Zubiate, P.; Zamarreño, C.R.; Sánchez, P.; Matias, I.R.; Arregui, F.J. High sensitive and selective C-reactive protein detection by means of lossy mode resonance based optical fiber devices. Biosens. Bioelectron., 2017, 93, 176-181.
[http://dx.doi.org/10.1016/j.bios.2016.09.020] [PMID: 27638106]
[67]
Carolina, T.; Moraes, M.; Kubota, De. L. T. Recent trends in field-effect transistors-based immunosensors., 2016, 4(4), 20.
[http://dx.doi.org/10.3390/chemosensors4040020]
[68]
Park, J.; Hiep, H.; Woubit, A.; Kim, M. Applications of field-effect transistor (FET) -. Type Biosensors., 2014, 23(2), 61-71.
[http://dx.doi.org/10.5757/ASCT.2014.23.2.61]
[69]
Ibau, C.; Md Arshad, M.K.; Gopinath, S.C.B. Current advances and future visions on bioelectronic immunosensing for prostate-specific antigen. Biosens. Bioelectron., 2017, 98(April), 267-284.
[http://dx.doi.org/10.1016/j.bios.2017.06.049] [PMID: 28689113]
[70]
Gopinath, S.C.B.; Misono, T.; Kumar, P.K.R. Prospects of ligand-induced aptamers. Crit. Rev. Anal. Chem., 2008, 38(1), 34-47.
[http://dx.doi.org/10.1080/10408340701804558]
[71]
Balakrishnan, S.R.; Hashim, U.; Gopinath, S.C.B.; Poopalan, P.; Ramayya, H.R.; Veeradasan, P.; Haarindraprasad, R.; Ruslinda, A.R. Polysilicon nanogap lab-on-chip facilitates multiplex analyses with single analyte. Biosens. Bioelectron., 2016, 84, 44-52.
[http://dx.doi.org/10.1016/j.bios.2015.10.075] [PMID: 26560969]
[72]
Wu, B.; Chen, N.; Wang, Q.; Yang, X.; Wang, K.; Li, W.; Li, Q.; Liu, W.; Fang, H. A simple label-free aptamer-based method for c-reactive protein detection. Anal. Methods, 2016, 8(21), 4177-4180.
[http://dx.doi.org/10.1039/C6AY01007E]
[73]
Yagati, A.K.; Pyun, J.C.; Min, J.; Cho, S. Label-free and direct detection of C-reactive protein using reduced graphene oxide-nanoparticle hybrid impedimetric sensor. Bioelectrochemistry, 2016, 107, 37-44.
[http://dx.doi.org/10.1016/j.bioelechem.2015.10.002] [PMID: 26523504]
[74]
Jampasa, S.; Siangproh, W.; Laocharoensuk, R.; Vilaivan, T.; Chailapakul, O. Electrochemical detection of C-reactive protein based on anthraquinone-labeled antibody using a screen-printed graphene electrode. Talanta, 2018, 183, 311-319.
[http://dx.doi.org/10.1016/j.talanta.2018.02.075] [PMID: 29567181]
[75]
Kuo, Y.C.; Lee, C.K.; Lin, C.T. Improving sensitivity of a miniaturized label-free electrochemical biosensor using zigzag electrodes. Biosens. Bioelectron., 2018, 103(1), 130-137.
[http://dx.doi.org/10.1016/j.bios.2017.11.065] [PMID: 29291592]
[76]
Adukauskienė, D.; Čiginskienė, A.; Adukauskaitė, A.; Pentiokinienė, D.; Šlapikas, R.; Čeponienė, I. Clinical relevance of high sensitivity C-reactive protein in cardiology. Medicina (Kaunas), 2016, 52(1), 1-10.
[http://dx.doi.org/10.1016/j.medici.2015.12.001] [PMID: 26987494]
[77]
Calabrò, P.; Golia, E.; Yeh, E.T.H. Role of C-reactive protein in acute myocardial infarction and stroke: possible therapeutic approaches. Curr. Pharm. Biotechnol., 2012, 13(1), 4-16.
[http://dx.doi.org/10.2174/138920112798868764] [PMID: 21470166]
[78]
Montecucco, F.; Mach, F. New evidences for C-reactive protein (CRP) deposits in the arterial intima as a cardiovascular risk factor. Clin. Interv. Aging, 2008, 3(2), 341-349.
[http://dx.doi.org/10.2147/CIA.S2706] [PMID: 18686755]
[79]
Arévalo-Lorido, J.C. Clinical relevance for lowering C-reactive protein with statins. Ann. Med., 2016, 48(7), 516-524.
[http://dx.doi.org/10.1080/07853890.2016.1197413] [PMID: 27355392]
[80]
Min, Y.J.; Choi, Y.H.; Hyeon, C.W.; Cho, J.H.; Kim, K.J.; Kwon, J.E.; Kim, E.Y.; Lee, W.S.; Lee, K.J.; Kim, S.W.; Kim, T.H.; Kim, C.J. Fenofibrate reduces C-reactive protein levels in hypertriglyceridemic patients with high risks for cardiovascular diseases. Korean Circ. J., 2012, 42(11), 741-746.
[http://dx.doi.org/10.4070/kcj.2012.42.11.741] [PMID: 23236325]
[81]
Mazidi, M.; Gao, H-K.; Rezaie, P.; Ferns, G.A. The effect of ginger supplementation on serum C-reactive protein, lipid profile and glycaemia: a systematic review and meta-analysis. Food Nutr. Res., 2016, 60(1), 32613.
[http://dx.doi.org/10.3402/fnr.v60.32613] [PMID: 27806832]
[82]
Prasad, K. C-reactive protein (CRP)-lowering agents. Cardiovasc. Drug Rev., 2006, 24(1), 33-50.
[http://dx.doi.org/10.1111/j.1527-3466.2006.00033.x] [PMID: 16939632]
[83]
Bagheri, M.; Mohammadi, M.; Steele, T.W.; Ramezani, M. Nanomaterial coatings applied on stent surfaces. Nanomedicine (Lond.), 2016, 11(10), 1309-1326.
[http://dx.doi.org/10.2217/nnm-2015-0007] [PMID: 27111467]
[84]
Kandaswamy, E.; Zuo, L. Recent advances in treatment of coronary artery disease: role of science and technology. Int. J. Mol. Sci., 2018, 19(2)E424
[http://dx.doi.org/10.3390/ijms19020424] [PMID: 29385089]
[85]
Andreeva, E.; Melbye, H. Usefulness of C-reactive protein testing in acute cough/respiratory tract infection: an open cluster-randomized clinical trial with C-reactive protein testing in the intervention group. BMC Fam. Pract., 2014, 15(1), 80.
[http://dx.doi.org/10.1186/1471-2296-15-80] [PMID: 24886066]
[86]
Li, S.; Jiao, Y.; Wang, H.; Shang, Q.; Lu, F.; Huang, L.; Liu, J.; Xu, H.; Chen, K. Sodium tanshinone IIA sulfate adjunct therapy reduces high-sensitivity C-reactive protein level in coronary artery disease patients: a randomized controlled trial. Sci. Rep., 2017, 7(1), 17451.
[http://dx.doi.org/10.1038/s41598-017-16980-4] [PMID: 29234038]
[87]
Cao, L.; Kiely, J.; Piano, M.; Luxton, R. Facile and inexpensive fabrication of zinc oxide based bio-surfaces for C-reactive protein detection. Sci. Rep., 2018, 8(1), 12687.
[http://dx.doi.org/10.1038/s41598-018-30793-z] [PMID: 30140055]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy