[1]
Corma, A.; Garcia, H. Supported gold nanoparticles as catalysts for organic reactions. Chem. Soc. Rev., 2008, 37, 2096-2126.
[2]
Peng, H.P.; Liang, R.P.; Zhang, L.; Qiu, J.D. Facile preparation of novel core-shell enzyme Au-polydopamine Fe3O4 magnetic bionanoparticles for glucose sensor. Bioelectron, 2013, 42, 293-299.
[3]
Popovtzer, R.; Agrawal, A.; Kotov, N.A.; Popovtzer, A.; Balter, J.; Carey, T.E.; Kopelman, R. Targeted gold nanoparticles enable molecular CT imaging of cancer. Nano Lett., 2008, 8, 4593-4596.
[4]
Brown, S.D.; Nativo, P.; Smith, J.A.; Stirling, D.; Edwards, P.R.; Venugopal, B.; Flint, D.J.; Plumb, J.A.; Graham, D.; Wheate, N.J. Gold nanoparticles for the improved anticancer drug delivery of the active component of oxaliplatin. J. Am. Chem. Soc., 2010, 132, 4678-4684.
[5]
Kasten, B.B.; Liu, T.; Nedrow-Byers, J.R.; Benny, P.D.; Berkman, C.E. Targeting prostate cancer cells with PSMA inhibitor-guided gold nanoparticles. Bioinorg. Med. Chem. Lett., 2013, 23, 565-568.
[6]
Kalimuthu, K.; Venkataraman, D.; Suresh Babu, R.K.P.; Muniasamy, K.; Selvaraj, B.M.K.; Bose, K.; Sangiliyandi, G. Biosynthesis of silver and gold nanoparticles using Brevibacterium casei. Colloids Surf. B Biointerfaces, 2010, 257, 262-277.
[7]
Geddes, C.D.; Parfenov, A.; Gryczynski, I.; Lakowicz, J.R. Luminescent blinking of gold nanoparticles. Chem. Phys. Lett., 2003, 380, 269-272.
[8]
Boruah, S.K.; Boruah, P.K.; Sarma, P.; Medhi, C.; Medhi, O.K. Green synthesis of gold nanoparticles using camellia sinensis and kinetics of the reaction. Adv. Mat. Lett., 2012, 3, 481-486.
[9]
Nasir, S.M.; Nur, H. gold nanoparticles embedded on the surface of polyvinyl alcohol layer. J. Fundam. Appl. Sci., 2008, 4, 245-252.
[10]
Praba, P.S.; Jeyasundari, J.; Renuga, D.; Brightson, Y. Bio inspired synthesis of gold nanoparticles using Psidiumguajava leaf extract and its anti-bacterial activity. J. Chem. Chem. Sci., 2016, 6, 624-633.
[11]
Pratap, S.S.; Seema, G.; Nimisha, S. Green nanomedicine: An alchemy touch to cancer treatment. Int. J. Bioassays, 2013, 2, 1145-1151.
[12]
Iravani, S. Green synthesis of metal nanoparticles using plants. Green Chem., 2011, 13, 2638-2650.
[13]
Kumar, K.P.; Paul, W.; Sharma, C.P. Green synthesis of gold nanoparticles with Zingiber officinale extract: Characterization and blood compatibility. Process Biochem., 2011, 46, 2007-2013.
[14]
Shankar, S.S.; Rai, A.; Ahmad, A.; Sastry, M. Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J. Colloid Interface Sci., 2004, 275, 496-502.
[15]
Murphy, C.J.; Gole, A.M.; Stone, J.W.; Sisco, P.N.; Alkilany, A.M.; Goldsmith, E.C.; Baxter, S.C. Gold nanoparticles in biology: beyond toxicity to cellular imaging. Acc. Chem. Res., 2008, 41, 1721-1730.
[16]
Huang, X.; El-Sayed, M.A. Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy. J. Adv. Res., 2010, 1, 13-28.
[17]
Jain, P.K.; Lee, K.S.; El-Sayed, I.H.; El-Sayed, M.A. Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy. J. Phys. Chem. B, 2006, 110, 7238-7248.
[18]
Noruzi, M. Biosynthesis of gold nanoparticles using plant extracts. Bioprocess Biosyst. Eng., 2015, 38, 1-14.
[19]
Parida, U.K.; Bindhani, B.K.; Nayak, P. Green synthesis and characterization of gold nanoparticles using onion (Allium cepa) extract. WJNSE, 2011, 1, 93-98.
[20]
Mansour, S.E.; Pattanayak, M.; Nayak, P.L. Green synthesis of gold nano particles VII: Green synthesis and characterization of gold nano particles using the extract of lemon (Citrus limon) and study of its cytotoxicity properties. Middle East J. Sci. Res., 2014, 22, 313-319.
[21]
Monalisa, P.; Nayak, P.L. Green synthesis of gold nanoparticles using (aloe vera) aqueous extract. IJPAES, 2012, 1, 68-78.
[22]
Singh, A.K.; Talat, M.; Singh, D.P.; Srivastava, O.N. Biosynthesis of gold and silver nanoparticles by natural precursor clove and their functionalization with amine group. JNR, 2010, 12, 1667-1675.
[23]
Lal, S.S.; Nayak, P.L. Green synthesis of gold nanoparticles using various extract of plants and spices. IJSID, 2012, 2, 325-350.
[24]
Muralikrishna, T.; Pattanayak, M.; Nayak, P.L. Green synthesis of gold nanoparticles using (aloe vera) aqueous extract. WJNST, 2014, 3, 45-51.
[25]
Pattanayak, M.; Nayak, P.L. Green synthesis of gold nanoparticles using elettaria cardamomum (elaichi) aqueous extract. WJNST, 2013, 2, 1-5.
[26]
De Souza, M.I.T.; Silva, J.Q.; Gonclaves, P.D.S.; Pinotti, R.N. Rubber tree exploitation systems utilized in asian clones Prang Besar, in the West of São Paulo, Brazil. Pesqui. Agropecu. Bras., 2007, 42, 949-955.
[27]
Cabrera, F.C.; Mohan, H.; Dos Santos, R.J.; Agostini, D.L.S.; Aroca, R.F.; Rodríguez-Pérez, M.A.; Job, A.E. Green synthesis of gold nanoparticles with self-sustained natural rubber membranes. J. Nanomater., 2013, 2013, 1-10.
[28]
Aroca, R.F.; Alvarez-Puebla, R.A.; Pieczonka, N.; Sanchez-Cortez, S.; Garcia-Ramos, J.V. Surface-enhanced Raman scattering on colloidal nanostructures. Adv. Colloid Interface Sci., 2005, 45, 61-116.
[29]
Elavazhagan, T.; Arunachalam, K.D. Memecylon edule leaf extract mediated green synthesis of silver and gold nanoparticles. Int. J. Nanomed, 2011, 6, 1265-1278.
[30]
Shankar, S.S.; Rai, A.; Ahmad, A.; Sastry, M. Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J. Colloid Interface Sci., 2004, 275, 496-502.
[31]
Dubay, M.; Bhadauria, S.; Kushwah, B.S. Green synthesis of nanosilver particles from extract of eucalyptus hybrida (safeda) leaf. Dig. J. Nanomater. Biostruct., 2009, 4, 537-543.
[32]
Parashar, V.; Parashar, R.; Sharma, B.; Pandey, A.C. Parthenium leaf extract mediated synthesis of silver nanoparticles: A novel approach towards weed utilization. Dig. J. Nanomater. Biostruct., 2009, 4, 45-50.
[33]
Narayanan, K.B.; Sakthivel, N. Coriander leaf mediated biosynthesis of gold nanoparticles. Mater. Lett., 2008, 62, 4588-4590.
[34]
Huang, J.; Li, Q.; Sun, D.; Lu, Y.; Su, Y.; Yang, X.; Wang, H.; Wang, Y.; Shao, W.; He, N.; Hong, J.; Che, C. Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology, 2007, 18, 105-104.
[35]
Elia, P.; Zach, R.; Hazan, S.; Kolusheva, S.; Porat, Z.; Zeiri, Y. Green synthesis of gold nanoparticles using plant extracts as reducing agents. Int. J. Nanomed, 2014, 9, 4007-4021.
[36]
ASTM International. Standard test methods for zeta potential of colloids in water and waste water.In: The Annual Book of ASTM Standards; ASTM International: West Conshohocken, PA, 1985, pp. 4182-4187.
[37]
Salopek, B.; Krasiọć, D.; Filipoviọć, S. Measurement and application of zeta potential. Rud Geol Naft Zb, 1992, 4, 147-151.
[38]
Varun, S.; Sellappa, S. RafiqKhan, M.; Vijayakumar, S. Green synthesis of gold nanoparticles using Argemone mexicana L. leaf extract and its characterization. Int. J. Pharm. Sci. Rev. Res., 2015, 32, 42-44.
[39]
Dubey, S.P.; Lahtinen, M.; Sillanpää, M. Green synthesis and characterizations of silver and gold nanoparticles using leaf extract of Rosa rugosa. Colloids Surfaces A Physicochem. Eng. Aspects, 2010, 364, 34-41.
[40]
Parashar, U.K.; Saxenaa, P.S.; Srivastava, A. Bioinspired synthesis of silver nanoparticles. J. Nanomater. Biol., 2009, 4, 159-166.
[41]
Basu, S.; Ghosh, S.K.; Kundu, S.; Panigrahi, S.; Praharaj, S.; Pande, S.; Jana, S.T.; Pal, T. Biomolecule induced nanoparticle aggregation: Effect of particle size on interparticle coupling. J. Colloid Interface Sci., 2007, 313, 724-734.
[42]
Smitha, S.L.; Philip, D.; Gopchandran, K.G. Green synthesis of gold nanoparticles using Cinnamomum zeylanicum leaf broth. Spectrochim. Acta Mol. Biomol. Spectrosc., 2009, 74, 735-739.
[43]
Jian, Z.; Liqing, H.; Yongchang, W.; Yimin, L. Fluorescence spectrum properties of gold nanochains. Physicae , 2004, 25, 114-118.
[44]
Wang, D.S.; Hsu, F.Y.; Lin, C.W. Surface plasmon effects on two photon luminescence of gold nanorods. Optics. Express, 2009, 17, 11350-11359.
[45]
Li, Y.; Wu, T.Y.; Chen, S.M.; Ali, M.A.; AlHemaid, F.M.A. Green synthesis and electrochemical characterizations of gold nanoparticles using leaf extract of Magnolia kobus. Int. J. Electrochem. Sci., 2012, 7, 12742-12751.
[46]
Laemmli, U.K. Cleavage of structural proteins during assembly of bacteriophage T4. Nature, 1970, 227, 680-685.
[47]
Lowry, O.H.; Rosebrough, N.J.; Farr, L.; Randall, R.J. Protein measurement with the folin phenol reagent. J. Biol. Chem., 1951, 193, 265-275.
[48]
Megarajan, S.; Ahmed, K.B.A.; Reddy, G.R.K.; Kumar, P.S.; Anbazhagan, V. Phytoproteins in green leaves as building blocks for photosynthesis of gold nanoparticles: An efficient electrocatalyst towards the oxidation of ascorbic acid and the reduction of hydrogen peroxide. JPPB, 2016, 155, 7-12.
[49]
EVertt. D.H. Basic principles of colloidal science. J. Chem. Technol. Biotechnol., 1989, 45, 328-329.
[50]
El-Hussein, A.; Mfouo-Tynga, I.; Abdel-Harith, M.; Abrahamse, H. Comparative study between the photodynamic ability of gold and silver nanoparticles in mediating cell death in breast and lung cancer cell line. J. Photochem. Photobiol. B Biol, 2015, 153, 67-75.
[51]
Joseph, D.; Tyagi, N.; Geckeler, C.; Geckeler, K.E. Protein-coated pH-responsive gold nanoparticles: Microwave-assisted synthesis and surface charge-dependent anticancer activity. Beilstein J. Nanotechnol., 2014, 5, 1452-1462.
[52]
Muthukumar, T.; Sambandam, B.; Aravinthan, A.; Sastry, T.P.; Kim, J.H. Green synthesis of gold nanoparticles and their enhanced synergistic antitumor activity using HepG2 and MCF7 cells and its antibacterial effects. Process Biochem., 2016, 51, 384-391.
[53]
Fazal, S.; Jayasree, A.; Sasidharan, S.; Koyakutty, M.; Nair, S.V.; Menon, D. Green synthesis of anisotropic gold nanoparticles for photothermal therapy of cancer. ACS Appl. Mater. Interfaces, 2014, 6, 8080-8089.
[54]
Alam, N.; Das, S.; Batuta, S.; Roy, N.; Chatterjee, A.; Mandal, D.; Begum, N.A. Murraya koenegii spreng. leaf extract: An efficient green multifunctional agent for the controlled synthesis of Au nanoparticles. ACS Sustainable. Chem.& Eng., 2014, 2, 652-664.
[55]
Brayner, R.; Ferrari-Iliou, R.; Brivois, N.; Djediat, S.; Benedetti, M.F.; Fiévet, F. Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett., 2006, 6, 866-870.
[56]
Malarkodi, C.; Rajeshkumar, S.; Vanaja, M.; Paulkumar, K.; Gnanajobitha, G.; Annadurai, G. Eco-friendly synthesis and characterization of gold nanoparticles using Klebsiella pneumoniae. JNSC, 2013, 3, 30.
[57]
Manivasagan, P. Junghwan, Oh, J.; Production of a novel fucoidanase for the green synthesis of gold nanoparticles by Streptomyces sp. and its cytotoxic effect on HeLa cells. Marine. Drugs, 2015, 13, 6818-6837.
[58]
Narayanan, K.B.; Sakthivel, N. Facile green synthesis of gold nanostructures by NADPH-dependent enzyme from the extract of Sclerotium rolfsii. Bioscience, 2011, 380, 156-161.
[59]
Dhanaseka, N.N.; Rahul, G.R.; Narayanan, K.B.; Raman, G.; Sakthivel, N. Green chemistry approach for the synthesis of gold nanoparticles using the fungus Alternaria sp. J. Microbiol. Biotechnol., 2015, 25, 1129-1135.
[60]
Sosa, I.O.; Noguez, C.; Barrera, R.G. Optical properties of metal nanoparticles with arbitrary shapes. J. Phys. Chem. B, 2003, 107, 6269-6627.
[61]
Songr, J.Y.; Jang, H.K.; Kim, B.S. Biological synthesis of gold nanoparticles using Magnolia kobus and Diopyros kaki leaf extracts. Proc Biochem., 2009, 44, 1133-113867.
[62]
Vag’o, A.; Szakacs, G.; S’afr’an, G.; Horvath, R.; P’ecz, B.; Lagzi, I. One-step green synthesis of gold nanoparticles by mesophilic filamentous fungi. Chem. Phys. Lett., 2015, 645, 1-4.
[63]
Das, S.K.; Marsili, E. A green chemical approach for the synthesis of gold nanoparticles: Characterization and mechanistic aspect. Rev. Environ. Sci. Biotechnol., 2010, 9, 199-204.
[64]
Kitching, M.; Ramani, M.; Marsili, E. Fungal biosynthesis of gold nanoparticles: Mechanism and scale up. Microb. Biotechnol., 2015, 8, 904-917.
[65]
Lundqvist, M.; Stigler, J.; Elia, G.; Lynch, I.; Cedervall, T.; Dawson, K.A. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc. Natl. Acad. Sci. USA, 2008, 105, 14265-14270.
[66]
Kim, H.K.; Choi, M.J.; Cha, S.H.; Koo, Y.K.; Jun, S.H.; Cho, S.; Park, Y. Earthworm extracts utilized in the green synthesis of gold nanoparticles capable of reinforcing the anticoagulant activities of heparin. J. Nanosci. Nanotechnol., 2013, 8, 2068-2076.
[67]
Han, L.; Kim, Y.S.; Cho, S.; Park, Y. Invertebrate water extracts as biocompatible reducing agents for the green synthesis of gold and silver nanoparticles.. Nat. Prod. Commun., 2013, 8, 1149-1152.
[68]
Im, A.R.; Park, Y.; Sim, J.S.; Zhang, Z.; Liu, Z.; Linhardt, R.J.; Kim, Y.S. Glycosaminoglycans from earthworms (Eisenia andrei). Glycoconj. J., 2010, 8, 249-257.
[69]
Philip, D. Honey mediated green synthesis of gold nanoparticles. Spectrochimica Acta Part A, 2009, 73, 650-653.
[70]
Kannan, P.; John, S.A. Synthesis of mercaptothiadiazole-functionalized gold nanoparticles and their self-assembly on Au substrates. Nanotechnology, 2008, 19, 1-10.
[71]
Shankar, S.S.; Rai, A.; Ahmad, A.; Sastry, M. Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J. Colloid Interface Sci., 2004, 275, 496-502.
[72]
Mandal, D.; Bolander, M.E.; Mukhopadhay, D.; Sarkar, G.; Mukherjee, P. The use of microorganisms for the formation of metal nanoparticles and their application. Appl. Microbiol. Biotechnol., 2006, 69, 485-492.
[73]
Ankawar, B.; Chaudhary, M.; Sastry, M. Gold nanotri-angles biologically synthesized using tamarind leaf extract and potential application in vapor sensing. Synth. React. Inorg. Met.-Org. Nano-Met. Chem., 2005, 35, 19-26.
[74]
Hirsch, L.R.; Stafford, R.; Bankson, J.; Sershen, S.; Rivera, B.; Price, R.; Hazle, J.; Halas, N.; West, J. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl. Acad. Sci., 2003, 100, 13549-13554.
[75]
Stern, J.M.; Stanfield, J.; Lotan, Y.; Park, S.; Hsieh, J.T.; Cadeddu, J.A. Activated gold nanoshells in ablating prostate cancer cells in vitro. Endourol. J. Nanomed., 2007, 21, 939-943.
[76]
Ghosh, P.; Han, G.; De, M.; Kim, C.K.; Rotello, V.M. Gold nanoparticles in delivery applications. Adv. Drug Deliv. Rev., 2008, 60, 1307-1315.
[77]
Gibson, J.D.; Khanal, B.P.; Zubarev, E.R. Paclitaxel-functionalized gold nanoparticles. J. Am. Chem. Soc., 2007, 129, 11653-11661.
[78]
Dasary, S.S.; Singh, A.K.; Senapati, D.; Yu, H.; Ray, P.C. Gold nanoparticle based label-free SERS probe for ultrasensitive and selective detection of trinitrotoluene. J. Am. Chem. Soc., 2009, 131, 13806-13812.
[79]
Ding, X.; Kong, L.; Wang, J.; Fang, F.; Li, D.; Liu, J. Highly sensitive SERS detection of Hg2+ ions in aqueous media using gold nanoparticles/graphene heterojunctions. ACS Appl. Mater. Interfaces, 2013, 5, 7072-7078.
[80]
Qian, X.M.; Nie, S. Single-molecule and single-nanoparticle SERS: From fundamental mechanisms to biomedical applications. Chem. Soc. Rev., 2008, 37, 912-920.
[81]
Zamarion, V.M.; Timm, R.A.; Araki, K.; Toma, H.E. Ultrasensitive SERS nanoprobes for hazardous metal ions based on trimercaptotriazine-modified gold nanoparticles. Inorg. Chem., 2008, 47, 2934-2936.
[82]
Huang, X.; El-Sayed, I.H.; Qian, W.; El-Sayed, M.A. Cancer cells assemble and align gold nanorods conjugated to antibodies to produce highly enhanced, sharp, and polarized surface raman spectra: A potential cancer diagnostic marker. Nano Lett., 2007, 7, 1591-1597.
[83]
Grubisha, D.S.; Lipert, R.J.; Park, H.Y.; Driskell, J.; Porter, M.D. Femtomolar detection of prostate-specific antigen: An immunoassay based on surface-enhanced raman scattering and immunogold labels. Anal. Chem., 2003, 75, 5936-5943.
[84]
Neng, J.; Harpster, M.H.; Zhang, H.; Mecham, J.O.; Wilson, W.C.; Johnson, P.A. A versatile SERS-based immunoassay for immunoglobulin detection using antigen-coated gold nanoparticles and malachite green-conjugated protein A/G. Biosens. Bioelectron., 2010, 26, 1009-1015.
[85]
Kneipp, K.; Haka, A.S.; Kneipp, H.; Badizadegan, K.; Yoshizawa, N.; Boone, C. ShaferPeltier, K.E.; Motz, J.T.; Dasari, R.R.; Feld, M.S. Surface-enhanced raman spectroscopy in single living cells using gold nanoparticles. Appl. Spectrosc., 2002, 56, 150-154.
[86]
Liu, J.; Lu, Y. A colorimetric lead biosensor using dnazyme-directed assembly of gold nanoparticles. J. Am. Chem. Soc., 2003, 125, 6642-6643.
[87]
Luo, X.L.; Xu, J.J.; Du, Y.; Chen, H.Y. A glucose biosensor based on chitosan-glucose oxidase-gold nanoparticles biocomposite formed by one-step electrodeposition. Anal. Biochem., 2004, 334, 284-289.
[88]
Han, A.; Dufva, M.; Belleville, E.; Christensen, C.B. Detection of analyte binding to microarrays using gold nanoparticle labels and a desktop scanner. Lab Chip, 2003, 3, 329-332.
[89]
Nair, A.S.; Pradeep, T. Extraction of chlorpyrifos and malathion from water by metal nanoparticles. J. Nanosci. Nanotechnol, 2007, 17, 187-1877.
[90]
Nair, A.S.; Tom, R.T.; Pradee, T. Detection and extraction of endosulfan by metal nanoparticles. J. Nanosci. Nanotechnol., 2007, J. Environ. Monit., 2003, 5, 363-365.
[91]
Das, S.K.; Das, A.R.; Guh, A.K. Gold nanoparticles: Microbial synthesis and application in water hygiene management. Langmuir, 2009, 25, 8192-8199.
[92]
Sreelakshmi, C.; Datta, K.K.; Yadav, J.S.; Reddy, B.V. Honey derivatized Au and Ag nanoparticles and evaluation of its antimicrobial activity. J. Nanosci. Nanotechnol., 2011, 11, 6995-7000.
[93]
Kumar, M.; Mandal, B.K.; Sinha, M.; Krishnakumar, V. Terminalia chebula mediated green and rapid synthesis of gold nanoparticles. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2012, 86, 490-494.
[94]
Lopez, N.; Janssens, T.; Clausen, B.; Xu, Y.; Mavrikakis, M.; Bligaard, T.; Nørskov, J.K. On the origin of the catalytic activity of gold nanoparticles for low-temperature CO oxidation. J. Catal., 2004, 223, 232-235.
[95]
Herna’ndez, J.; Solla-Gullo’n, J.; Herrero, E.; Aldaz, A.; Feliu, J.M. Methanol oxidation on gold nanoparticles in alkaline media: Unusual electrocatalytic activity. Bioprocess Biosyst. Eng., 2006, 52, 1662-1669.
[96]
Claus, P.; Bru¨ckner, A.; Mohr, C.; Hofmeister, H. Supported gold nanoparticles from quantum dot to mesoscopic size scale: Effect of electronic and structural properties on catalytic hydrogenation of conjugated functional groups. J. Am. Chem. Soc., 2000, 122, 11430-11439.
[97]
Dykman, L.A.; Khlebtsov, N.G. Gold nanoparticles in biology and medicine: Recent advances and prospects. Acta Naturae, 2011, 3, 34-55.
[98]
Wang, G.; Stender, A.S.; Sun, W.; Fang, N. Optical imaging of non-fluorescent nanoparticle probes in live cells. Anal. Chem., 2010, 135, 215-221.
[99]
Klein, S.; Petersen, S.; Taylor, U.; Rath, D.; Barcikowski, S. Quantitative visualization of colloidal and intracellular gold nanoparticles by confocal microscopy. J. Biomed. Opt., 2010, 15, 1-11.
[100]
Khlebtsov, N.G.; Dykman, L.A. Optical properties and biomedical applications of plasmonic nanoparticles. J. Quant. Radiat. Transfer, 2010, 111, 1-3.
[101]
Abraham, G.E.; Himmel, P.B. Management of rheumatoid arthritis: rationale for the use of colloidal metallic gold. J. Nutr. Med., 1997, 7, 295-305.
[102]
Paciotti, G.F.; Myer, L.; Weinreich, D.; Goia, D.; Pavel, N.; McLaughlin, R.E.; Tamarkin, L. Colloidal gold: A novel nanoparticle vector for tumor directed drug delivery. Drug Deliv., 2004, 11, 169-18.
[103]
Paciotti, G.F.; Kingston, D.G.I.; Tamarkin, L. Colloidal gold nanoparticles: A novel nanoparticle platform for developing multifunctional tumor targeted drug delivery vectors. Drug Dev. Res., 2006, 67, 47-54.
[104]
Cabrera, F.C.; Aoki, P.H.B.; Aroca, R.F.; Constantino, C.J.L. Constantino, dos Santos, D.S.; Job, A.E. Portable smart films for ultrasensitive detection and chemical analysis using SERS and SERRS. J. Raman Spectrosc., 2012, 43, 474-477.
[105]
Armendariz, V.; Herrera, I.; Jose-yacaman, M.; Troiani, H.; Santiago, P.; Gardea-Torresdey, J.L. Size controlled gold nanoparticle formation by Avena sativa biomass: Use of plants in nanobiotechnology. J. Nanoparticle. Res., 2004, 6, 377-382.
[106]
Nualkaew, S.; Rattanamanee, K.; Thongpraditchote, S.; Wongkrajang, Y.; Nahrstedt, A. Anti-inflammatory, analgesic and wound healing activities of the leaves of Memecylon edule Roxb. J. Ethnopharmacol., 2009, 121, 278-281.