[1]
Merad, M.; Sathe, P.; Helft, J.; Miller, J.; Mortha, A. The dendritic cell lineage: Ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu. Rev. Immunol., 2013, 31, 563-604.
[2]
Tang, L.; Zhang, Z.; Zheng, J.; Sheng, J.; Liu, K. Phenotypic and functional characteristics of dendritic cells derived from human peripheral blood monocytes. J. Zhejiang Univ. Sci. 2005, B 6, 1176-1181.
[3]
Collin, M.; McGovern, N.; Haniffa, M. Human dendritic cell subsets. Immunology, 2013, 140, 22-30.
[4]
Gustafson, M.; Lin, Y.; Maas, M.; Van Keulen, V.; Johnston, P.; Peikert, T.; Gastineau, D.; Dietz, A. A method for identification and analysis of non-overlapping myeloid immunophenotypes in humans. PLoS One, 2015, 10(3), 1-19.
[5]
Van de Laar, L.; Coffer, P.; Woltman, A. Regulation of dendritic cell development by GM-CSF: Molecular control and implications for immune homeostasis and therapy. Blood, 2012, 119, 3383-3393.
[6]
Bhattacharya, P.; Haddad, C.; Alharshawi, K.; Prabhakar, B. The role of GM-CSF in dendritic cell development in vivo (HEM3P.284). J. Immunol., 2014, 192, 51-64.
[7]
Lo, J.; Xia, C.; Peng, R.; Clare-Salzler, M. Immature dendritic cell therapy confers durable immune modulation in an antigen-dependent and antigen-independent manner in nonobese diabetic mice. J. Immunol. Res., 2018, 20185463879
[8]
Dudek, A.; Martin, S.; Garg, A.; Agostinis, P. Immature, semi-mature, and fully mature dendritic cells: toward a DC-cancer cells interface that augments anticancer immunity. Front. Immunol., 2013, 4, 1-14.
[9]
Anguille, S.; Smits, E.L.; Lion, E.; van Tendeloo, V.F.; Berneman, Z.N. Clinical use of dendritic cells for cancer therapy. Lancet Oncol., 2014, 15, e257-e267.
[10]
Kantoff, P.; Higano, C.; Shore, N.; Berger, R.; Small, E.; Penson, D.; Redfern, C.; Ferrari, A.; Dreicer, R.; Sims, R.; Xu, Y.; Frohlich, M.; Schellhammer, P.F. IMPACT Study Investigators Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N. Engl. J. Med., 2010, 363, 411-422.
[11]
Anassi, E.; Anadu, U. Sipuleucel-T (Provenge) injection the firstimmunotherapy agent (vaccine) for hormone-refractory prostate cancer. PT, 2011, 36, 197-202.
[12]
Graff, J.; Chamberlain, E. Sipuleucel-T in the treatment of prostate cancer: an evidence-based review of its place in therapy. Core Evid., 2015, 10, 1-10.
[13]
Madan, R.; Gulley, J. Sipuleucel-T: Harbinger of a new age of therapeutics for prostate cancer. Expert Rev. Vaccines, 2011, 10, 141-150.
[14]
Cui, D.; Gao, H. Advance and prospect of bionanomaterials. Biotechnol. Prog., 2003, 19, 683-692.
[15]
Shi, J.; Votruba, A.; Farokhzad, O.; Langer, R. Nanotechnology in drug delivery and tissue engineering: From discovery to applications. Nano Lett., 2010, 10(9), 3223-3230.
[16]
Wicki, A.; Witzigmann, D.; Balasubramanian, V.; Huwyler, J. Nanomedicine in cancer therapy: Challenges, opportunities, and clinical applications. J. Control. Release, 2015, 200, 138-157.
[17]
Shahverdi, A.R.; Fakhimi, A.; Shahverdi, H.R.; Minaian, S. Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine , 2007, 3, 168-171.
[18]
Jain, S.; Hirst, D.G.; O’Sullivan, J.M. Gold nanoparticles as novel agents for cancer therapy. Br. J. Radiol., 2012, 85, 101-113.
[19]
Hu, Y.; Qi, W.; Han, F.; Shao, J.; Gao, J. Toxicity evaluation of biodegradable chitosan nanoparticles using a zebrafish embryo model. Int. J. Nanomedicine, 2011, 6, 3351-3359.
[20]
Cheung, R.; Ng, T.; Wong, J.; Chan, W. Chitosan: An update on potential biomedical and pharmaceutical applications. Mar. Drugs, 2015, 13, 5156-5186.
[21]
Croisier, F.; Jérôme, C. Chitosan-based biomaterials for tissue engineering. Eur. Polym. J., 2013, 49, 780-792.
[22]
Ahmed, S.; Ikram, S. Chitosan based scaffolds and their applications in wound healing. Achiev. Life Sci, 2016, 10, 27-37.
[23]
Chaochai, T.; Miyaji, H.; Yoshida, T.; Nishida, E.; Furuike, T.; Tamura, H. Preparation of chitosan-gelatin based sponge cross-linked with GLcNAc for bone tissue engineering. J. Chitin Chitosan Sci, 2016, 4, 1-8.
[24]
Pandey, A.; Singh, U.; Momin, M.; Bhavsar, C. Chitosan: Application in tissue engineering and skin grafting. J. Polym. Res., 2017, 24, 1-22.
[25]
Stricker-Krongrad, A.; Alikhassy, Z.; Matsangos, N.; Sebastian, R.; Marti, G.; Lay, F.; Harmon, J. Efficacy of chitosan-based dressing for control of bleeding in excisional wounds. Eplasty, 2018, 18e14
[26]
Tajmir-Riahi, H.; Nafisi, S.; Sanyakamdhorn, S.; Agudelo, D.; Chanphai, P. Applications of chitosan nanoparticles in drug delivery. Methods Mol. Biol., 2014, 1141, 165-184.
[27]
Mansur, H.; Mansur, A.; Soriano-Araújo, A.; Lobato, P. Beyond biocompatibility: An approach for the synthesis of ZnS quantum dot-chitosan nano-immunoconjugates for cancer diagnosis. Green Chem., 2015, 17, 1820-1830.
[28]
Jayakumar, R.; Menon, D.; Manzoor, K.; Nair, S.V.; Tamura, H. Biomedical applications of chitin and chitosan based nanomaterials - A short review. Carbohydr. Polym., 2010, 82, 227-232.
[29]
Patel, L.N.; Zaro, J.L.; Shen, W-C. Cell penetrating peptides: Intracellular pathways and pharmaceutical perspectives. Pharm. Res., 2007, 24, 1977-1992.
[30]
Zhang, S.; Li, J.; Lykotrafitis, G.; Bao, G.; Suresh, S. Size-dependent endocytosis of nanoparticles. Adv. Mater., 2009, 21, 419-424.
[31]
Oh, N.; Park, J. Endocytosis and exocytosis of nanoparticles in mammalian cells. Int. J. Nanomedicine, 2014, 9, 51-63.
[32]
Bannunah, A.; Vllasaliu, D.; Lord, J.; Stolnik, S. Mechanisms of nanoparticle internalization and transport across an intestinal epithelial cell model: effect of size and surface charge. Mol. Pharm., 2014, 11, 4363-4373.
[33]
Nam, H.Y.; Kwon, S.M.; Chung, H.; Lee, S.Y.; Kwon, S.H.; Jeon, H.; Kim, Y.; Park, J.H.; Kim, J.; Her, S.; Oh, Y.K.; Kwon, I.C.; Kim, K.; Jeong, S.Y. Cellular uptake mechanism and intracellular fate of hydrophobically modified glycol chitosan nanoparticles. J. Control. Release, 2009, 135, 259-267.
[34]
Agarwala, R.; Singhb, V.; Jurneyb, P.; Shib, L.; Sreenivasanb, S.; Roy, K. Mammalian cells preferentially internalize hydrogel nanodiscs over nanorods and use shape-specific uptake mechanisms. PNAS., 2013, 110, 17247-17252.
[35]
(a)Kankaanpää, P.; Tiitta, S.; Bergman, L.; Puranen, A.; von Haartman, E.; Lindén, M.; Heino, J. Cellular recognition and macropinocytosis-like internalization of nanoparticles targeted to integrin α2β1. Nanoscale, 2015, 7, 17889-17901.
(b)Longfa, K.; Sun, J.; Zhai, Y.; He, Z. The endocytosis and intracellular fate of nanomedicines: Implication for rational design. Asian J. Pharm. Sci, 2013, 8, 1-10.
[36]
Jin, H.; Heller, D.A.; Sharma, R.; Strano, M.S. Size-dependent cellular uptake and expulsion of single-walled carbon nanotubes: Single particle tracking and a generic uptake model for nanoparticles. ACS Nano, 2009, 3, 149-158.
[37]
Mohammed, M.; Syeda, J.; Wasan, K.; Wasan, E. An overview of chitosan nanoparticles and its application in non-parenteral drug delivery. Pharmaceutics, 2017, 9, 1-26.
[38]
Elgadira, A.; Uddinb, S.; Ferdoshc, S.; Adam, A.; Khan, A.; Zaidul, I. Impact of chitosan composites and chitosan nanoparticle composites on various drug delivery systems: A review. J. Food Drug Anal.,, 2015, 23, 619-629.
[39]
Young, S.; Hwa, S.; Park, J.; Jeong, S.; Ho, J.; Su, K.; Lee, K.; Yang, S.; Joo, S.; Dong, P.; Lee, S. Cellular uptake and cytotoxicity of positively charged chitosan gold nanoparticles in human lung adenocarcinoma cells. J. Nanopart. Res., 2012, 14, 1-13.
[40]
Vimal, S.; Abdul Majeed, S.; Taju, G.; Nambi, K.S.; Sundar Raj, N.; Madan, N.; Farook, M.A.; Rajkumar, T.; Gopinath, D.; Sahul Hameed, A.S. Chitosan tripolyphosphate (CS/TPP) nanoparticles: preparation, characterization and application for gene delivery in shrimp. Acta Trop., 2013, 128, 486-493.
[41]
Martins, A.; Oliveira, D.; Pereira, A.; Rubira, A.; Muniz, E. Chitosan/TPP microparticles obtained by microemulsion method applied in controlled release of heparin. Int. J. Biol. Macromol., 2012, 51, 1127-1133.
[42]
Mudunkotuwa, A.; Minshid, A.; Grassian, V. ATR-FTIR spectroscopy as a tool to probe surface adsorption on nanoparticles at the liquid-solid interface in environmentally and biologically relevant media. Analyst , 2014, 139, 870-881.
[43]
Yongmei, X.; Yumin, D. Effect of molecular structure of chitosan on protein delivery properties of chitosan nanoparticles. Int. J. Pharm., 2003, 250, 215-226.
[44]
Boonsongrit, Y.; Mueller, B.; Mitrevej, A. Characterization of drug-chitosan interaction by 1H NMR, FTIR and isothermal titration calorimetry. Eur. J. Pharm. Biopharm., 2008, 69, 388-395.
[45]
Castiello, L.; Sabatino, M.; Zhao, Y.; Tumaini, B.; Ren, J.; Ping, J.; Wang, E.; Wood, L.; Marincola, F.; Puri, R.; Stroncek, D. Quality controls in cellular immunotherapies: Rapid assessment of clinical grade dendritic cells by gene expression profiling. Mol. Ther., 2013, 21, 476-484.
[46]
Curbishley, S.; Blahova, M.; Adams, D. Designing a dendritic cell– based therapy for primary liver cancer. MACS&more, 2016, 17, 20-23.
[47]
Sabado, R.L.; Miller, E.; Spadaccia, M.; Vengco, I.; Hasan, F.; Bhardwaj, N. Preparation of tumor antigen-loaded mature dendritic cells for immunotherapy. J. Vis. Exp., 2013, (78), 50085.
[48]
Fujimasa, T.; Masanori, A.; Masashi, H.; Yoshiou, I.; Yoichi, H.; Yoon, L.; Nam-Chul, J.; Woo-Bok, L.; Hyun-Soo, L.; Yong-Soo, B.; Morikazu, O. Phase I/II study of immunotherapy using tumor antigen-pulsed dendritic cells in patients with hepatocellular carcinoma. Int. J. Oncol., 2012, 41, 1601-1609.
[49]
Xi, H.B.; Wang, G.X.; Fu, B.; Liu, W.P.; Li, Y. Survivin and PSMA loaded dendritic cell vaccine for the treatment of prostate cancer. Biol. Pharm. Bull., 2015, 28, 827-835.
[50]
Nchinda, G.; Amadu, D.; Trumpfheller, C.; Mizenina, O.; Überla, K.; Steinman, R. Dendritic cell targeted HIV gag protein vaccine provides help to a DNA vaccine including mobilization of protective CD8+ T cells. Proc. Natl. Acad. Sci. USA, 2010, 107, 4281-4286.
[51]
Kawamura, K.; Iyonaga, K.; Ichiyasu, H.; Nagano, J.; Suga, M.; Sasaki, Y. Differentiation, maturation, and survival of dendritic cells by osteopontin regulation. Clin. Diagn. Lab. Immunol., 2005, 12, 206-212.
[52]
Montagna, D.; Sommi, P.; Necchi, V.; Vitali, A.; Montini, E.; Turin, I.; Ferraro, D.; Ricci, V.; Solcia, E. Different polyubiquitinated bodies in human dendritic cells: IL-4 causes PaCS during differentiation while LPS or IFNα induces DALIS during maturation. Sci. Rep., 2017, 7, 1844.
[53]
Abediankenari, S.; Yousefzadeh, Y.; Azadeh, H.; Vahedi, M. Comparison of several maturation inducing factors in dendritic cell differentiation. Iran. J. Immunol., 2010, 7, 83-87.
[54]
Mitra, A.; Joshi, S.; Arjun, C.; Kulkarni, S.; Rajan, R. Limulus amebocyte lysate testing: Adapting it for determination of bacterial endotoxin in 99mtc-labeled radiopharmaceuticals at a hospital radiopharmacy. J. Nucl. Med. Technol., 2014, 42, 278-282.
[55]
Schnurr, M.; Galambos, P.; Scholz, C.; Then, F.; Dauer, M.; Endres, S.; Eigler, A. Tumor cell lysate-pulsed human dendritic cells induce a T-cell response against pancreatic carcinoma cells: An in vitro model for the assessment of tumor vaccines. Cancer Res., 2001, 61, 6445-6450.
[56]
Butterfield, L.H. Dendritic cells in cancer immunotherapy clinical trials: Are we making progress? Front. Immunol., 2013, 4, 454.
[57]
(a)Pyzer, A.; Avigan, D.; Rosenblatt, J. Clinical trials of dendritic cell-based cancer vaccines in hematologic malignancies. Hum. Vaccin. Immunother., 2014, 10, 3125-3131.
(b)Bol, K.; Schreibelt, G.; Gerritsen, W.; de Vries, I.; Figdor, C. Dendritic cell–based immunotherapy: state of the art and beyond. Clin. Cancer Res., 2016, 22, 1897-1906.
[58]
Chao, T.; Xiaowen, W.; Zhiqi, L. Qi1, Y.; Zixiao, Y.; Kun, F.; Hoon, D.; Wei1, H. A systemic review of clinical trials on dendritic-cells based vaccine against malignant glioma. J. Carcinog. Mutagen., 2015, 6, 222.
[59]
Antonarakis, E.; Small, E.; Petrylak, D.; Quinn, D.; Kibel, A.; Chang, N.; Dearstyne, E.; Harmon, M.; Campogan, D.; Haynes, H.; Vu, T.; Sheikh, N.; Drake, C. Antigen-specific CD8 lytic phenotype induced by Sipuleucel-T in hormone-sensitive or castration-resistant prostate cancer and association with overall survival. Clin. Cancer Res., 2018, 24(19), 4662-4671.
[60]
Babensee, J.E.; Paranjpe, A. Differential levels of dendritic cell maturation on different biomaterials used in combination products. J. Biomed. Mater. Res., 2005, 74A, 503-510.
[61]
Jia, L.; Gao, X.; Wang, Y.; Yao, N.; Zhang, X. Structural, phenotypic and functional maturation of bone marrow dendritic cells (BMDCs) induced by Chitosan (CTS). Biologicals, 2014, 42, 334-338.
[62]
Lin, Y-C.; Lou, P-J.; Young, T-H. Chitosan as an adjuvant-like substrate for dendritic cell culture to enhance antitumor effects. Biomaterials, 2014, 35, 8867-8875.
[63]
Zargar, V.; Asghari, M.; Dashti, A. A review on chitin and chitosan polymers: Structure, chemistry, solubility, derivatives, and applications. ChemBioEng Rev, 2015, 2, 204-226.
[64]
Bellich, B.; D’Agostino, I.; Semeraro, S.; Gamini, A.; Cesàro, A. The good, the bad and the ugly” of chitosans. Mar. Drugs, 2016, 14E99
[65]
Tseng, S-Y.; Dustin, M.L. T-cell activation: A multidimensional signaling network. Curr. Opin. Cell Biol., 2002, 14, 575-580.
[66]
van Rijt, L.; Vos, N.; Willart, M.; Kleinjan, A.; Coyle, A.; Hoogsteden, H.; Lambrecht, B. Essential role of dendritic cell CD80/CD86 costimulation in the induction, but not reactivation, of TH2 effector responses in a mouse model of asthma. J. Allergy Clin. Immunol., 2004, 114, 166-173.
[67]
Schefold, J.; Porz, L.; Uebe, B.; Poehlmann, H.; von Haehling, S.; Jung, A.; Unterwalder, N.; Meisel, C. Diminished HLA-DR expression on monocyte and dendritic cell subsets indicating impairment of cellular immunity in pre-term neonates: A prospective observational analysis. J. Perinat. Med., 2015, 43, 609-618.
[68]
Ten Broeke, T.; Wubbolts, R.; Stoorvogel, W. MHC class II antigen presentation by dendritic cells regulated through endosomal sorting. Cold Spring Harb. Perspect. Biol., 2013, 5(12)a016873
[69]
Aerts-Toegaert, C.; Heirman, C.; Tuyaerts, S.; Corthals, J.; Aerts, J.; Bonehill, A.; Thielemans, K.; Breckpot, K. CD83 expression on dendritic cells and T cells: correlation with effective immune responses. Eur. J. Immunol., 2007, 37(3), 686-695.
[70]
Villiers, C.; Chevallet, M.; Diemer, H.; Couderc, R.; Freitas, H.; Van Dorsselaer, A.; Marche, P.N.; Rabilloud, T. From secretome analysis to immunology: Chitosan induces major alterations in the activation of dendritic cells via a TLR4-dependent mechanism. Mol. Cell. Proteomics, 2009, 8, 1252-1264.
[71]
Arroyo-Espliguero, R.; Avanzas, P.; Jeffery, S.; Kaski, J.C. CD14 and toll-like receptor 4: A link between infection and acute coronary events? Heart, 2004, 90, 983-988.
[72]
Guilliams, M.; Ginhoux, F.; Jakubzick, C.; Naik, S.H.; Onai, N.; Schraml, B.U.; Segura, E.; Tussiwand, R.; Yona, S. Dendritic cells, monocytes and macrophages: A unified nomenclature based on ontogeny. Nat. Rev. Immunol., 2014, 14, 571-578.
[73]
Pham, P.V.; Nguyen, N.T.; Nguyen, H.M.; Khuat, L.T.; Le, P.M.; Pham, V.Q.; Nguyen, S.T.; Phan, N.K. A simple in vitro method for evaluating dendritic cell-based vaccinations. OncoTargets Ther., 2014, 7, 1455-1464.
[74]
Teitz-Tennenbaum, S.; Li, Q.; Davis, M.A.; Chang, A.E. Dendritic cells pulsed with keyhole limpet hemocyanin and cryopreserved maintain anti-tumor activity in a murine melanoma model. Clin. Immunol., 2008, 129, 482-491.
[75]
Presicce, P.; Taddeo, A.; Conti, A.; Villa, M.L.; Bella, S.D. Keyhole limpet hemocyanin induces the activation and maturation of human dendritic cells through the involvement of mannose receptor. Mol. Immunol., 2008, 45, 1136-1145.