Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Research Article

Flower-shaped Micro/nanostructures Based on AlOOH with Antimicrobial Activity Against E. coli

Author(s): Olga Vladimirovna Bakina*, Elena Alekseevna Glazkova, Alexander Vasiljevich Pervikov and Natalia Valentinovna Svarovskaya

Volume 15, Issue 5, 2019

Page: [525 - 531] Pages: 7

DOI: 10.2174/1573413715666190213143514

Price: $65

Abstract

Background: Flower-shaped micro/nanostructures containing adsorbent and antimicrobial agent within the same particle are a new generation of materials with considerable potential in the field of biomedicine.

Objective: Flower-shaped micro/nanostructures were fabricated by the reaction of Al/Cu, Al/Fe and Al/Zn bimetallic nanoparticles with water. Al/Cu, Al/Fe and Al/Zn nanoparticles were produced by the simultaneous electric explosion of a pair of the corresponding metal twisted wires (aluminum and copper, aluminum and iron or aluminum and zinc) in argon atmosphere. The synthesized bimetallic nanoparticles interact with water to form micro/nanostructures with flower-shaped morphology.

Methods: The properties of the obtained products were characterized by transmission electron microscopy, scanning electron microscopy, X-ray diffraction, energy dispersive X-ray spectroscopy, adsorption of nitrogen (BET method) and electrophoretic mobility. The antimicrobial activity of the micro/nanostructures against the bacteria Escherichia coli was studied. The toxicity of these micro/ nanostructures against the L 929 mouse fibroblast cell line was investigated.

Results: The micro/nanostructures showed biocidal activity against gram-negative bacteria. The micro/nanostructures AlOOH(Fe) have a low toxicity and can be used for drug delivery.

Conclusion: The micro/nanostructures with flower-shaped are good candidates for medical applications as antimicrobial and healing dressing components.

Keywords: Bimetallic nanoparticles, flower-shaped, alumina nanosheets, cytotoxicity, antibacterial activity, electrical explosion of wire, micro/nanostructures.

Graphical Abstract

[1]
Kaur, R.; Hasan, A.; Iqbal, N.; Alam, S.; Saini, M.K.; Raza, S.K. Synthesis and surface engineering of magnetic nanoparticles for environmental cleanup and pesticide residue analysis: A review. J. Sep. Sci., 2014, 37(14), 1805-1825.
[2]
Kharisov, B.I. A review for synthesis of nanoflowers. Recent Pat. Nanotechnol., 2008, 2(3), 190-200.
[3]
Liang, H.; Xu, B.; Wang, Z. Self-assembled 3D flower-like α-Fe2O3 microstructures and their superior capability for heavy metal ion removal. Mater. Chem. Phys., 2013, 141(2-3), 727-734.
[4]
Peng, S.Y.; Xu, Z.N.; Chen, Q.S.; Wang, Z.Q.; Lv, D.M.; Sun, J.; Chen, Y.M.; Guo, G.C. Enhanced stability of Pd/ZnO catalyst for CO oxidative coupling to dimethyl oxalate: Effect of Mg2+ doping. ACS Catal., 2015, 5(7), 4410-4417.
[5]
Daupor, H.; Wongnawa, S. Flower-like Ag/AgCl microcrystals: Synthesis and photocatalytic activity. Mater. Chem. Phys., 2015, 159, 71-82.
[6]
Hosseini, Z.S.; Mortezaali, A. Iraji zad, A.; Fardindoost, S. Sensitive and selective room temperature H2S gas sensor based on Au sensitized vertical ZnO nanorods with flower-like structures. J. Alloys Compd., 2015, 628, 222-229.
[7]
Meng, F.; Hou, N.; Ge, S.; Sun, B.; Jin, Z.; Shen, W.; Kong, L.; Guo, Z.; Sun, Y.; Wu, H.; Wang, C.; Li, M. Flower-like hierarchical structures consisting of porous single-crystalline ZnO nanosheets and their gas sensing properties to volatile organic compounds. J. Alloys Compd., 2015, 626, 124-130.
[8]
Azimirad, R.; Safa, S. Photocatalytic and antifungal activity of flower-like copper oxide nanostructures. Synth. React. Inorg. M., 2014, 44(6), 798-803.
[9]
Xiao, J.; Ji, H.; Shen, Z.; Yang, W.; Guo, C.; Wang, S.; Zhang, X.W.; Fu, R.; Ling, F. Self-assembly of flower-like γ-AlOOH and γ-Al2O3 with hierarchical nanoarchitectures and enhanced adsorption performance towards methyl orange. RSC Advances, 2014, 4(66), 35077-35083.
[10]
Han, J.; Li, J.; Jia, W.; Yao, L.; Li, X.; Jiang, L.; Tian, Y. Photothermal therapy of cancer cells using novel hollow gold nanoflowers. Int. J. Nanomedicine, 2014, 9, 517-526.
[11]
Jiang, Y.; Deng, Z.; Yang, D.; Deng, X.; Li, Q.; Sha, Y.; Li, C.; Xu, D. Gold nanoflowers for 3D volumetric molecular imaging of tumors by photoacoustic tomography. Nano Res., 2015, 8(7), 2152-2161.
[12]
Zhang, C.; Mo, Z.; Teng, G.; Wang, B.; Guo, R.; Zhang, P. Superparamagnetic functional C@Fe3O4 nanoflowers: Development and application in acetaminophen delivery. J. Mater. Chem. B , 2013, 1(43), 5908-5915.
[13]
Özütok, F.; Demiri, S. Nanoflower-like ZnO films prepared by modified chemical bath deposition: Synthesis, optical properties and NO2 gas sensing mechanism. Dig. J. Nanomater. Biostruct., 2017, 12(2), 309-317.
[14]
Khan, M.F.; Hameedullah, M.; Ansari, A.H.; Ahmad, E.; Lohani, M.B.; Khan, R.H.; Alam, M.M.; Khan, W.; Husain, F.M.; Ahmad, I. Flower-shaped ZnO nanoparticles synthesized by a novel approach at near-room temperatures with antibacterial and antifungal properties. Int. J. Nanomedicine, 2014, 9, 853-864.
[15]
Wang, C.; Meng, Y.; Wang, L.; Zhu, F.; Zhang, Y. One step hydrothermal synthesis of flower-shaped Co3O4 nanorods on nickel foam as supercapacitor materials and their excellent electrochemical performance. Chem. Res. Chin. Univ., 2018, 34(6), 882-886.
[16]
Janene, F.; Dhaouadi, H.; Etteyeb, N.; Touati, F. Flower-like cuprous oxide: hydrothermal synthesis, optical, and electrochemical properties. Ionics, 2015, 21(2), 477-485.
[17]
Jian, G.A.O.; Xie, J.P.; Ding, J.N.; Jian, K.A.N.G.; Cheng, H.N.; Qiu, G.Z. Extraction and purification of magnetic nanoparticles from strain of Leptospirillum ferriphilum. Trans. Nonferrous Met. Soc. China, 2006, 16(6), 1417-1420.
[18]
Bakina, O.V.; Svarovskaya, N.V.; Glazkova, E.A.; Lozhkomoev, A.S.; Khorobraya, E.G.; Lerner, M.I. Flower-shaped AlOOH nanostructures synthesized by the reaction of an AlN/Al composite nanopowder in water. Adv. Powder Technol., 2015, 26(6), 1512-1519.
[19]
Lerner, M.I.; Pervikov, A.V.; Lozhkomoev, A.S.; Bakina, O.V. Synthesis of Al nanoparticles and Al/AlN composite nanoparticles by electrical explosion of aluminum wires in argon and nitrogen. Powder Technol., 2016, 295, 307-314.
[20]
Wadajkar, A.S.; Ahn, C.; Nguyen, K.T.; Zhu, Q.; Komabayashi, T. In vitro cytotoxicity evaluation of four vital pulp therapy materials on L929 fibroblasts. ISRN Dent., 2014, 2014Article ID 191068
[21]
Boomi, P.; Prabu, H.G.; Manisankar, P.; Ravikumar, S. Study on antibacterial activity of chemically synthesized PANI-Ag-Au nanocomposite. Appl. Surf. Sci., 2014, 300, 66-72.
[22]
Ruparelia, J.P.; Chatterjee, A.K.; Duttagupta, S.P.; Mukherji, S. Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater., 2008, 4(3), 707-716.
[23]
Gunalan, S.; Sivaraj, R.; Rajendran, V. Green synthesized ZnO nanoparticles against bacterial and fungal pathogens. Prog. Nat. Sci.-. Mater, 2012, 22, 693-700.
[24]
Jeyasubramanian, K.; Marikani, A.; Rajakumar, G.; Rahuman, A.A.; Ramyadevi, J. Synthesis and antimicrobial activity of copper nanoparticles. Mater. Lett., 2012, 71, 114-116.
[25]
Sirelkhatim, A.; Mahmud, S.; Seeni, A.; Kaus, N.H.M.; Ann, L.C.; Bakhori, S.K.M.; Hasan, H.; Mohamad, D. Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism. Nano-Micro Lett., 2015, 7, 219-242.
[26]
Kim, E.J.; Thanh, T.L.; Chang, Y.S. Comparative toxicity of bimetallic Fe nanoparticles toward Escherichia coli: Mechanism and environmental implications. Environ. Sci. Nano, 2014, 1(3), 233-237.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy