Abstract
Background: A series of new pyrimidines and thiazoles containing camphor moiety were synthesized under both conventional and microwave irradiation techniques.
Methods: The condensation of camphor either with aminoguanidine or thiosemicarbazide gives the camphor hydrazine carboximidiamide 2 and the camphor thiosemicarbazone 3, respectively. Refluxing of 3 with chloroacetonitrile afforded the camphor thiazol-4-imine 4. Compounds 2 and 4 were used as precursors for the synthesis of target products.
Results: The reaction of 2 with different species such as arylidene malononitrile, acetylacetone, and ethyl acetoacetate gave the corresponding camphor pyrimidine derivatives 5a,b-7 while refluxing of compound 4 with different reagents e.g. aldehydes, isatin, ninhydrin, acetic anhydride, benzene sulphonyl chloride, and p-nitro-benzoyl chloride afforded the camphor thiazole derivatives 8a-d- 13, respectively.
Conclusion: A comparison between the conventional and the eco-friendly microwave irradiation methods occurred during the synthesis of the same compounds, and the latter proved to be more efficient. The elemental analysis, FT-IR, 1H NMR, 13C NMR, and Mass spectra confirm the structures of the obtained new compounds. The potential use of some selected derivatives as antimicrobial agents was investigated and gave promising results.
Keywords: Camphor. thiazole, pyrimidine, antimicrobial agents, microwave, in vitro.
Graphical Abstract
[http://dx.doi.org/10.3390/antibiotics7030065] [PMID: 30049958]
[http://dx.doi.org/10.1088/1757-899X/571/1/012091]
[http://dx.doi.org/10.1007/s00044-018-2186-9]
[http://dx.doi.org/10.3390/antibiotics9050277] [PMID: 32466236]
[http://dx.doi.org/10.1016/j.ejmech.2015.10.010] [PMID: 26498572]
[http://dx.doi.org/10.1007/s11172-019-2517-0]
[http://dx.doi.org/10.1039/C8MD00347E] [PMID: 30429979]
[http://dx.doi.org/10.15826/chimtech.2020.7.4.10]
[http://dx.doi.org/10.1016/j.bmcl.2019.126745] [PMID: 31668423]
[http://dx.doi.org/10.1007/s10593-020-02728-y]
[http://dx.doi.org/10.1039/C9RA05900H]
[http://dx.doi.org/10.1016/j.jinorgbio.2018.08.011] [PMID: 30125832]
[http://dx.doi.org/10.22377/ajp.v14i1.3578]
[http://dx.doi.org/10.3126/jncs.v40i0.27270]
[http://dx.doi.org/10.2147/RRMC.S66115]
[http://dx.doi.org/10.1016/j.bmc.2018.07.018] [PMID: 30056037]
[http://dx.doi.org/10.3390/molecules18055434] [PMID: 23666009]
[http://dx.doi.org/10.1134/S1070428016040011]
[http://dx.doi.org/10.1002/jhet.3970]
[http://dx.doi.org/10.1016/j.molstruc.2019.06.087]
[http://dx.doi.org/10.1021/cc049854w] [PMID: 15638472]
[http://dx.doi.org/10.1080/00397911.2018.1482348]
[http://dx.doi.org/10.1016/j.ejmech.2013.04.005] [PMID: 23787438]
[http://dx.doi.org/10.1016/j.ejmech.2017.12.040] [PMID: 29329071]
[http://dx.doi.org/10.1016/j.molstruc.2019.01.105]
[http://dx.doi.org/10.1002/cmdc.202000378] [PMID: 32797654]
[http://dx.doi.org/10.1016/j.bioorg.2019.102934] [PMID: 31026720]
[http://dx.doi.org/10.1080/00397911.2020.1829645]
[http://dx.doi.org/10.1016/j.bioorg.2018.02.030] [PMID: 29753773]
[http://dx.doi.org/10.1080/14756366.2018.1437729] [PMID: 29482389]
[http://dx.doi.org/10.1002/jhet.3852]
[http://dx.doi.org/10.1002/cmdc.201700175] [PMID: 28503918]
[http://dx.doi.org/10.1002/cmdc.202000258] [PMID: 32410351]
[http://dx.doi.org/10.1016/j.tetlet.2018.07.020]
[http://dx.doi.org/10.1111/cbdd.13760] [PMID: 32725669]
[http://dx.doi.org/10.4137/PMC.S14459]
[http://dx.doi.org/10.1016/j.crgsc.2020.100021]
[http://dx.doi.org/10.1016/j.cdc.2020.100555]
[http://dx.doi.org/10.1007/s13738-021-02228-6]
[http://dx.doi.org/10.1139/v67-362]
[http://dx.doi.org/10.3998/ark.5550190.0003.a03]
[http://dx.doi.org/10.1016/j.saa.2012.05.086] [PMID: 22885116]