[1]
Del Donno, M.; Verduri, A.; Olivieri, D. Air pollution and reversible chronic respiratory diseases. Monaldi Arch. Chest Dis., 2002, 57, 164-166.
[2]
Rau, J.L. The inhalation of drugs: advantages and problems. Respir. Care Clin. N. Am., 2005, 50, 367-382.
[3]
Stone, K.C.; Mercer, R.R.; Gehr, P.; Stockstill, B.; Crapo, J.D. Allometric relationships of cell numbers and size in the mammalian lung. Am. J. Respir. Cell Mol. Biol., 1992, 6, 235-243.
[4]
Zhang, J.Y.; Wang, Y.; Prakash, C. Xenobiotic-metabolizing enzymes in human lung. Curr. Drug Metab., 2006, 7, 939-948.
[5]
Devereux, T.R.; Domin, B.A.; Philpot, R.M. Xenobiotic metabolism by isolated pulmonary cells. Pharmacol. Ther., 1989, 41, 243-256.
[6]
Raunio, H.; Hakkola, J.; Hukkanen, J.; Lassila, A.; Päivärinta, K.; Pelkonen, O.; Anttila, S.; Piipari, R.; Boobis, A.; Edwards, R.J. Expression of xenobiotic-metabolizing CYPs in human pulmonary tissue. Exp. Toxicol. Pathol., 1999, 51, 412-417.
[7]
Hukkanen, J.; Pelkonen, O.; Hakkola, J.; Raunio, H. Expression and regulation of xenobiotic-metabolizing cytochrome P450 (CYP) enzymes in human lung. Crit. Rev. Toxicol., 2002, 32, 391-411.
[8]
Olsson, B.; Bondesson, E.; Borgström, L.; Edsbäcker, S.; Eirefelt, S.; Ekelund, K.; Gustavsson, L.; Hegelund-Myrbäck, T. Pulmonary Drug Metabolism, Clearance, and Absorption. In:Controlled Pulmonary Drug Delivery., Smyth, H.D.C.; Hickey, A.J., Ed.;Springer: New York, NY, . 2011, 21-50.
[9]
Somers, G.I.; Lindsay, N.; Lowdon, B.M.; Jones, A.E.; Freathy, C.; Ho, S.; Woodrooffe, A.J.; Bayliss, M.K.; Manchee, G.R. A comparison of the expression and metabolizing activities of phase I and II enzymes in freshly isolated human lung parenchymal cells and cryopreserved human hepatocytes. Drug Metab. Dispos., 2007, 35, 1797-1805.
[10]
Ioannides, C.; Lake, B.G.; Lyubimov, A.V. Precision-Cut Tissue Slices: A Suitable In vitro System for the Study of the Induction of Drug-Metabolizing Enzyme Systems.In: Encyclopedia of Drug Metabolism and Interactions., A.V. Lyubimov, Ed.; John Wiley & Sons, Inc.: Hoboken, NY. 2011, 879-898.
[11]
Umachandran, M.; Ioannides, C. Stability of cytochromes P450 and phase II conjugation systems in precision-cut rat lung slices cultured up to 72 h. Toxicology, 2006, 224, 14-21.
[12]
De Kanter, R.; Olinga, P.; De Jager, M.H.; Merema, M.T.; Meijer, D.K.; Groothius, G.M. Organ slices as an in vitro test system for drug metabolism in human liver, lung and kidney. Toxicol. In Vitro, 1999, 13, 737-744.
[13]
O’Neil, J.J.; Sanford, R.L.; Wasserman, S.; Tierney, D.F. Metabolism in rat lung tissue slices: technical factors. J. Appl. Physiol. Respir. Environ. Exerc.Physiol., 1977, 43, 902-906.
[14]
Nave, R.; Fisher, R.; Zech, K. In vitro metabolism of ciclesonide in human lung and liver precision-cut tissue slices. Biopharm. Drug Dispos., 2006, 27, 197-207.
[15]
Yilmaz, Y.; Umehara, K.; Williams, G.; Faller, T.; Schiller, H.; Walles, M.; Kraehenbuehl, S.; Camenisch, G.; Manevski, N. Assessment of the pulmonary CYP1A1 metabolism of mavoglurant (AFQ056) in rat. Xenobiotica, 2017, 48(8), 1-11.
[16]
De Kanter, R.; De Jager, M.; Draaisma, A.; Jurva, J.; Olinga, P.; Meijer, D.; Groothuis, G. Drug-metabolizing activity of human and rat liver, lung, kidney and intestine slices. Xenobiotica, 2002, 32, 349-362.
[17]
Kanter, R.; Monshouwer, M.; Meijer, D.; Groothuis, G. Precision-cut organ slices as a tool to study toxicity and metabolism of xenobiotics with special reference to non-hepatic tissues. Curr. Drug Metab., 2002, 3, 39-59.
[18]
de Graaf, I.A.M.; Koster, H. Cryopreservation of precision-cut tissue slices for application in drug metabolism research. Toxicol. In Vitro, 2003, 17, 1-17.
[19]
Liberati, T.A.; Randle, M.R.; Toth, L.A. In vitro lung slices: a powerful approach for assessment of lung pathophysiology. Expert Rev. Mol. Diagn., 2010, 10, 501-508.
[20]
Walles, M.; Wolf, T.; Jin, Y.; Ritzau, M.; Leuthold, L.A.; Krauser, J.; Gschwind, H.P.; Carcache, D.; Kittelmann, M.; Ocwieja, M.; Ufer, M.; Woessner, R.; Chakraborty, A.; Swart, P. Metabolism and disposition of the metabotropic glutamate receptor 5 antagonist (mGluR5) mavoglurant (AFQ056) in healthy subjects. Drug Metab. Dispos., 2013, 41, 1626-1641.
[21]
Ding, X.; Kaminsky, L.S. Human extrahepatic cytochromes P450: function in xenobiotic metabolism and tissue-selective chemical toxicity in the respiratory and gastrointestinal tracts. Annu. Rev. Pharmacol. Toxicol., 2003, 43, 149-173.
[22]
Nishimura, M.; Naito, S. Tissue-specific mRNA expression profiles of human phase I metabolizing enzymes except for cytochrome P450 and phase II metabolizing enzymes. Drug Metab. Pharmacokinet., 2006, 21, 357-374.
[23]
Bieche, I.; Narjoz, C.; Asselah, T.; Vacher, S.; Marcellin, P.; Lidereau, R.; Beaune, P.; de Waziers, I. Reverse transcriptase-PCR quantification of mRNA levels from cytochrome (CYP)1, CYP2 and CYP3 families in 22 different human tissues. Pharmacogenet. Genomics, 2007, 17, 731-742.
[24]
Smith, P.F.; Gandolfi, A.J.; Krumdieck, C.L.; Putnam, C.W.; Zukoski, C.F., III; Davis, W.M.; Brendel, K. Dynamic organ culture of precision liver slices for in vitro toxicology. Life Sci., 1985, 36, 1367-1375.
[25]
Smith, P.F.; Krack, G.; McKee, R.L.; Johnson, D.G.; Gandolfi, A.J.; Hruby, V.J.; Krumdieck, C.L.; Brendel, K. Maintenance of adult rat liver slices in dynamic organ culture. In Vitro Cell. Dev. Biol., 1986, 22, 706-712.
[26]
Sanderson, M.J. Exploring lung physiology in health and disease with lung slices. Pulm. Pharmacol. Ther., 2011, 24, 452-465.
[27]
Dogterom, P. Development of a simple incubation system for metabolism studies with precision-cut liver slices. Drug Metab. Dispos., 1993, 21, 699-704.
[28]
Manevski, N.; Troberg, J.; Svaluto-Moreolo, P.; Dziedzic, K.; Yli-Kauhaluoma, J.; Finel, M. Albumin stimulates the activity of the human UDP-glucuronosyltransferases 1A7, 1A8, 1A10, 2A1 and 2B15, but the effects are enzyme and substrate dependent. PLoS One, 2013, 8, e54767.
[29]
Wang, L.Q.; Falany, C.N.; James, M.O. Triclosan as a substrate and inhibitor of 3′-phosphoadenosine 5′-phosphosulfate-sulfotransferase and UDP-glucuronosyl transferase in human liver fractions. Drug Metab. Dispos., 2004, 32, 1162-1169.
[30]
Gotz, C.; Pfeiffer, R.; Tigges, J.; Blatz, V.; Jackh, C.; Freytag, E.M.; Fabian, E.; Landsiedel, R.; Merk, H.F.; Krutmann, J.; Edwards, R.J.; Pease, C.; Goebel, C.; Hewitt, N.; Fritsche, E. Xenobiotic metabolism capacities of human skin in comparison with a 3D epidermis model and keratinocyte-based cell culture as in vitro alternatives for chemical testing: activating enzymes (Phase I). Exp. Dermatol., 2012, 21, 358-363.
[31]
Manevski, N.; Swart, P.; Balavenkatraman, K.K.; Bertschi, B.; Camenisch, G.; Kretz, O.; Schiller, H.; Walles, M.; Ling, B.; Wettstein, R.; Schaefer, D.J.; Itin, P.; Ashton-Chess, J.; Pognan, F.; Wolf, A.; Litherland, K. Phase II metabolism in human skin: skin explants show full coverage for glucuronidation, sulfation, N-acetylation, catechol methylation, and glutathione conjugation. Drug Metab. Dispos., 2015, 43, 126-139.
[32]
Yuan, R.; Madani, S.; Wei, X.X.; Reynolds, K.; Huang, S.M. Evaluation of cytochrome P450 probe substrates commonly used by the pharmaceutical industry to study in vitro drug interactions. Drug Metab. Dispos., 2002, 30, 1311-1319.
[33]
Khan, K.K.; He, Y.Q.; Domanski, T.L.; Halpert, J.R. Midazolam oxidation by cytochrome P450 3A4 and active-site mutants: an evaluation of multiple binding sites and of the metabolic pathway that leads to enzyme inactivation. Mol. Pharmacol., 2002, 61, 495-506.
[34]
Li, X.Q.; Bjorkman, A.; Andersson, T.B.; Ridderstrom, M.; Masimirembwa, C.M. Amodiaquine clearance and its metabolism to N-desethylamodiaquine is mediated by CYP2C8: a new high affinity and turnover enzyme-specific probe substrate. J. Pharmacol. Exp. Ther., 2002, 300, 399-407.
[35]
Ono, S.; Hatanaka, T.; Miyazawa, S.; Tsutsui, M.; Aoyama, T.; Gonzalez, F.J.; Satoh, T. Human liver microsomal diazepam metabolism using cDNA-expressed cytochrome P450s: role of CYP2B6, 2C19 and the 3A subfamily. Xenobiotica, 1996, 26, 1155-1166.
[36]
Carlile, D.J.; Hakooz, N.; Bayliss, M.K.; Houston, J.B. Microsomal prediction of in vivo clearance of CYP2C9 substrates in humans. Br. J. Clin. Pharmacol., 1999, 47, 625-635.
[37]
Martignoni, M.; Groothuis, G.M.; de Kanter, R. Species differences between mouse, rat, dog, monkey and human CYP-mediated drug metabolism, inhibition and induction. Expert Opin. Drug Metab. Toxicol., 2006, 2, 875-894.
[38]
Lang, D.H.; Rettie, A.E. In vitro evaluation of potential in vivo probes for human flavin-containing monooxygenase (FMO): metabolism of benzydamine and caffeine by FMO and P450 isoforms. Br. J. Clin. Pharmacol., 2000, 50, 311-314.
[39]
Yilmaz, Y.; Williams, G.; Manevski, N.; Walles, M.; Krahenbuhl, S.; Camenisch, G. Functional assessment of rat pulmonary flavin-containing monooxygenase activity. Xenobiotica, 2018, 15, 1-10.
[40]
Kaye, B.; Rance, D.J.; Waring, L. Oxidative metabolism of carbazeran in vitro by liver cytosol of baboon and man. Xenobiotica, 1985, 15, 237-242.
[41]
Hutzler, J.M.; Yang, Y.S.; Albaugh, D.; Fullenwider, C.L.; Schmenk, J.; Fisher, M.B. Characterization of aldehyde oxidase enzyme activity in cryopreserved human hepatocytes. Drug Metab. Dispos., 2012, 40, 267-275.
[42]
Hutzler, J.M.; Obach, R.S.; Dalvie, D.; Zientek, M.A. Strategies for a comprehensive understanding of metabolism by aldehyde oxidase. Expert Opin. Drug Metab. Toxicol., 2013, 9, 153-168.
[43]
Thomsen, R.; Rasmussen, H.B.; Linnet, K.; Consortium, I. In vitro drug metabolism by human carboxylesterase 1: focus on angiotensin-converting enzyme inhibitors. Drug Metab. Dispos., 2014, 42, 126-133.
[44]
Linz, W.; Scholkens, B.A.; Kaiser, J.; Just, M.; Qi, B.Y.; Albus, U.; Petry, P. Cardiac arrhythmias are ameliorated by local inhibition of angiotensin formation and bradykinin degradation with the converting-enzyme inhibitor ramipril. Cardiovasc. Drugs Ther., 1989, 3, 873-882.
[45]
Joseph, D.; Puttaswamy, R.K.; Krovvidi, H. Non-respiratory functions of the lung. Contin. Educ. Anaesth. Crit. Care Pain, 2013, 13, 98-102.
[46]
Van Bezooijen, C.F.A.; Horbach, G.J.M.J.; Hollander, C.F. The Effect of Age on Rat Liver Drug Metabolism. In: Drugs and Aging., Platt, D., Ed.; Springer Berlin Heidelberg: Berlin, Heidelberg. 1986, 45-55.
[47]
Bozhkov, A.I.; Nikitchenko, Y.V.; Klimova, E.M.; Linkevych, O.S.; Lebid, K.M.; Al-Bahadli, A.M.M.; Alsardia, M.M.A. Young and old rats have different strategies of metabolic adaptation to Cu-induced liver fibrosis. Adv. Gerontol., 2017, 7, 41-50.
[48]
Yamamoto, Y.; Tanaka, A.; Kanamaru, A.; Tanaka, S.; Tsubone, H.; Atoji, Y.; Suzuki, Y. Morphology of aging lung in F344/N rat: Alveolar size, connective tissue, and smooth muscle cell markers. Anat. Rec. Part A: Discov. Mol. Cell. Evol. Biol., 2003, 272A, 538-547.
[49]
Samuel, J.J.; Nick, A.; Doug, B.; Ilaria, B.; James, G.; Lamia, H.; Alan, H.; Judy, L.; Anja, P.; Paul, P.; Andrew, R.; Alison, R.; Michelle, S.; Carol, S.; Mark, Y.; Kathryn, C. Does age matter? The impact of rodent age on study outcomes. Lab. Anim., 2016, 51, 160-169.
[50]
McCutcheon, J.E.; Marinelli, M. Age matters. Eur. J. Neurosci., 2009, 29, 997-1014.
[51]
Nijjar, M.S.; Ho, J.C. Isolation of plasma membranes from rat lungs: effect of age on the subcellular distribution of adenylate cyclase activity. Biochim. Biophys. Acta, 1980, 600, 238-243.
[52]
Nishiyama, Y.; Nakayama, S.M.; Watanabe, K.P.; Kawai, Y.K.; Ohno, M.; Ikenaka, Y.; Ishizuka, M. Strain differences in cytochrome P450 mRNA and protein expression, and enzymatic activity among Sprague Dawley, Wistar, Brown Norway and Dark Agouti rats. J. Vet. Med. Sci., 2016, 78, 675-680.
[53]
Morin, J.P.; Baste, J.M.; Gay, A.; Crochemore, C.; Corbiere, C.; Monteil, C. Precision cut lung slices as an efficient tool for in vitro lung physio-pharmacotoxicology studies. Xenobiotica, 2013, 43, 63-72.
[54]
Parrish, A.R.; Gandolfi, A.J.; Brendel, K. Precision-cut tissue slices: applications in pharmacology and toxicology. Life Sci., 1995, 57, 1887-1901.
[55]
Fisher, R.L.; Shaughnessy, R.P.; Jenkins, P.M.; Austin, M.L.; Roth, G.L.; Gandolfi, A.J.; Brendel, K. Dynamic organ culture is superior to multiwell plate culture for maintaining precision-cut tissue slices: optimization of tissue slice culture, Part 1. Toxicol. Methods, 1995, 5, 99-113.
[56]
Umachandran, M.; Howarth, J.; Ioannides, C. Metabolic and structural viability of precision-cut rat lung slices in culture. Xenobiotica, 2004, 34, 771-780.
[57]
Monteil, C.; Guerbet, M.; Le Prieur, E.; Morin, J.-P.; Jouany, M Fillastre, J.P., Characterization of precision-cut rat lung slices in a biphasic gas/liquid exposure system: effect of O2. 1999, 13(3), 467-473.
[58]
Siminski, J.T.; Kavanagh, T.J.; Chi, E.; Raghu, G. Long-term maintenance of mature pulmonary parenchyma cultured in serum-free conditions. Am. J. Physiol. Cell. Mol. Physiol., 1992, 262, L105-L110.
[59]
Lekas, P.; Tin, K.L.; Lee, C.; Prokipcak, R.D. The human cytochrome P450 1A1 mRNA is rapidly degraded in HepG2 cells. Arch. Biochem. Biophys., 2000, 384, 311-318.
[60]
Lorenz, J.; Glatt, H.R.; Fleischmann, R.; Ferlinz, R.; Oesch, F. Drug metabolism in man and its relationship to that in three rodent species: monooxygenase, epoxide hydrolase, and glutathione S-transferase activities in subcellular fractions of lung and liver. Biochem. Med., 1984, 32, 43-56.
[61]
Pacifici, G.M.; Franchi, M.; Bencini, C.; Repetti, F.; Di Lascio, N.; Muraro, G.B. Tissue distribution of drug-metabolizing enzymes in humans. Xenobiotica, 1988, 18, 849-856.
[62]
Jackson, E. N.; Schneider, J.; Faux, L.R.; James, M.O. Isoform-selective glucuronidation of triclosan.FASEB J., 2013, 27, 892.811.
[63]
Uchaipichat, V.; Mackenzie, P.I.; Guo, X-H.; Gardner-Stephen, D.; Galetin, A.; Houston, J.B.; Miners, J.O. Human UDP-Glucuronlytransferases: Isoform selectivity and kinetics of 4-Methylumbellifferone and 1-Naphtol Glucuronidation, effects of organic solvents, and inhibition by Diclofenac and Probenecid. Drug Metab. Dispos., 2004, 32, 413-423.
[64]
Ripp, S.L.; Itagaki, K.; Philpot, R.M.; Elfarra, A.A. Species and sex differences in expression of flavin-containing monooxygenase form 3 in liver and kidney microsomes. Drug Metab. Dispos., 1999, 27, 46-52.
[65]
Hines, R.N. Developmental and tissue-specific expression of human flavin-containing monooxygenases 1 and 3. Expert Opin. Drug Metab. Toxicol., 2006, 2, 41-49.
[66]
Phillips, I.R.; Shephard, E.A. Drug metabolism by flavin-containing monooxygenases of human and mouse. Expert Opin. Drug Metab. Toxicol., 2017, 13, 167-181.
[67]
Janmohamed, A.; Hernandez, D.; Phillips, I.R.; Shephard, E.A. Cell, tissue, sex and developmental stage-specific expression of mouse flavin-containing monooxygenases (Fmos). Biochem. Pharmacol., 2004, 68, 73-83.
[68]
Dolphin, C.T.; Beckett, D.J.; Janmohamed, A.; Cullingford, T.E.; Smith, R.L.; Shephard, E.A.; Phillips, I.R. The flavin-containing monooxygenase 2 gene (FMO2) of humans, but not of other primates, encodes a truncated, nonfunctional protein. J. Biol. Chem., 1998, 273, 30599-30607.
[69]
Cashman, J.R.; Zhang, J. Human flavin-containing monooxygenases. Annu. Rev. Pharmacol. Toxicol., 2006, 46, 65-100.
[70]
Garattini, E.; Fratelli, M.; Terao, M. The mammalian aldehyde oxidase gene family. Hum. Genomics, 2009, 4, 119-130.