Abstract
The ability of clinicians to wage an effective war against many bacterial infections is increasingly being hampered by skyrocketing rates of antibiotic resistance. Indeed, antibiotic resistance is a significant problem for treatment of diseases caused by virtually all known infectious bacteria. The gastric pathogen Helicobacter pylori is no exception to this rule. With more than 50% of the worlds population infected, H. pylori exacts a tremendous medical burden and represents an interesting paradigm for cancer development; it is the only bacterium that is currently recognized as a carcinogen. It is now firmly established that H. pylori infection is associated with diseases such as gastritis, peptic and duodenal ulceration and two forms of gastric cancer, gastric adenocarcinoma and mucosa-associated lymphoid tissue (MALT) lymphoma. With such a large percentage of the population infected, increasing rates of antibiotic resistance are particularly vexing for a treatment regime that is already fairly complicated; treatment consists of two antibiotics and a proton pump inhibitor. To date, resistance has been found to all primary and secondary lines of antibiotic treatment as well as to drugs used for rescue therapy.
Keywords: Molecular Mechanisms, Antibiotic Resistance, Helicobacter pylori, bacterial infections, gastric pathogen, carcinogen, gastric adenocarcinoma, mucosa-associated lymphoid tissue (MALT)