Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

General Review Article

Omega-3 Polyunsaturated Fatty Acid Derived Lipid Mediators and their Application in Drug Discovery

Author(s): Curtis W. Pazderka, Brian Oliver, Michael Murray and Tristan Rawling*

Volume 27, Issue 10, 2020

Page: [1670 - 1689] Pages: 20

DOI: 10.2174/0929867325666180927100120

Price: $65

Abstract

Omega-3 (n-3) and omega-6 (n-6) polyunsaturated fatty acids (PUFAs) play crucial and often opposing regulatory roles in health and in pathological conditions. n-3 and n-6 PUFA undergo biotransformation to parallel series of lipid mediators that are potent modulators of many cellular processes. A wide range of biological actions have been attributed to lipid mediators derived from n-6 PUFA, and these mediators have served as lead compounds in the development of numerous clinically approved drugs, including latanoprost (Xalatan: Pfizer), which is listed on the WHO Model List of Essential Medicines. n-3 PUFA-derived mediators have received less attention, in part because early studies suggested that n-3 PUFA act simply as competitive substrates for biotransformation enzymes and decrease the formation of n-6 PUFA-derived lipid mediators. However, more recent studies suggest that n-3 PUFA-derived mediators are biologically important in their own right. It is now emerging that many n-3 PUFA-derived lipid mediators have potent and diverse activities that are distinct from their n-6 counterparts. These findings provide new opportunities for drug discovery. Herein, we review the biosynthesis of n-3 PUFA-derived lipid mediators and highlight their biological actions that may be exploited for drug development. Lastly, we provide examples of medicinal chemistry research that has utilized n-3 PUFA-derived lipid mediators as novel lead compounds in drug design.

Keywords: Polyunsaturated fatty acids, lipid mediators, oxylipin, omega-3, biotransformation, drug design strategies.

[1]
Schmitz, G.; Ecker, J. The opposing effects of n-3 and n-6 fatty acids. Prog. Lipid Res., 2008, 47(2), 147-155.
[http://dx.doi.org/10.1016/j.plipres.2007.12.004] [PMID: 18198131]
[2]
Calder, P.C. Mechanisms of action of (n-3) fatty acids. J. Nutr., 2012, 142(3), 592S-599S.
[http://dx.doi.org/10.3945/jn.111.155259] [PMID: 22279140]
[3]
Agarwal, S.; Reddy, G.V.; Reddanna, P. Eicosanoids in inflammation and cancer: the role of COX-2. Expert Rev. Clin. Immunol., 2009, 5(2), 145-165.
[http://dx.doi.org/10.1586/1744666X.5.2.145] [PMID: 20477063]
[4]
FitzGerald, G.A. Mechanisms of platelet activation: thromboxane A2 as an amplifying signal for other agonists. Am. J. Cardiol., 1991, 68(7), 11B-15B.
[http://dx.doi.org/10.1016/0002-9149(91)90379-Y] [PMID: 1892057]
[5]
Panigrahy, D.; Kaipainen, A.; Greene, E.R.; Huang, S. Cytochrome P450-derived eicosanoids: the neglected pathway in cancer. Cancer Metastasis Rev., 2010, 29(4), 723-735.
[http://dx.doi.org/10.1007/s10555-010-9264-x] [PMID: 20941528]
[6]
Greene, E.R.; Huang, S.; Serhan, C.N.; Panigrahy, D. Regulation of inflammation in cancer by eicosanoids. Prostaglandins Other Lipid Mediat., 2011, 96(1-4), 27-36.
[http://dx.doi.org/10.1016/j.prostaglandins.2011.08.004] [PMID: 21864702]
[7]
Collins, P.W.; Djuric, S.W. Synthesis of therapeutically useful prostaglandin and prostacyclin analogs. Chem. Rev., 1993, 93(4), 1533-1564.
[http://dx.doi.org/10.1021/cr00020a007]
[8]
Balsinde, J.; Balboa, M.A.; Insel, P.A.; Dennis, E.A. Regulation and inhibition of phospholipase A2. Annu. Rev. Pharmacol. Toxicol., 1999, 39(1), 175-189.
[http://dx.doi.org/10.1146/annurev.pharmtox.39.1.175] [PMID: 10331081]
[9]
Juan, H.; Sametz, W. Dihomo-gamma-linolenic acid increases the metabolism of eicosapentaenoic acid in perfused vascular tissue. Prostaglandins Leukot. Med., 1985, 19(1), 79-86.
[http://dx.doi.org/10.1016/0262-1746(85)90162-3] [PMID: 2994115]
[10]
Boukhchache, D.; Lagarde, M. Interactions between prostaglandin precursors during their oxygenation by human platelets. Biochim. Biophys. Acta, 1982, 713(2), 386-392.
[http://dx.doi.org/10.1016/0005-2760(82)90257-0] [PMID: 6295499]
[11]
Pirman, D.A.; Efuet, E.; Ding, X-P.; Pan, Y.; Tan, L.; Fischer, S.M.; DuBois, R.N.; Yang, P. Changes in cancer cell metabolism revealed by direct sample analysis with MALDI mass spectrometry. PLoS One, 2013, 8(4), e61379
[http://dx.doi.org/10.1371/journal.pone.0061379] [PMID: 23658609]
[12]
Peskar, B.M. Role of cyclooxygenase isoforms in gastric mucosal defence. J. Physiol. Paris, 2001, 95(1-6), 3-9.
[http://dx.doi.org/10.1016/S0928-4257(01)00003-1] [PMID: 11595412]
[13]
Neilson, A.P.; Djuric, Z.; Ren, J.; Hong, Y.H.; Sen, A.; Lager, C.; Jiang, Y.; Reuven, S.; Smith, W.L.; Brenner, D.E. Effect of cyclooxygenase genotype and dietary fish oil on colonic eicosanoids in mice. J. Nutr. Biochem., 2012, 23(8), 966-976.
[http://dx.doi.org/10.1016/j.jnutbio.2011.05.003] [PMID: 21937210]
[14]
Chandrasekharan, N.V.; Dai, H.; Roos, K.L.; Evanson, N.K.; Tomsik, J.; Elton, T.S.; Simmons, D.L. COX-3, a cyclooxygenase-1 variant inhibited by acetaminophen and other analgesic/antipyretic drugs: cloning, structure, and expression. Proc. Natl. Acad. Sci. USA, 2002, 99(21), 13926-13931.
[http://dx.doi.org/10.1073/pnas.162468699] [PMID: 12242329]
[15]
Needleman, P.; Whitaker, M.O.; Wyche, A.; Watters, K.; Sprecher, H.; Raz, A. Manipulation of platelet aggregation by prostaglandins and their fatty acid precursors: pharmacological basis for a therapeutic approach. Prostaglandins, 1980, 19(1), 165-181.
[http://dx.doi.org/10.1016/0090-6980(80)90163-X] [PMID: 6247744]
[16]
Wada, M.; DeLong, C.J.; Hong, Y.H.; Rieke, C.J.; Song, I.; Sidhu, R.S.; Yuan, C.; Warnock, M.; Schmaier, A.H.; Yokoyama, C.; Smyth, E.M.; Wilson, S.J.; FitzGerald, G.A.; Garavito, R.M.; Sui, X.; Regan, J.W.; Smith, W.L. Enzymes and receptors of prostaglandin pathways with arachidonic acid-derived versus eicosapentaenoic acid-derived substrates and products. J. Biol. Chem., 2007, 282(31), 22254-22266.
[http://dx.doi.org/10.1074/jbc.M703169200] [PMID: 17519235]
[17]
Hegde, S.; Kaushal, N.; Ravindra, K.C.; Chiaro, C.; Hafer, K.T.; Gandhi, U.H.; Thompson, J.T.; van den Heuvel, J.P.; Kennett, M.J.; Hankey, P.; Paulson, R.F.; Prabhu, K.S. Δ.Δ 12-prostaglandin J3, an omega-3 fatty acid-derived metabolite, selectively ablates leukemia stem cells in mice. Blood, 2011, 118(26), 6909-6919.
[http://dx.doi.org/10.1182/blood-2010-11-317750] [PMID: 21967980]
[18]
Lefils-Lacourtablaise, J.; Socorro, M.; Géloën, A.; Daira, P.; Debard, C.; Loizon, E.; Guichardant, M.; Dominguez, Z.; Vidal, H.; Lagarde, M.; Bernoud-Hubac, N. The eicosapentaenoic acid metabolite 15-deoxy-δ(12,14)-prostaglandin J3 increases adiponectin secretion by adipocytes partly via a PPARγ-dependent mechanism. PLoS One, 2013, 8(5), e63997
[http://dx.doi.org/10.1371/journal.pone.0063997] [PMID: 23734181]
[19]
Mizugaki, M.; Nishikawa, M.; Hishinuma, T.; Uyama, T.; Suzuki, K.; Toyoda, T. Effect of diabetic sera on the conversion of eicosapentaenoic acid (EPA) to prostaglandin I3 by cultured bovine aortic endothelial cells. Prostaglandins, 1995, 50(5-6), 377-386.
[http://dx.doi.org/10.1016/0090-6980(96)00007-X] [PMID: 8838246]
[20]
Maehre, H.K.; Jensen, I-J.; Elvevoll, E.O.; Eilertsen, K-E. ω-3 fatty acids and cardiovascular diseases: effects, mechanisms and dietary relevance. Int. J. Mol. Sci., 2015, 16(9), 22636-22661.
[http://dx.doi.org/10.3390/ijms160922636] [PMID: 26393581]
[21]
Leitch, A.G.; Lee, T.H.; Ringel, E.W.; Prickett, J.D.; Robinson, D.R.; Pyne, S.G.; Corey, E.J.; Drazen, J.M.; Austen, K.F.; Lewis, R.A. Immunologically induced generation of tetraene and pentaene leukotrienes in the peritoneal cavities of menhaden-fed rats. J. Immunol., 1984, 132(5), 2559-2565.
[PMID: 6325538]
[22]
Moreno, J.J. Differential effects of arachidonic and eicosapentaenoic Acid-derived eicosanoids on polymorphonuclear transmigration across endothelial cell cultures. J. Pharmacol. Exp. Ther., 2009, 331(3), 1111-1117.
[http://dx.doi.org/10.1124/jpet.109.157891] [PMID: 19776385]
[23]
Lee, T.H.; Menica-Huerta, J.M.; Shih, C.; Corey, E.J.; Lewis, R.A.; Austen, K.F. Characterization and biologic properties of 5,12-dihydroxy derivatives of eicosapentaenoic acid, including leukotriene B5 and the double lipoxygenase product. J. Biol. Chem., 1984, 259(4), 2383-2389.
[PMID: 6321468]
[24]
Terano, T.; Salmon, J.A.; Moncada, S. Biosynthesis and biological activity of leukotriene B5. Prostaglandins, 1984, 27(2), 217-232.
[http://dx.doi.org/10.1016/0090-6980(84)90075-3] [PMID: 6326200]
[25]
Heidel, J.R.; Taylor, S.M.; Laegreid, W.W.; Silflow, R.M.; Liggitt, H.D.; Leid, R.W. In vivo chemotaxis of bovine neutrophils induced by 5-lipoxygenase metabolites of arachidonic and eicosapentaenoic acid. Am. J. Pathol., 1989, 134(3), 671-676.
[PMID: 2538061]
[26]
Lee, T.H.; Sethi, T.; Crea, A.E.; Peters, W.; Arm, J.P.; Horton, C.E.; Walport, M.J.; Spur, B.W. Characterization of leukotriene B3: comparison of its biological activities with leukotriene B4 and leukotriene B5 in complement receptor enhancement, lysozyme release and chemotaxis of human neutrophils. Clin. Sci. (Lond.), 1988, 74(5), 467-475.
[http://dx.doi.org/10.1042/cs0740467] [PMID: 2836122]
[27]
Stahl, G.L.; Tsao, P.; Lefer, A.M.; Ramphal, J.Y.; Nicolaou, K.C. Pharmacologic profile of lipoxins A5 and B5: new biologically active eicosanoids. Eur. J. Pharmacol., 1989, 163(1), 55-60.
[http://dx.doi.org/10.1016/0014-2999(89)90394-4] [PMID: 2545463]
[28]
Dahlén, S-E.; Hedqvist, P.; Hammarström, S. Contractile activities of several cysteine-containing leukotrienes in the guinea-pig lung strip. Eur. J. Pharmacol., 1982, 86(2), 207-215.
[http://dx.doi.org/10.1016/0014-2999(82)90318-1] [PMID: 6297932]
[29]
Corey, E.J.; Shih, C.; Cashman, J.R. Docosahexaenoic acid is a strong inhibitor of prostaglandin but not leukotriene biosynthesis. Proc. Natl. Acad. Sci. USA, 1983, 80(12), 3581-3584.
[http://dx.doi.org/10.1073/pnas.80.12.3581] [PMID: 6304720]
[30]
Marcheselli, V.L.; Hong, S.; Lukiw, W.J.; Tian, X.H.; Gronert, K.; Musto, A.; Hardy, M.; Gimenez, J.M.; Chiang, N.; Serhan, C.N.; Bazan, N.G. Novel docosanoids inhibit brain ischemia-reperfusion-mediated leukocyte infiltration and pro-inflammatory gene expression. J. Biol. Chem., 2003, 278(44), 43807-43817.
[http://dx.doi.org/10.1074/jbc.M305841200] [PMID: 12923200]
[31]
Grimminger, F.; Mayer, K.; Kiss, L.; Wahn, H.; Walmrath, D.; Seeger, W. Synthesis of 4- and 5-series leukotrienes in the lung microvasculature challenged with Escherichia coli hemolysin: critical dependence on exogenous free fatty acid supply. Am. J. Respir. Cell Mol. Biol., 1997, 16(3), 317-324.
[http://dx.doi.org/10.1165/ajrcmb.16.3.9070617] [PMID: 9070617]
[32]
Hudert, C.A.; Weylandt, K.H.; Lu, Y.; Wang, J.; Hong, S.; Dignass, A.; Serhan, C.N.; Kang, J.X. Transgenic mice rich in endogenous omega-3 fatty acids are protected from colitis. Proc. Natl. Acad. Sci. USA, 2006, 103(30), 11276-11281.
[http://dx.doi.org/10.1073/pnas.0601280103] [PMID: 16847262]
[33]
Qu, Q.; Xuan, W.; Fan, G.H. Roles of resolvins in the resolution of acute inflammation. Cell Biol. Int., 2015, 39(1), 3-22.
[http://dx.doi.org/10.1002/cbin.10345] [PMID: 25052386]
[34]
Serhan, C.N. Resolvins and protectins: novel lipid mediators in anti-inflammation and resolution. Scandinavian Journal of Food and Nutrition, 2006, 39(1), 3-22.
[http://dx.doi.org/10.1080/17482970601066298]
[35]
Serhan, C.N.; Chiang, N.; Dalli, J. Macrophages and the entrance of resolution phase lipid mediators in:Macrophages: Biology and Role in the Pathology of Diseases; Biswas, S.K.; Mantovani, A., Eds.; Springer New York: New York, NY, 2014, pp. 287-314.
[http://dx.doi.org/10.1007/978-1-4939-1311-4_13]
[36]
Cipollina, C. Endogenous generation and signaling actions of omega-3 fatty acid electrophilic derivatives. BioMed Res. Int., 2015, 2015, 501792
[http://dx.doi.org/10.1155/2015/501792] [PMID: 26339618]
[37]
Dalli, J.; Chiang, N.; Serhan, C.N. Identification of 14-series sulfido-conjugated mediators that promote resolution of infection and organ protection. Proc. Natl. Acad. Sci. USA, 2014, 111(44), E4753-E4761.
[http://dx.doi.org/10.1073/pnas.1415006111] [PMID: 25324525]
[38]
Dalli, J.; Ramon, S.; Norris, P.C.; Colas, R.A.; Serhan, C.N. Novel proresolving and tissue-regenerative resolvin and protectin sulfido-conjugated pathways. FASEB J., 2015, 29(5), 2120-2136.
[http://dx.doi.org/10.1096/fj.14-268441] [PMID: 25713027]
[39]
Capdevila, J.H.; Falck, J.R.; Harris, R.C. Cytochrome P450 and arachidonic acid bioactivation. Molecular and functional properties of the arachidonate monooxygenase. J. Lipid Res., 2000, 41(2), 163-181.
[PMID: 10681399]
[40]
Seubert, J.M.; Zeldin, D.C.; Nithipatikom, K.; Gross, G.J. Role of epoxyeicosatrienoic acids in protecting the myocardium following ischemia/reperfusion injury. Prostaglandins Other Lipid Mediat., 2007, 82(1-4), 50-59.
[http://dx.doi.org/10.1016/j.prostaglandins.2006.05.017] [PMID: 17164132]
[41]
Barbosa-Sicard, E.; Markovic, M.; Honeck, H.; Christ, B.; Muller, D.N.; Schunck, W-H. Eicosapentaenoic acid metabolism by cytochrome P450 enzymes of the CYP2C subfamily. Biochem. Biophys. Res. Commun., 2005, 329(4), 1275-1281.
[http://dx.doi.org/10.1016/j.bbrc.2005.02.103] [PMID: 15766564]
[42]
Fleming, I. Epoxyeicosatrienoic acids, cell signaling and angiogenesis. Prostaglandins Other Lipid Mediat., 2007, 82(1-4), 60-67.
[http://dx.doi.org/10.1016/j.prostaglandins.2006.05.003] [PMID: 17164133]
[43]
Ayajiki, K.; Okamura, T.; Fujioka, H.; Imaoka, S.; Funae, Y.; Toda, N. Involvement of CYP3A-derived arachidonic acid metabolite(s) in responses to endothelium-derived K+ channel opening substance in monkey lingual artery. Br. J. Pharmacol., 1999, 128(3), 802-808.
[http://dx.doi.org/10.1038/sj.bjp.0702843] [PMID: 10516665]
[44]
Zanger, U.M.; Schwab, M. Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol. Ther., 2013, 138(1), 103-141.
[http://dx.doi.org/10.1016/j.pharmthera.2012.12.007] [PMID: 23333322]
[45]
Thelen, K.; Dressman, J.B. Cytochrome P450-mediated metabolism in the human gut wall. J. Pharm. Pharmacol., 2009, 61(5), 541-558.
[http://dx.doi.org/10.1211/jpp.61.05.0002] [PMID: 19405992]
[46]
Morisseau, C.; Inceoglu, B.; Schmelzer, K.; Tsai, H.J.; Jinks, S.L.; Hegedus, C.M.; Hammock, B.D. Naturally occurring monoepoxides of eicosapentaenoic acid and docosahexaenoic acid are bioactive antihyperalgesic lipids. J. Lipid Res., 2010, 51(12), 3481-3490.
[http://dx.doi.org/10.1194/jlr.M006007] [PMID: 20664072]
[47]
Johnson, A.L.; Edson, K.Z.; Totah, R.A.; Rettie, A.E. Cytochrome P450 ω-hydroxylases in inflammation and cancer. Adv. Pharmacol., 2015, 74, 223-262.
[http://dx.doi.org/10.1016/bs.apha.2015.05.002] [PMID: 26233909]
[48]
Fer, M.; Corcos, L.; Dréano, Y.; Plée-Gautier, E.; Salaün, J.P.; Berthou, F.; Amet, Y. Cytochromes P450 from family 4 are the main omega hydroxylating enzymes in humans: CYP4F3B is the prominent player in PUFA metabolism. J. Lipid Res., 2008, 49(11), 2379-2389.
[http://dx.doi.org/10.1194/jlr.M800199-JLR200] [PMID: 18577768]
[49]
Harmon, S.D.; Fang, X.; Kaduce, T.L.; Hu, S.; Raj Gopal, V.; Falck, J.R.; Spector, A.A. Oxygenation of omega-3 fatty acids by human cytochrome P450 4F3B: effect on 20-hydroxyeicosatetraenoic acid production. Prostaglandins Leukot. Essent. Fatty Acids, 2006, 75(3), 169-177.
[http://dx.doi.org/10.1016/j.plefa.2006.05.005] [PMID: 16820285]
[50]
Schwarz, D.; Kisselev, P.; Ericksen, S.S.; Szklarz, G.D.; Chernogolov, A.; Honeck, H.; Schunck, W.H.; Roots, I. Arachidonic and eicosapentaenoic acid metabolism by human CYP1A1: highly stereoselective formation of 17(R),18(S)-epoxyeicosatetraenoic acid. Biochem. Pharmacol., 2004, 67(8), 1445-1457.
[http://dx.doi.org/10.1016/j.bcp.2003.12.023] [PMID: 15041462]
[51]
Roberts, L.J., II; Milne, G.L. Isoprostanes. J. Lipid Res., 2009, 50(Suppl.), S219-S223.
[http://dx.doi.org/10.1194/jlr.R800037-JLR200] [PMID: 18957694]
[52]
Morrow, J.D.; Harris, T.M.; Roberts, L.J., II Noncyclooxygenase oxidative formation of a series of novel prostaglandins: analytical ramifications for measurement of eicosanoids. Anal. Biochem., 1990, 184(1), 1-10.
[http://dx.doi.org/10.1016/0003-2697(90)90002-Q] [PMID: 2321745]
[53]
Gao, L.; Yin, H.; Milne, G.L.; Porter, N.A.; Morrow, J.D. Formation of F-ring isoprostane-like compounds (F3-isoprostanes) in vivo from eicosapentaenoic acid. J. Biol. Chem., 2006, 281(20), 14092-14099.
[http://dx.doi.org/10.1074/jbc.M601035200] [PMID: 16569632]
[54]
Brooks, J.D.; Milne, G.L.; Yin, H.; Sanchez, S.C.; Porter, N.A.; Morrow, J.D. Formation of highly reactive cyclopentenone isoprostane compounds (A3/J3-isoprostanes) in vivo from eicosapentaenoic acid. J. Biol. Chem., 2008, 283(18), 12043-12055.
[http://dx.doi.org/10.1074/jbc.M800122200] [PMID: 18263929]
[55]
Miller, E.; Morel, A.; Saso, L.; Saluk, J. Isoprostanes and neuroprostanes as biomarkers of oxidative stress in neurodegenerative diseases. Oxid. Med. Cell. Longev., 2014, 2014, 572491
[http://dx.doi.org/10.1155/2014/572491] [PMID: 24868314]
[56]
Fam, S.S.; Murphey, L.J.; Terry, E.S.; Zackert, W.E.; Chen, Y.; Gao, L.; Pandalai, S.; Milne, G.L.; Roberts, L.J.; Porter, N.A.; Montine, T.J.; Morrow, J.D. Formation of highly reactive A-ring and J-ring isoprostane-like compounds (A4/J4-neuroprostanes) in vivo from docosahexaenoic acid. J. Biol. Chem., 2002, 277(39), 36076-36084.
[http://dx.doi.org/10.1074/jbc.M205638200] [PMID: 12133837]
[57]
Gryglewski, R.J.; Salmon, J.A.; Ubatuba, F.B.; Weatherly, B.C.; Moncada, S.; Vane, J.R. Effects of all cis-5,8,11,14,17 eicosapentaenoic acid and PGH3 on platelet aggregation. Prostaglandins, 1979, 18(3), 453-478.
[http://dx.doi.org/10.1016/S0090-6980(79)80063-5] [PMID: 531220]
[58]
Leaf, A.; Kang, J.X.; Xiao, Y-F.; Billman, G.E. Clinical prevention of sudden cardiac death by n-3 polyunsaturated fatty acids and mechanism of prevention of arrhythmias by n-3 fish oils. Circulation, 2003, 107(21), 2646-2652.
[http://dx.doi.org/10.1161/01.CIR.0000069566.78305.33] [PMID: 12782616]
[59]
Needleman, P.; Raz, A.; Minkes, M.S.; Ferrendelli, J.A.; Sprecher, H. Triene prostaglandins: prostacyclin and thromboxane biosynthesis and unique biological properties. Proc. Natl. Acad. Sci. USA, 1979, 76(2), 944-948.
[http://dx.doi.org/10.1073/pnas.76.2.944] [PMID: 218223]
[60]
Evans, J.; Nathaniel, D.; Charleson, S.; Léveillé, C.; Zamboni, R.; Leblanc, Y.; Frenette, R.; Fitzsimmons, B.J.; Leger, S.; Hamel, P.; Ford-Hutchinson, A.W. Neutrophil LTA4 hydrolases and leukotriene B4 receptors: effects of leukotriene epoxides and their enzymatic products. Prostaglandins Leukot. Med., 1986, 23(2-3), 167-171.
[http://dx.doi.org/10.1016/0262-1746(86)90181-2] [PMID: 3020583]
[61]
Nathaniel, D.J.; Evans, J.F.; Leblanc, Y.; Léveillé, C.; Fitzsimmons, B.J.; Ford-Hutchinson, A.W. Leukotriene A5 is a substrate and an inhibitor of rat and human neutrophil LTA4 hydrolase. Biochem. Biophys. Res. Commun., 1985, 131(2), 827-835.
[http://dx.doi.org/10.1016/0006-291X(85)91314-2] [PMID: 2996528]
[62]
Dalli, J.; Zhu, M.; Vlasenko, N.A.; Deng, B.; Haeggström, J.Z.; Petasis, N.A.; Serhan, C.N. The novel 13S,14S-epoxy-maresin is converted by human macrophages to maresin 1 (MaR1), inhibits leukotriene A4 hydrolase (LTA4H), and shifts macrophage phenotype. FASEB J., 2013, 27(7), 2573-2583.
[http://dx.doi.org/10.1096/fj.13-227728] [PMID: 23504711]
[63]
Taccone-Gallucci, M.; Manca-di-Villahermosa, S.; Battistini, L.; Stuffler, R.G.; Tedesco, M.; Maccarrone, M. N-3 PUFAs reduce oxidative stress in ESRD patients on maintenance HD by inhibiting 5-lipoxygenase activity. Kidney Int., 2006, 69(8), 1450-1454.
[http://dx.doi.org/10.1038/sj.ki.5000291] [PMID: 16531984]
[64]
Pike, L.J. Lipid rafts: bringing order to chaos. J. Lipid Res., 2003, 44(4), 655-667.
[http://dx.doi.org/10.1194/jlr.R200021-JLR200] [PMID: 12562849]
[65]
Shaikh, S.R. Biophysical and biochemical mechanisms by which dietary N-3 polyunsaturated fatty acids from fish oil disrupt membrane lipid rafts. J. Nutr. Biochem., 2012, 23(2), 101-105.
[http://dx.doi.org/10.1016/j.jnutbio.2011.07.001] [PMID: 22137258]
[66]
Corsetto, P.A.; Cremona, A.; Montorfano, G.; Jovenitti, I.E.; Orsini, F.; Arosio, P.; Rizzo, A.M. Chemical-physical changes in cell membrane microdomains of breast cancer cells after omega-3 PUFA incorporation. Cell Biochem. Biophys., 2012, 64(1), 45-59.
[http://dx.doi.org/10.1007/s12013-012-9365-y] [PMID: 22622660]
[67]
Altenburg, J.D.; Siddiqui, R.A. Omega-3 polyunsaturated fatty acids down-modulate CXCR4 expression and function in MDA-MB-231 breast cancer cells. Mol. Cancer Res., 2009, 7(7), 1013-1020.
[http://dx.doi.org/10.1158/1541-7786.MCR-08-0385] [PMID: 19567784]
[68]
Thannickal, V.J.; Fanburg, B.L. Reactive oxygen species in cell signaling. Am. J. Physiol. Lung Cell. Mol. Physiol., 2000, 279(6), L1005-L1028.
[http://dx.doi.org/10.1152/ajplung.2000.279.6.L1005] [PMID: 11076791]
[69]
Hirata, T.; Narumiya, S. Prostanoid receptors. Chem. Rev., 2011, 111(10), 6209-6230.
[http://dx.doi.org/10.1021/cr200010h] [PMID: 21819041]
[70]
Regan, J.W. EP2 and EP4 prostanoid receptor signaling. Life Sci., 2003, 74(2-3), 143-153.
[http://dx.doi.org/10.1016/j.lfs.2003.09.031] [PMID: 14607241]
[71]
Nakamura, M.; Shimizu, T. Leukotriene receptors. Chem. Rev., 2011, 111(10), 6231-6298.
[http://dx.doi.org/10.1021/cr100392s] [PMID: 21526749]
[72]
Evans, J.F. Cysteinyl leukotriene receptors. Prostaglandins Other Lipid Mediat., 2002, 68-69, 587-597.
[http://dx.doi.org/10.1016/S0090-6980(02)00057-6] [PMID: 12432945]
[73]
Hoshino, M.; Izumi, T.; Shimizu, T. Leukotriene D4 activates mitogen-activated protein kinase through a protein kinase Calpha-Raf-1-dependent pathway in human monocytic leukemia THP-1 cells. J. Biol. Chem., 1998, 273(9), 4878-4882.
[http://dx.doi.org/10.1074/jbc.273.9.4878] [PMID: 9478929]
[74]
Hawcroft, G.; Loadman, P.M.; Belluzzi, A.; Hull, M.A. Effect of eicosapentaenoic acid on E-type prostaglandin synthesis and EP4 receptor signaling in human colorectal cancer cells. Neoplasia, 2010, 12(8), 618-627.
[http://dx.doi.org/10.1593/neo.10388] [PMID: 20689756]
[75]
Simon, L.S. Biologic effects of nonsteroidal anti-inflammatory drugs. Curr. Opin. Rheumatol., 1997, 9(3), 178-182.
[http://dx.doi.org/10.1097/00002281-199705000-00002] [PMID: 9204251]
[76]
Greenhough, A.; Smartt, H.J.M.; Moore, A.E.; Roberts, H.R.; Williams, A.C.; Paraskeva, C.; Kaidi, A. The COX-2/PGE2 pathway: key roles in the hallmarks of cancer and adaptation to the tumour microenvironment. Carcinogenesis, 2009, 30(3), 377-386.
[http://dx.doi.org/10.1093/carcin/bgp014] [PMID: 19136477]
[77]
Singh, B.; Berry, J.A.; Shoher, A.; Ramakrishnan, V.; Lucci, A. COX-2 overexpression increases motility and invasion of breast cancer cells. Int. J. Oncol., 2005, 26(5), 1393-1399.
[http://dx.doi.org/10.3892/ijo.26.5.1393] [PMID: 15809733]
[78]
Nassar, A.; Radhakrishnan, A.; Cabrero, I.A.; Cotsonis, G.; Cohen, C. COX-2 expression in invasive breast cancer: correlation with prognostic parameters and outcome. Appl. Immunohistochem. Mol. Morphol., 2007, 15(3), 255-259.
[http://dx.doi.org/10.1097/01.pai.0000213130.63417.b3] [PMID: 17721268]
[79]
Kutchera, W.; Jones, D.A.; Matsunami, N.; Groden, J.; McIntyre, T.M.; Zimmerman, G.A.; White, R.L.; Prescott, S.M. Prostaglandin H synthase 2 is expressed abnormally in human colon cancer: evidence for a transcriptional effect. Proc. Natl. Acad. Sci. USA, 1996, 93(10), 4816-4820.
[http://dx.doi.org/10.1073/pnas.93.10.4816] [PMID: 8643486]
[80]
Eberhart, C.E.; Coffey, R.J.; Radhika, A.; Giardiello, F.M.; Ferrenbach, S.; DuBois, R.N. Up-regulation of cyclooxygenase 2 gene expression in human colorectal adenomas and adenocarcinomas. Gastroenterology, 1994, 107(4), 1183-1188.
[http://dx.doi.org/10.1016/0016-5085(94)90246-1] [PMID: 7926468]
[81]
Yang, P.; Cartwright, C.; Chan, D.; Ding, J.; Felix, E.; Pan, Y.; Pang, J.; Rhea, P.; Block, K.; Fischer, S.M.; Newman, R.A. Anticancer activity of fish oils against human lung cancer is associated with changes in formation of PGE2 and PGE3 and alteration of Akt phosphorylation. Mol. Carcinog., 2014, 53(7), 566-577.
[http://dx.doi.org/10.1002/mc.22008] [PMID: 23371504]
[82]
Tjandrawinata, R.R.; Dahiya, R.; Hughes-Fulford, M. Induction of cyclo-oxygenase-2 mRNA by prostaglandin E2 in human prostatic carcinoma cells. Br. J. Cancer, 1997, 75(8), 1111-1118.
[http://dx.doi.org/10.1038/bjc.1997.192] [PMID: 9099957]
[83]
Matsuo, M.; Yoshida, N.; Zaitsu, M.; Ishii, K.; Hamasaki, Y. Inhibition of human glioma cell growth by a PHS-2 inhibitor, NS398, and a prostaglandin E receptor subtype EP1-selective antagonist, SC51089. J. Neurooncol., 2004, 66(3), 285-292.
[http://dx.doi.org/10.1023/B:NEON.0000014537.15902.73] [PMID: 15015658]
[84]
Denkert, C.; Köbel, M.; Berger, S.; Siegert, A.; Leclere, A.; Trefzer, U.; Hauptmann, S. Expression of cyclooxygenase 2 in human malignant melanoma. Cancer Res., 2001, 61(1), 303-308.
[PMID: 11196178]
[85]
Oshima, M.; Dinchuk, J.E.; Kargman, S.L.; Oshima, H.; Hancock, B.; Kwong, E.; Trzaskos, J.M.; Evans, J.F.; Taketo, M.M. Suppression of intestinal polyposis in Apc delta716 knockout mice by inhibition of cyclooxygenase 2 (COX-2). Cell, 1996, 87(5), 803-809.
[http://dx.doi.org/10.1016/S0092-8674(00)81988-1] [PMID: 8945508]
[86]
Chan, T.A.; Morin, P.J.; Vogelstein, B.; Kinzler, K.W. Mechanisms underlying nonsteroidal antiinflammatory drug-mediated apoptosis. Proc. Natl. Acad. Sci. USA, 1998, 95(2), 681-686.
[http://dx.doi.org/10.1073/pnas.95.2.681] [PMID: 9435252]
[87]
Allison, S.E.; Petrovic, N.; Mackenzie, P.I.; Murray, M. Pro-migratory actions of the prostacyclin receptor in human breast cancer cells that over-express cyclooxygenase-2. Biochem. Pharmacol., 2015, 96(4), 306-314.
[http://dx.doi.org/10.1016/j.bcp.2015.06.002] [PMID: 26067757]
[88]
Tsioulias, G.J.; Go, M.F.; Rigas, B. NSAIDs and colorectal cancer control: promise and challenges. Curr. Pharmacol. Rep., 2015, 1(5), 295-301.
[http://dx.doi.org/10.1007/s40495-015-0042-x] [PMID: 26688785]
[89]
Rayburn, E.R.; Ezell, S.J.; Zhang, R. Anti-inflammatory agents for cancer therapy. Mol. Cell. Pharmacol., 2009, 1(1), 29-43.
[http://dx.doi.org/10.4255/mcpharmacol.09.05] [PMID: 20333321]
[90]
Yee, L.D.; Agarwal, D.; Rosol, T.J.; Lehman, A.; Tian, M.; Hatton, J.; Heestand, J.; Belury, M.A.; Clinton, S.K. The inhibition of early stages of HER-2/neu-mediated mammary carcinogenesis by dietary n-3 PUFAs. Mol. Nutr. Food Res., 2013, 57(2), 320-327.
[http://dx.doi.org/10.1002/mnfr.201200445] [PMID: 23213007]
[91]
Sheng, H.; Shao, J.; Morrow, J.D.; Beauchamp, R.D.; DuBois, R.N. Modulation of apoptosis and Bcl-2 expression by prostaglandin E2 in human colon cancer cells. Cancer Res., 1998, 58(2), 362-366.
[PMID: 9443418]
[92]
Cui, P.H.; Rawling, T.; Bourget, K.; Kim, T.; Duke, C.C.; Doddareddy, M.R.; Hibbs, D.E.; Zhou, F.; Tattam, B.N.; Petrovic, N.; Murray, M. Antiproliferative and antimigratory actions of synthetic long chain n-3 monounsaturated fatty acids in breast cancer cells that overexpress cyclooxygenase-2. J. Med. Chem., 2012, 55(16), 7163-7172.
[http://dx.doi.org/10.1021/jm300673z] [PMID: 22822908]
[93]
Serhan, C.N. Novel pro-resolving lipid mediators in inflammation are leads for resolution physiology. Nature, 2014, 510(7503), 92-101.
[http://dx.doi.org/10.1038/nature13479] [PMID: 24899309]
[94]
Arita, M.; Bianchini, F.; Aliberti, J.; Sher, A.; Chiang, N.; Hong, S.; Yang, R.; Petasis, N.A.; Serhan, C.N. Stereochemical assignment, antiinflammatory properties, and receptor for the omega-3 lipid mediator resolvin E1. J. Exp. Med., 2005, 201(5), 713-722.
[http://dx.doi.org/10.1084/jem.20042031] [PMID: 15753205]
[95]
Ohira, T.; Arita, M.; Omori, K.; Recchiuti, A.; Van Dyke, T.E.; Serhan, C.N. Resolvin E1 receptor activation signals phosphorylation and phagocytosis. J. Biol. Chem., 2010, 285(5), 3451-3461.
[http://dx.doi.org/10.1074/jbc.M109.044131] [PMID: 19906641]
[96]
El Kebir, D.; Gjorstrup, P.; Filep, J.G. Resolvin E1 promotes phagocytosis-induced neutrophil apoptosis and accelerates resolution of pulmonary inflammation. Proc. Natl. Acad. Sci. USA, 2012, 109(37), 14983-14988.
[http://dx.doi.org/10.1073/pnas.1206641109] [PMID: 22927428]
[97]
Faghiri, Z.; Bazan, N.G. PI3K/Akt and mTOR/p70S6K pathways mediate neuroprotectin D1-induced retinal pigment epithelial cell survival during oxidative stress-induced apoptosis. Exp. Eye Res., 2010, 90(6), 718-725.
[http://dx.doi.org/10.1016/j.exer.2010.03.002] [PMID: 20230819]
[98]
Tian, H.; Lu, Y.; Shah, S.P.; Hong, S. Novel 14S,21-dihydroxy-docosahexaenoic acid rescues wound healing and associated angiogenesis impaired by acute ethanol intoxication/exposure. J. Cell. Biochem., 2010, 111(2), 266-273.
[http://dx.doi.org/10.1002/jcb.22709] [PMID: 20506249]
[99]
Tian, H.; Lu, Y.; Shah, S.P.; Hong, S. 14S,21R-dihydroxydocosahexaenoic acid remedies impaired healing and mesenchymal stem cell functions in diabetic wounds. J. Biol. Chem., 2011, 286(6), 4443-4453.
[http://dx.doi.org/10.1074/jbc.M110.100388] [PMID: 21112969]
[100]
Tian, H.; Lu, Y.; Shah, S.P.; Hong, S. Autacoid 14S,21R-dihydroxy-docosahexaenoic acid counteracts diabetic impairment of macrophage prohealing functions. Am. J. Pathol., 2011, 179(4), 1780-1791.
[http://dx.doi.org/10.1016/j.ajpath.2011.06.026] [PMID: 21839062]
[101]
Tian, H.; Lu, Y.; Shah, S.P.; Wang, Q.; Hong, S. 14S,21R-dihydroxy-docosahexaenoic acid treatment enhances mesenchymal stem cell amelioration of renal ischemia/reperfusion injury. Stem Cells Dev., 2012, 21(7), 1187-1199.
[http://dx.doi.org/10.1089/scd.2011.0220] [PMID: 21846180]
[102]
Rajasagi, N.K.; Reddy, P.B.; Suryawanshi, A.; Mulik, S.; Gjorstrup, P.; Rouse, B.T. Controlling herpes simplex virus-induced ocular inflammatory lesions with the lipid-derived mediator resolvin E1. J. Immunol., 2011, 186(3), 1735-1746.
[http://dx.doi.org/10.4049/jimmunol.1003456] [PMID: 21187448]
[103]
Chiang, N.; Fredman, G.; Bäckhed, F.; Oh, S.F.; Vickery, T.; Schmidt, B.A.; Serhan, C.N. Infection regulates pro-resolving mediators that lower antibiotic requirements. Nature, 2012, 484(7395), 524-528.
[http://dx.doi.org/10.1038/nature11042] [PMID: 22538616]
[104]
Cipollina, C.; Di Vincenzo, S.; Gerbino, S.; Siena, L.; Gjomarkaj, M.; Pace, E. Dual anti-oxidant and anti-inflammatory actions of the electrophilic cyclooxygenase-2-derived 17-oxo-DHA in lipopolysaccharide- and cigarette smoke-induced inflammation. Biochim. Biophys. Acta, 2014, 1840(7), 2299-2309.
[http://dx.doi.org/10.1016/j.bbagen.2014.02.024] [PMID: 24594225]
[105]
Groeger, A.L.; Cipollina, C.; Cole, M.P.; Woodcock, S.R.; Bonacci, G.; Rudolph, T.K.; Rudolph, V.; Freeman, B.A.; Schopfer, F.J. Cyclooxygenase-2 generates anti-inflammatory mediators from omega-3 fatty acids. Nat. Chem. Biol., 2010, 6(6), 433-441.
[http://dx.doi.org/10.1038/nchembio.367] [PMID: 20436486]
[106]
Fleming, I.; Fisslthaler, B.; Michaelis, U.R.; Kiss, L.; Popp, R.; Busse, R. The coronary endothelium-derived hyperpolarizing factor (EDHF) stimulates multiple signalling pathways and proliferation in vascular cells. Pflugers Arch., 2001, 442(4), 511-518.
[http://dx.doi.org/10.1007/s004240100565] [PMID: 11510882]
[107]
Ma, J.; Zhang, L.; Han, W.; Shen, T.; Ma, C.; Liu, Y.; Nie, X.; Liu, M.; Ran, Y.; Zhu, D. Activation of JNK/c-Jun is required for the proliferation, survival, and angiogenesis induced by EET in pulmonary artery endothelial cells. J. Lipid Res., 2012, 53(6), 1093-1105.
[http://dx.doi.org/10.1194/jlr.M024398] [PMID: 22493087]
[108]
Potente, M.; Michaelis, U.R.; Fisslthaler, B.; Busse, R.; Fleming, I. Cytochrome P450 2C9-induced endothelial cell proliferation involves induction of mitogen-activated protein (MAP) kinase phosphatase-1, inhibition of the c-Jun N-terminal kinase, and up-regulation of cyclin D1. J. Biol. Chem., 2002, 277(18), 15671-15676.
[http://dx.doi.org/10.1074/jbc.M110806200] [PMID: 11867622]
[109]
Wray, J.; Bishop-Bailey, D. Epoxygenases and peroxisome proliferator-activated receptors in mammalian vascular biology. Exp. Physiol., 2008, 93(1), 148-154.
[http://dx.doi.org/10.1113/expphysiol.2007.038612] [PMID: 17872966]
[110]
Cui, P.H.; Petrovic, N.; Murray, M. The ω-3 epoxide of eicosapentaenoic acid inhibits endothelial cell proliferation by p38 MAP kinase activation and cyclin D1/CDK4 down-regulation. Br. J. Pharmacol., 2011, 162(5), 1143-1155.
[http://dx.doi.org/10.1111/j.1476-5381.2010.01113.x] [PMID: 21077851]
[111]
Kunisawa, J.; Arita, M.; Hayasaka, T.; Harada, T.; Iwamoto, R.; Nagasawa, R.; Shikata, S.; Nagatake, T.; Suzuki, H.; Hashimoto, E.; Kurashima, Y.; Suzuki, Y.; Arai, H.; Setou, M.; Kiyono, H. Dietary ω3 fatty acid exerts anti-allergic effect through the conversion to 17,18-epoxyeicosatetraenoic acid in the gut. Sci. Rep., 2015, 5, 9750.
[http://dx.doi.org/10.1038/srep09750] [PMID: 26065911]
[112]
Zhang, G.; Panigrahy, D.; Mahakian, L.M.; Yang, J.; Liu, J-Y.; Stephen Lee, K.S.; Wettersten, H.I.; Ulu, A.; Hu, X.; Tam, S.; Hwang, S.H.; Ingham, E.S.; Kieran, M.W.; Weiss, R.H.; Ferrara, K.W.; Hammock, B.D. Epoxy metabolites of docosahexaenoic acid (DHA) inhibit angiogenesis, tumor growth, and metastasis. Proc. Natl. Acad. Sci. USA, 2013, 110(16), 6530-6535.
[http://dx.doi.org/10.1073/pnas.1304321110] [PMID: 23553837]
[113]
Hill, M.A.; Yang, Y.; Ella, S.R.; Davis, M.J.; Braun, A.P. Large conductance, Ca2+-activated K+ channels (BKCa) and arteriolar myogenic signaling. FEBS Lett., 2010, 584(10), 2033-2042.
[http://dx.doi.org/10.1016/j.febslet.2010.02.045] [PMID: 20178789]
[114]
Lauterbach, B.; Barbosa-Sicard, E.; Wang, M.H.; Honeck, H.; Kärgel, E.; Theuer, J.; Schwartzman, M.L.; Haller, H.; Luft, F.C.; Gollasch, M.; Schunck, W.H. Cytochrome P450-dependent eicosapentaenoic acid metabolites are novel BK channel activators. Hypertension, 2002, 39(2 Pt 2), 609-613.
[http://dx.doi.org/10.1161/hy0202.103293] [PMID: 11882617]
[115]
Ye, D.; Zhang, D.; Oltman, C.; Dellsperger, K.; Lee, H.C.; VanRollins, M. Cytochrome p-450 epoxygenase metabolites of docosahexaenoate potently dilate coronary arterioles by activating large-conductance calcium-activated potassium channels. J. Pharmacol. Exp. Ther., 2002, 303(2), 768-776.
[http://dx.doi.org/10.1124/jpet.303.2.768] [PMID: 12388664]
[116]
Morin, C.; Sirois, M.; Echave, V.; Rizcallah, E.; Rousseau, E. Relaxing effects of 17(18)-EpETE on arterial and airway smooth muscles in human lung. Am. J. Physiol. Lung Cell. Mol. Physiol., 2009, 296(1), L130-L139.
[http://dx.doi.org/10.1152/ajplung.90436.2008] [PMID: 18978038]
[117]
Whitaker, M.O.; Wyche, A.; Fitzpatrick, F.; Sprecher, H.; Needleman, P. Triene prostaglandins: prostaglandin D3 and icosapentaenoic acid as potential antithrombotic substances. Proc. Natl. Acad. Sci. USA, 1979, 76(11), 5919-5923.
[http://dx.doi.org/10.1073/pnas.76.11.5919] [PMID: 230492]
[118]
Kulkarni, P.S.; Srinivasan, B.D. Prostaglandins E3 and D3 lower intraocular pressure. Invest. Ophthalmol. Vis. Sci., 1985, 26(8), 1178-1182.
[PMID: 4019112]
[119]
Goh, Y.; Nakajima, M.; Azuma, I.; Hayaishi, O. Effects of prostaglandin D2 and its analogues on intraocular pressure in rabbits. Jpn. J. Ophthalmol., 1988, 32(4), 471-480.
[PMID: 3236567]
[120]
Tull, S.P.; Yates, C.M.; Maskrey, B.H.; O’Donnell, V.B.; Madden, J.; Grimble, R.F.; Calder, P.C.; Nash, G.B.; Rainger, G.E. Omega-3 Fatty acids and inflammation: novel interactions reveal a new step in neutrophil recruitment. PLoS Biol., 2009, 7(8), e1000177
[http://dx.doi.org/10.1371/journal.pbio.1000177] [PMID: 19707265]
[121]
Li, Y.; Kang, J.X.; Leaf, A. Differential effects of various eicosanoids on the production or prevention of arrhythmias in cultured neonatal rat cardiac myocytes. Prostaglandins, 1997, 54(2), 511-530.
[http://dx.doi.org/10.1016/S0090-6980(97)00122-6] [PMID: 9380795]
[122]
Shimizu, T.; Yokotani, K. Effects of centrally administered prostaglandin E(3) and thromboxane A(3) on plasma noradrenaline and adrenaline in rats: comparison with prostaglandin E(2) and thromboxane A(2). Eur. J. Pharmacol., 2009, 611(1-3), 30-34.
[http://dx.doi.org/10.1016/j.ejphar.2009.03.057] [PMID: 19344706]
[123]
Vanamala, J.; Glagolenko, A.; Yang, P.; Carroll, R.J.; Murphy, M.E.; Newman, R.A.; Ford, J.R.; Braby, L.A.; Chapkin, R.S.; Turner, N.D.; Lupton, J.R. Dietary fish oil and pectin enhance colonocyte apoptosis in part through suppression of PPARdelta/PGE2 and elevation of PGE3. Carcinogenesis, 2008, 29(4), 790-796.
[http://dx.doi.org/10.1093/carcin/bgm256] [PMID: 18024478]
[124]
Szymczak, M.; Murray, M.; Petrovic, N. Modulation of angiogenesis by ω-3 polyunsaturated fatty acids is mediated by cyclooxygenases. Blood, 2008, 111(7), 3514-3521.
[http://dx.doi.org/10.1182/blood-2007-08-109934] [PMID: 18216296]
[125]
Yang, P.; Chan, D.; Felix, E.; Cartwright, C.; Menter, D.G.; Madden, T.; Klein, R.D.; Fischer, S.M.; Newman, R.A. Formation and antiproliferative effect of prostaglandin E(3) from eicosapentaenoic acid in human lung cancer cells. J. Lipid Res., 2004, 45(6), 1030-1039.
[http://dx.doi.org/10.1194/jlr.M300455-JLR200] [PMID: 14993240]
[126]
Xia, S.; Lu, Y.; Wang, J.; He, C.; Hong, S.; Serhan, C.N.; Kang, J.X. Melanoma growth is reduced in fat-1 transgenic mice: impact of omega-6/omega-3 essential fatty acids. Proc. Natl. Acad. Sci. USA, 2006, 103(33), 12499-12504.
[http://dx.doi.org/10.1073/pnas.0605394103] [PMID: 16888035]
[127]
Hagi, A.; Nakayama, M.; Miura, Y.; Yagasaki, K. Effects of a fish oil-based emulsion on rat hepatoma cell invasion in culture. Nutrition, 2007, 23(11-12), 871-877.
[http://dx.doi.org/10.1016/j.nut.2007.08.017] [PMID: 17936197]
[128]
Bagga, D.; Wang, L.; Farias-Eisner, R.; Glaspy, J.A.; Reddy, S.T. Differential effects of prostaglandin derived from ω-6 and ω-3 polyunsaturated fatty acids on COX-2 expression and IL-6 secretion. Proc. Natl. Acad. Sci. USA, 2003, 100(4), 1751-1756.
[http://dx.doi.org/10.1073/pnas.0334211100] [PMID: 12578976]
[129]
Denkins, Y.; Kempf, D.; Ferniz, M.; Nileshwar, S.; Marchetti, D. Role of ω-3 polyunsaturated fatty acids on cyclooxygenase-2 metabolism in brain-metastatic melanoma. J. Lipid Res., 2005, 46(6), 1278-1284.
[http://dx.doi.org/10.1194/jlr.M400474-JLR200] [PMID: 15772428]
[130]
Funahashi, H.; Satake, M.; Hasan, S.; Sawai, H.; Newman, R.A.; Reber, H.A.; Hines, O.J.; Eibl, G. Opposing effects of n-6 and n-3 polyunsaturated fatty acids on pancreatic cancer growth. Pancreas, 2008, 36(4), 353-362.
[http://dx.doi.org/10.1097/MPA.0b013e31815ccc44] [PMID: 18437081]
[131]
Sawai, H. The effects of polyunsaturated fatty acids on pancreatic cancer growth and invasion. Nagoya Med. J., 2009, 50(1), 19-30.
[132]
Needleman, P.; Kulkarni, P.S.; Raz, A. Coronary tone modulation: formation and actions of prostaglandins, endoperoxides, and thromboxanes. Science, 1977, 195(4276), 409-412.
[http://dx.doi.org/10.1126/science.831285] [PMID: 831285]
[133]
Raisz, L.G.; Alander, C.B.; Simmons, H.A. Effects of prostaglandin E3 and eicosapentaenoic acid on rat bone in organ culture. Prostaglandins, 1989, 37(5), 615-625.
[http://dx.doi.org/10.1016/0090-6980(89)90076-2] [PMID: 2544927]
[134]
Raisz, L.G.; Dietrich, J.W.; Simmons, H.A.; Seyberth, H.W.; Hubbard, W.; Oates, J.A. Effect of prostaglaidin endoperoxides and metabolites on bone resorption in vitro. Nature, 1977, 267(5611), 532-534.
[http://dx.doi.org/10.1038/267532a0] [PMID: 876371]
[135]
Rodríguez-Lagunas, M.J.; Ferrer, R.; Moreno, J.J. Effect of eicosapentaenoic acid-derived prostaglandin E3 on intestinal epithelial barrier function. Prostaglandins Leukot. Essent. Fatty Acids, 2013, 88(5), 339-345.
[http://dx.doi.org/10.1016/j.plefa.2013.02.001] [PMID: 23453388]
[136]
Hawkes, J.S.; James, M.J.; Cleland, L.G. Biological activity of prostaglandin E3 with regard to oedema formation in mice. Agents Actions, 1992, 35(1-2), 85-87.
[http://dx.doi.org/10.1007/BF01990956] [PMID: 1509981]
[137]
Miles, E.A.; Allen, E.; Calder, P.C. In vitro effects of eicosanoids derived from different 20-carbon Fatty acids on production of monocyte-derived cytokines in human whole blood cultures. Cytokine, 2002, 20(5), 215-223.
[http://dx.doi.org/10.1006/cyto.2002.2007] [PMID: 12550106]
[138]
Devi, M.M.S.; Das, U.N. Effect of prostaglandins against alloxan-induced cytotoxicity to insulin secreting insulinoma RIN cells in vitro. Prostaglandins Leukot. Essent. Fatty Acids, 2004, 71(5), 309-318.
[http://dx.doi.org/10.1016/j.plefa.2004.04.006] [PMID: 15380818]
[139]
Sailaja Devi, M.M.; Das, U.N. Effect of prostaglandins against alloxan-induced diabetes mellitus. Prostaglandins Leukot. Essent. Fatty Acids, 2006, 74(1), 39-60.
[http://dx.doi.org/10.1016/j.plefa.2005.09.003] [PMID: 16297610]
[140]
Faust, T.W.; Lee, E.; Redfern, J.S.; Feldman, M. Effect of prostaglandin F3 α on gastric mucosal injury by ethanol in rats: comparison with prostaglandin F2 α. Prostaglandins, 1989, 37(4), 493-504.
[http://dx.doi.org/10.1016/0090-6980(89)90098-1] [PMID: 2788297]
[141]
Kobzar, G.; Mardla, V.; Järving, I.; Samel, N. Comparison of anti-aggregatory effects of PGI2, PGI3 and iloprost on human and rabbit platelets. Cell. Physiol. Biochem., 2001, 11(5), 279-284.
[http://dx.doi.org/10.1159/000047814] [PMID: 11684817]
[142]
Needleman, P.; Minkes, M.; Raz, A. Thromboxanes: selective biosynthesis and distinct biological properties. Science, 1976, 193(4248), 163-165.
[http://dx.doi.org/10.1126/science.945611] [PMID: 945611]
[143]
Seya, A.; Terano, T.; Tamura, Y.; Yoshida, S. Comparative effect of leukotriene B4 and leukotriene B5 on calcium mobilization in human neutrophils. Prostaglandins Leukot. Essent. Fatty Acids, 1988, 34(1), 47-50.
[http://dx.doi.org/10.1016/0952-3278(88)90024-5] [PMID: 2852812]
[144]
Goldman, D.W.; Pickett, W.C.; Goetzl, E.J. Human neutrophil chemotactic and degranulating activities of leukotriene B5 (LTB5) derived from eicosapentaenoic acid. Biochem. Biophys. Res. Commun., 1983, 117(1), 282-288.
[http://dx.doi.org/10.1016/0006-291X(83)91572-3] [PMID: 6318749]
[145]
Sharp, G.J.; Pettitt, T.R.; Rowley, A.F.; Secombes, C.J. Lipoxin-induced migration of fish leukocytes. J. Leukoc. Biol., 1992, 51(2), 140-145.
[http://dx.doi.org/10.1002/jlb.51.2.140] [PMID: 1331277]
[146]
Juan, H.; Peskar, B.A.; Simmet, T. Effect of exogenous 5,8,11,14,17-eicosapentaenoic acid on cardiac anaphylaxis. Br. J. Pharmacol., 1987, 90(2), 315-325.
[http://dx.doi.org/10.1111/j.1476-5381.1987.tb08961.x] [PMID: 2881590]
[147]
Hammarström, S. Leukotriene C5: a slow reacting substance derived from eicosapentaenoic acid. J. Biol. Chem., 1980, 255(15), 7093-7094.
[PMID: 6104669]
[148]
Murray, M.; Hraiki, A.; Bebawy, M.; Pazderka, C.; Rawling, T. Anti-tumor activities of lipids and lipid analogues and their development as potential anticancer drugs. Pharmacol. Ther., 2015, 150, 109-128.
[http://dx.doi.org/10.1016/j.pharmthera.2015.01.008] [PMID: 25603423]
[149]
Stjernschantz, J.W. From PGF(2α)-isopropyl ester to latanoprost: a review of the development of xalatan: the Proctor Lecture. Invest. Ophthalmol. Vis. Sci., 2001, 42(6), 1134-1145.
[PMID: 11328719]
[150]
Hildebrand, M.; Staks, T.; Schütt, A.; Matthes, H. Pharmacokinetics of 3H-cicaprost in healthy volunteers. Prostaglandins, 1989, 37(2), 259-273.
[http://dx.doi.org/10.1016/0090-6980(89)90062-2] [PMID: 2657866]
[151]
Schaaf, T.K.; Bindra, J.S.; Eggler, J.F.; Plattner, J.J.; Nelson, A.J.; Johnson, M.R.; Constantine, J.W.; Hess, H.J.; Elger, W. N-(Methanesulfonyl)-16-phenoxyprostaglandincarboxamides: tissue-selective, uterine stimulants. J. Med. Chem., 1981, 24(11), 1353-1359.
[http://dx.doi.org/10.1021/jm00143a018] [PMID: 6796685]
[152]
Melian, E.B.; Goa, K.L. Beraprost: a review of its pharmacology and therapeutic efficacy in the treatment of peripheral arterial disease and pulmonary arterial hypertension. Drugs, 2002, 62(1), 107-133.
[http://dx.doi.org/10.2165/00003495-200262010-00005] [PMID: 11790158]
[153]
Krause, W.; Schulze, P.E.; Totzek, M. Pharmacokinetics of the stable prostacyclin analogue, nileprost, in the rat. Prostaglandins Leukot. Med., 1983, 11(3), 241-257.
[http://dx.doi.org/10.1016/0262-1746(83)90038-0] [PMID: 6351102]
[154]
Wills, R.J.; O’Leary, A.; Givens, S.V.; Scheinbaum, M.L. Trimoprostil plasma concentration-gastric acid inhibition relationships in duodenal ulcer patients. J. Clin. Pharmacol., 1986, 26(1), 48-54.
[http://dx.doi.org/10.1002/j.1552-4604.1986.tb02902.x] [PMID: 3950051]
[155]
Tüber, U.; Brudny-Klöppel, M.; Jakobs, U.; Madetzki, C.; Mahler, M. Pharmacokinetics of nocloprost in human volunteers and its relation to dose. Eur. J. Clin. Pharmacol., 1993, 44(5), 497-500.
[http://dx.doi.org/10.1007/BF00315552] [PMID: 8359191]
[156]
Falck, J.R.; Wallukat, G.; Puli, N.; Goli, M.; Arnold, C.; Konkel, A.; Rothe, M.; Fischer, R.; Müller, D.N.; Schunck, W-H. 17(R),18(S)-epoxyeicosatetraenoic acid, a potent eicosapentaenoic acid (EPA) derived regulator of cardiomyocyte contraction: structure-activity relationships and stable analogues. J. Med. Chem., 2011, 54(12), 4109-4118.
[http://dx.doi.org/10.1021/jm200132q] [PMID: 21591683]
[157]
Falck, J.R.; Kodela, R.; Manne, R.; Atcha, K.R.; Puli, N.; Dubasi, N.; Manthati, V.L.; Capdevila, J.H.; Yi, X-Y.; Goldman, D.H.; Morisseau, C.; Hammock, B.D.; Campbell, W.B. 14,15-Epoxyeicosa-5,8,11-trienoic acid (14,15-EET) surrogates containing epoxide bioisosteres: influence upon vascular relaxation and soluble epoxide hydrolase inhibition. J. Med. Chem., 2009, 52(16), 5069-5075.
[http://dx.doi.org/10.1021/jm900634w] [PMID: 19653681]
[158]
Schunck, W. H.; Müller, D.; Fischer, R.; Wallukat, G.; Konkel, A.; Falck, J. R. Novel cyp-eicosanoid derivatives WO/2015/110262, 30th July, 2015.
[159]
Fischer, R.; Konkel, A.; Wesser, T.; Westphal, P.; Schunk, W. H.; Westphal, C.; Falck, J. R. Metabolically robust analogs of cyp-eicosanoids for the treatment of cardiac disease. WO/2017/013265 A1, 7 January, 2017.
[160]
Dyari, H.R.E.; Rawling, T.; Bourget, K.; Murray, M. Synthetic ω-3 epoxyfatty acids as antiproliferative and pro-apoptotic agents in human breast cancer cells. J. Med. Chem., 2014, 57(17), 7459-7464.
[http://dx.doi.org/10.1021/jm501083y] [PMID: 25144895]
[161]
Dyari, H.R.E.; Rawling, T.; Chen, Y.; Sudarmana, W.; Bourget, K.; Dwyer, J.M.; Allison, S.E.; Murray, M. A novel synthetic analogue of ω-3 17,18-epoxyeicosatetraenoic acid activates TNF receptor-1/ASK1/JNK signaling to promote apoptosis in human breast cancer cells. FASEB J., 2017, 31(12), 5246-5257.
[http://dx.doi.org/10.1096/fj.201700033R] [PMID: 28798154]
[162]
Rawling, T.; Choucair, H.; Koolaji, N.; Bourget, K.; Allison, S.E.; Chen, Y-J.; Dunstan, C.R.; Murray, M. A novel arylurea fatty acid that targets the mitochondrion and depletes cardiolipin to promote killing of breast cancer cells. J. Med. Chem., 2017, 60(20), 8661-8666.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00701] [PMID: 28921987]
[163]
Arita, M.; Oh, S.F.; Chonan, T.; Hong, S.; Elangovan, S.; Sun, Y-P.; Uddin, J.; Petasis, N.A.; Serhan, C.N. Metabolic inactivation of resolvin E1 and stabilization of its anti-inflammatory actions. J. Biol. Chem., 2006, 281(32), 22847-22854.
[http://dx.doi.org/10.1074/jbc.M603766200] [PMID: 16757471]
[164]
Guilford, W.J.; Bauman, J.G.; Skuballa, W.; Bauer, S.; Wei, G.P.; Davey, D.; Schaefer, C.; Mallari, C.; Terkelsen, J.; Tseng, J-L.; Shen, J.; Subramanyam, B.; Schottelius, A.J.; Parkinson, J.F. Novel 3-oxa lipoxin A4 analogues with enhanced chemical and metabolic stability have anti-inflammatory activity in vivo. J. Med. Chem., 2004, 47(8), 2157-2165.
[http://dx.doi.org/10.1021/jm030569l] [PMID: 15056011]
[165]
Ahluwalia, K.; Bhanwra, S. Antiplatelet therapy: present status and its future directions. Int. J. Basic Clin. Pharmacol., 2014, 3(2), 260-268.
[http://dx.doi.org/10.5455/2319-2003.ijbcp20140402]
[166]
Fried, J.; Lin, C.H. Synthesis and biological effects of 13-dehydro derivatives of natural prostaglandin F 2 and E 2 and their l5-epi enantiomers. J. Med. Chem., 1973, 16(4), 429-430.
[http://dx.doi.org/10.1021/jm00262a032] [PMID: 4351914]
[167]
Jarabak, J.; Braithwaite, S.S. Kinetic studies on a 15-hydroxyprostaglandin dehydrogenase from human placenta. Arch. Biochem. Biophys., 1976, 177(1), 245-254.
[http://dx.doi.org/10.1016/0003-9861(76)90434-3] [PMID: 187123]
[168]
Tanami, T.; Kameo, K.; Ono, N.; Nakagawa, T.; Annou, S.; Tsuboi, M.; Tani, K.; Okamoto, S.; Sato, F. Synthesis and pharmacological activities of 13-dehydro derivatives of primary prostaglandins. Bioorg. Med. Chem. Lett., 1998, 8(12), 1507-1510.
[http://dx.doi.org/10.1016/S0960-894X(98)00247-9] [PMID: 9873379]
[169]
Schrör, K.; Ohlendorf, R.; Darius, H. Beneficial effects of a new carbacyclin derivative, ZK 36 374, in acute myocardial ischemia. J. Pharmacol. Exp. Ther., 1981, 219(1), 243-249.
[PMID: 6169823]
[170]
Whittle, B.J.; Moncada, S. Platelet actions of stable carbocyclic analogues of prostacyclin. Circulation, 1985, 72(6), 1219-1225.
[http://dx.doi.org/10.1161/01.CIR.72.6.1219] [PMID: 3905049]
[171]
Kojima, K.; Amemiya, S.; Koyama, K.; Sakai, K. A synthesis of (±)-6,9α-methanoprostaglandin I3, a stable analog of prostaglandin I3. Chem. Pharm. Bull. (Tokyo), 1983, 31(10), 3775-3777.
[http://dx.doi.org/10.1248/cpb.31.3775]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy