Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Research Article

An Efficient Protocol for the Synthesis of new Camphor Pyrimidine and Camphor Thiazole Derivatives using Conventional and Microwave Irradiation Techniques and In vitro Evaluation as Potential Antimicrobial Agents

Author(s): Entesar A. Hassan, Salem E. Zayed, Al-Hassan S. Mahdy and Ahmed M. Abo-Bakr*

Volume 19, Issue 4, 2022

Published on: 01 April, 2022

Page: [558 - 568] Pages: 11

DOI: 10.2174/1570179419666220104125340

Price: $65

Abstract

Background: A series of new pyrimidines and thiazoles containing camphor moiety were synthesized under both conventional and microwave irradiation techniques.

Methods: The condensation of camphor either with aminoguanidine or thiosemicarbazide gives the camphor hydrazine carboximidiamide 2 and the camphor thiosemicarbazone 3, respectively. Refluxing of 3 with chloroacetonitrile afforded the camphor thiazol-4-imine 4. Compounds 2 and 4 were used as precursors for the synthesis of target products.

Results: The reaction of 2 with different species such as arylidene malononitrile, acetylacetone, and ethyl acetoacetate gave the corresponding camphor pyrimidine derivatives 5a,b-7 while refluxing of compound 4 with different reagents e.g. aldehydes, isatin, ninhydrin, acetic anhydride, benzene sulphonyl chloride, and p-nitro-benzoyl chloride afforded the camphor thiazole derivatives 8a-d- 13, respectively.

Conclusion: A comparison between the conventional and the eco-friendly microwave irradiation methods occurred during the synthesis of the same compounds, and the latter proved to be more efficient. The elemental analysis, FT-IR, 1H NMR, 13C NMR, and Mass spectra confirm the structures of the obtained new compounds. The potential use of some selected derivatives as antimicrobial agents was investigated and gave promising results.

Keywords: Camphor. thiazole, pyrimidine, antimicrobial agents, microwave, in vitro.

« Previous
Graphical Abstract

[1]
Leitão, J.H.; Sousa, S.A.; Leite, S.A.; Carvalho, M.F.N.N. Silver camphor imine complexes: novel antibacterial compounds from old medicines. Antibiotics (Basel), 2018, 7(3), 65.
[http://dx.doi.org/10.3390/antibiotics7030065] [PMID: 30049958]
[2]
Ali, A.J.; Abbas, M.T.; Hamdan, I.A.; Hamdan, A.A. Novel synthesis, characterization, antibacterial evolution & molecular modeling of Schiff base derived from R-camphor & five antibiotics from third generation of cephalosporin. InIOP Conference Series: Mat. Sci.Engine..,., 2019, 571(1), p. 102091.
[http://dx.doi.org/10.1088/1757-899X/571/1/012091]
[3]
Peraman, R.; Tiwari, A.K.; Vani, M.G.; Hemanth, J.; Sree, Y.G.; Karthik, K.; Ashby, C.R.; Reddy, Y.P.; Pemmidi, R.V. New camphor hybrids: lipophilic enhancement improves antimicrobial efficacy against drug-resistant pathogenic microbes and intestinal worms. Med. Chem. Res., 2018, 27(6), 1728-1739.
[http://dx.doi.org/10.1007/s00044-018-2186-9]
[4]
Zalevskaya, O.; Gur’eva, Y.; Kutchin, A.; Hansford, K.A. Antimicrobial and antifungal activities of terpene-derived palladium complexes. Antibiotics (Basel), 2020, 9(5), 277.
[http://dx.doi.org/10.3390/antibiotics9050277] [PMID: 32466236]
[5]
Sokolova, A.S.; Yarovaya, O.I.; Shernyukov, A.V.; Gatilov, Y.V.; Razumova, Y.V.; Zarubaev, V.V.; Tretiak, T.S.; Pokrovsky, A.G.; Kiselev, O.I.; Salakhutdinov, N.F. Discovery of a new class of antiviral compounds: camphor imine derivatives. Eur. J. Med. Chem., 2015, 105, 263-273.
[http://dx.doi.org/10.1016/j.ejmech.2015.10.010] [PMID: 26498572]
[6]
Sokolova, A.S.; Baranova, D.V.; Yarovaya, O.I.; Baev, D.S.; Polezhaeva, O.A.; Zybkina, A.V.; Shcherbakov, D.N.; Tolstikova, T.G.; Salakhutdinov, N.F. Synthesis of (1S)-(+)-camphor-10-sulfonic acid derivatives and investigations in vitro and in silico of their antiviral activity as the inhibitors of fi lovirus infections. Russ. Chem. Bull., 2019, 68(5), 1041-1046.
[http://dx.doi.org/10.1007/s11172-019-2517-0]
[7]
Sokolova, A.S.; Yarovaya, O.I.; Bormotov, N.I.; Shishkina, L.N.; Salakhutdinov, N.F. Synthesis and antiviral activity of camphor-based 1,3-thiazolidin-4-one and thiazole derivatives as Orthopoxvirus-reproduction inhibitors. MedChemComm, 2018, 9(10), 1746-1753.
[http://dx.doi.org/10.1039/C8MD00347E] [PMID: 30429979]
[8]
Khizrieva, S.S.; Vetrova, E.V.; Borisenko, S.N.; Maksimenko, E.V.; Borisenko, N.I. Synthesis and study of complexes of the novel Russian antiviral drug Camphecene with pentacyclic triterpenes of licorice. Chimica Techno Acta, 2020, 7(4), 192-198.
[http://dx.doi.org/10.15826/chimtech.2020.7.4.10]
[9]
Yarovaya, O.I.; Sokolova, A.S.; Mainagashev, I.Y.; Volobueva, A.S.; Lantseva, K.; Borisevich, S.S.; Shtro, A.A.; Zarubaev, V.V.; Salakhutdinov, N.F. Synthesis and structure-activity relationships of novel camphecene analogues as anti-influenza agents. Bioorg. Med. Chem. Lett., 2019, 29(23), 126745.
[http://dx.doi.org/10.1016/j.bmcl.2019.126745] [PMID: 31668423]
[10]
Chernyshov, V.V.; Yarovaya, O.I.; Peshkov, R.Y.; Salakhutdinov, N.F. Synthesis of cyclic D-(+)-camphoric acid imides and study of their antiviral activity. Chem. Heterocycl. Compd., 2020, 56(6), 763-768.
[http://dx.doi.org/10.1007/s10593-020-02728-y]
[11]
Zhang, Y.; Wang, Y.; Zhao, Y.; Gu, W.; Zhu, Y.; Wang, S. Novel camphor-based pyrimidine derivatives induced cancer cell death through a ROS-mediated mitochondrial apoptosis pathway. RSC Advances, 2019, 9(51), 29711-29720.
[http://dx.doi.org/10.1039/C9RA05900H]
[12]
Carvalho, M.F.N.N.; Botelho do Rego, A.M.; Galvão, A.M.; Herrmann, R.; Marques, F. Search for cytotoxic compounds against ovarian cancer cells: Synthesis, characterization and assessment of the activity of new camphor carboxylate and camphor carboxamide silver complexes. J. Inorg. Biochem., 2018, 188, 88-95.
[http://dx.doi.org/10.1016/j.jinorgbio.2018.08.011] [PMID: 30125832]
[13]
Almotwaa, S.M.; Alkhatib, M.H.; Alkreathy, H.M. Nanoemulsion-based camphor oil carrying ifosfamide: Preparation, characterization, and in vitro evaluation in cancer cells. Int. J. Pharm. Sci. Res., 2019, 10, 2018-6.
[http://dx.doi.org/10.22377/ajp.v14i1.3578]
[14]
Adhikari, A.; Bhandari, S.; Pandey, D.P. Anti-inflammatory compounds camphor and methylsalicylate from traditionally used pain curing plant equisetum arvense L. J. Nepal Chem. Soc., 2019, 40, 1-4.
[http://dx.doi.org/10.3126/jncs.v40i0.27270]
[15]
Ghori, S.S.; Ahmed, M.I.; Arifuddin, M.; Khateeb, M.S. Evaluation of analgesic and anti-inflammatory activities of formulation containing camphor, menthol and thymol. Int. J. Pharm. Pharm. Sci., 2016, 8, 271-274.
[16]
Agrawal, S.; Jain, J.; Kumar, A.; Gupta, P.; Garg, V. Synthesis molecular modeling and anticonvulsant activity of some hydrazone, semicarbazone, and thiosemicarbazone derivatives of benzylidene camphor. Res. Rep. Med. Chem., 2014, 4, 47-58.
[http://dx.doi.org/10.2147/RRMC.S66115]
[17]
Kuranov, S.O.; Tsypysheva, I.P.; Khvostov, M.V.; Zainullina, L.F.; Borisevich, S.S.; Vakhitova, Y.V.; Luzina, O.A.; Salakhutdinov, N.F. Synthesis and evaluation of camphor and cytisine-based cyanopyrrolidines as DPP-IV inhibitors for the treatment of type 2 diabetes mellitus. Bioorg. Med. Chem., 2018, 26(15), 4402-4409.
[http://dx.doi.org/10.1016/j.bmc.2018.07.018] [PMID: 30056037]
[18]
Kaur, KK; Allahbadia, G; Singh, M Monoterpenes-A class of terpenoid group of natural products as a source of natural antidiabetic agents in the future-A review. CPQ Nutrition., 2019, 3(4), 01-21.,
[19]
Chen, W.; Vermaak, I.; Viljoen, A. Camphor a fumigant during the Black Death and a coveted fragrant wood in ancient Egypt and Babylon a review. Molecules, 2013, 18(5), 5434-5454.
[http://dx.doi.org/10.3390/molecules18055434] [PMID: 23666009]
[20]
Shokova, E.A.; Kim, J.K.; Kovalev, V.V. Camphor and its derivatives. Unusual transformations and biological activity. Russ. J. Org. Chem., 2016, 52(4), 459-488.
[http://dx.doi.org/10.1134/S1070428016040011]
[21]
Mishra, I.; Mishra, R.; Mujwar, S.; Chandra, P.; Sachan, N. A retrospect on antimicrobial potential of thiazole scaffold. J. Heterocycl. Chem., 2020, 57(6), 2304-2329.
[http://dx.doi.org/10.1002/jhet.3970]
[22]
Gemili, M.; Nural, Y. Gemili, M.; Nural, Y.; Keleş, E.; Aydıner, B.; Seferoğlu, N.; Ülger, M.; Şahin, E.; Erat, S.; Seferoğlu, Z. Novel highly functionalized 1, 4-naphthoquinone 2-iminothiazole hybrids: Synthesis, photophysical properties, crystal structure, DFT studies, and anti (myco) bacterial/antifungal activity. J. Mol. Struct., 2019, 1196, 536-546.
[http://dx.doi.org/10.1016/j.molstruc.2019.06.087]
[23]
Bae, S.; Hahn, H.G.; Nam, K.D.; Mah, H. Solid-phase synthesis of fungitoxic 2-imino-1,3-thiazolines. J. Comb. Chem., 2005, 7(1), 7-9.
[http://dx.doi.org/10.1021/cc049854w] [PMID: 15638472]
[24]
Shaikh, S.K.; Kamble, R.R.; Somagond, S.M.; Kamble, A.A.; Kumbar, M.N. One-pot multicomponent synthesis of novel thiazol-2-imines via microwave irradiation and their antifungal evaluation. Synth. Commun., 2018, 48(16), 2061-2073.
[http://dx.doi.org/10.1080/00397911.2018.1482348]
[25]
Helal, M.H.; Salem, M.A.; El-Gaby, M.S.; Aljahdali, M. Synthesis and biological evaluation of some novel thiazole compounds as potential anti-inflammatory agents. Eur. J. Med. Chem., 2013, 65, 517-526.
[http://dx.doi.org/10.1016/j.ejmech.2013.04.005] [PMID: 23787438]
[26]
de Santana, T.I.; Barbosa, M.O.; Gomes, P.A.T.M.; da Cruz, A.C.N.; da Silva, T.G.; Leite, A.C.L. Synthesis, anticancer activity and mechanism of action of new thiazole derivatives. Eur. J. Med. Chem., 2018, 144, 874-886.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.040] [PMID: 29329071]
[27]
Chandrasekaran, B.; Cherukupalli, S.; Karunanidhi, S.; Kajee, A.; Aleti, R.R.; Sayyad, N.; Kushwaha, B.; Merugu, S.R.; Mlisana, K.P.; Karpoormath, R. Design and synthesis of novel heterofused pyrimidine analogues as effective antimicrobial agents. J. Mol. Struct., 2019, 1183, 246-255.
[http://dx.doi.org/10.1016/j.molstruc.2019.01.105]
[28]
Zhuang, J.; Ma, S. Recent development of pyrimidine-containing antimicrobial agents. ChemMedChem, 2020, 15(20), 1875-1886.
[http://dx.doi.org/10.1002/cmdc.202000378] [PMID: 32797654]
[29]
Shaaban, O.G.; Issa, D.A.E.; El-Tombary, A.A.; Abd El Wahab, S.M.; Abdel Wahab, A.E.; Abdelwahab, I.A. Synthesis and molecular docking study of some 3,4-dihydrothieno[2,3-d]pyrimidine derivatives as potential antimicrobial agents. Bioorg. Chem., 2019, 88, 102934.
[http://dx.doi.org/10.1016/j.bioorg.2019.102934] [PMID: 31026720]
[30]
Saber, A.F.; Sayed, M.; Tolba, M.S.; Kamal El-Dean, A.M.; Hassanien, R.; Ahmed, M. A facile method for preparation and evaluation of the antimicrobial efficiency of various heterocycles containing thieno [2,3-d] pyrimidine. Synth. Commun., 2020, 51, 398-409.
[http://dx.doi.org/10.1080/00397911.2020.1829645]
[31]
Cherukupalli, S.; Chandrasekaran, B.; Kryštof, V.; Aleti, R.R.; Sayyad, N.; Merugu, S.R.; Kushwaha, N.D.; Karpoormath, R. Synthesis, anticancer evaluation, and molecular docking studies of some novel 4,6-disubstituted pyrazolo[3,4-d]pyrimidines as cyclin-dependent kinase 2 (CDK2) inhibitors. Bioorg. Chem., 2018, 79, 46-59.
[http://dx.doi.org/10.1016/j.bioorg.2018.02.030] [PMID: 29753773]
[32]
Elzahabi, H.S.A.; Nossier, E.S.; Khalifa, N.M.; Alasfoury, R.A.; El-Manawaty, M.A. Anticancer evaluation and molecular modeling of multi-targeted kinase inhibitors based pyrido[2,3-d]pyrimidine scaffold. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 546-557.
[http://dx.doi.org/10.1080/14756366.2018.1437729] [PMID: 29482389]
[33]
Abbass, E.M.; Khalil, A.K. El;Naggar, A.M. Eco;friendly synthesis of novel pyrimidine derivatives as potential anticancer agents. J. Heterocycl. Chem., 2020, 57(3), 1154-1164.
[http://dx.doi.org/10.1002/jhet.3852]
[34]
Chen, L.; Jin, Y.; Fu, W.; Xiao, S.; Feng, C.; Fang, B.; Gu, Y.; Li, C.; Zhao, Y.; Liu, Z.; Liang, G. Design, synthesis, and structure-activity relationship analysis of thiazolo[3,2-a]pyrimidine derivatives with anti-inflammatory activity in acute lung injury. ChemMedChem, 2017, 12(13), 1022-1032.
[http://dx.doi.org/10.1002/cmdc.201700175] [PMID: 28503918]
[35]
Kalčic, F.; Kolman, V.; Ajani, H.; Zídek, Z.; Janeba, Z. Polysubstituted pyrimidines as mPGES-1 inhibitors: discovery of potent inhibitors of PGE2 production with strong anti-inflammatory effects in carrageenan-induced rat paw edema. ChemMedChem, 2020, 15(15), 1398-1407.
[http://dx.doi.org/10.1002/cmdc.202000258] [PMID: 32410351]
[36]
Bai, S.; Liu, S.; Zhu, Y.; Wu, Q. Asymmetric synthesis and antiviral activity of novel chiral amino-pyrimidine derivatives. Tetrahedron Lett., 2018, 59(33), 3179-3183.
[http://dx.doi.org/10.1016/j.tetlet.2018.07.020]
[37]
Huang, B.; Kang, D.; Tian, Y.; Daelemans, D.; De Clercq, E.; Pannecouque, C.; Zhan, P.; Liu, X. Design, synthesis, and biological evaluation of piperidinyl-substituted [1,2,4]triazolo[1,5-a]pyrimidine derivatives as potential anti-HIV-1 agents with reduced cytotoxicity. Chem. Biol. Drug Des., 2021, 97(1), 67-76.
[http://dx.doi.org/10.1111/cbdd.13760] [PMID: 32725669]
[38]
Ali, A.; Asif, M.; Alam, P.; Alam, MJ; Sherwani, MA; Khan, RH; Ahmad, S DFT/B3LYP calculations, in vitro cytotoxicity and antioxidant activities of steroidal pyrimidines and their interaction with HSA using molecular docking and multispectroscopic techniques. Bioorganic chemistry., 2017, 73, 83-99.
[39]
Fair, R.J.; Tor, Y. Antibiotics and bacterial resistance in the 21st century. Perspect. Medicin. Chem., 2014, 6, 25-64.
[http://dx.doi.org/10.4137/PMC.S14459]
[40]
Saini, N.; Sharma, A.; Thakur, V.K.; Makatsoris, C.; Dandia, A.; Bhagat, M.; Tonk, R.K.; Sharma, P.C. Microwave assisted green synthesis of thiazolidin-4-one derivatives: A perspective on potent antiviral and antimicrobial activities. Curr Res Green Sus Chemistry, 2020, 3, 100021.
[http://dx.doi.org/10.1016/j.crgsc.2020.100021]
[41]
Mangasuli, S.N.; Managutti, P.B.; Hosamani, K.M. Anti-inflammatory activity of novel (5Z)-3-(2-(2-oxo-2H-chromen-4-yloxy)ethyl)-5-benzylidenethiazolidine-2,4-dione derivatives: An approach to microwave synthesis. Chemical Data Collect., 2020, 30, 100555.
[http://dx.doi.org/10.1016/j.cdc.2020.100555]
[42]
Abo-Bakr, A.M.; Hassan, E.A.; Mahdy, A.H.S.; Zayed, S.E. Synthetic and biological studies on some new camphor thiazolidinones. J. Iran. Chem. Soc., 2021, 18, 2757-2769.
[http://dx.doi.org/10.1007/s13738-021-02228-6]
[43]
Prasad, R.N.; McKay, A.F. Acylation of guanidines and guanylhydrazones. Can. J. Chem., 1967, 45(19), 2247-2252.
[http://dx.doi.org/10.1139/v67-362]
[44]
Györgydeák, Z.; Holzer, W. Acylation of guanylhydrazones derived from cyclic ketones: synthesis of 3-acylamino-1-cycloalkenyl-5-methyl-1H-1,2,4-triazoles. Heterocycles, 1998, 7(48), 1395-1406.
[45]
Brousse, B.N.; Moglioni, A.G.; Alho, M.M.; Álvarez-Larena, Á.; Moltrasio, G.Y. DAccorso NB. Behavior of thiosemicarbazones derived from some terpenones under acetylating conditions. ARKIVOC,, 2002, 10, 14-23.http://hdl.handle.net/20.500.12110/paper_14246376_v2002_n10_p14_Brousse
[http://dx.doi.org/10.3998/ark.5550190.0003.a03]
[46]
Zaky, R.R.; Yousef, T.A.; Ibrahim, K.M. Co(II), Cd(II), Hg(II) and U(VI)O; complexes of o-hydroxyacetophenone[N-(3-hydroxy-2-naphthoyl)] hydrazone: physicochemical study, thermal studies and antimicrobial activity. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2012, 97, 683-694.
[http://dx.doi.org/10.1016/j.saa.2012.05.086] [PMID: 22885116]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy