[1]
Zhou, S.F. Structure, function and regulation of P-glycoprotein and its clinical relevance in drug disposition. Xenobiotica, 2008, 38(7-8), 802-832.
[2]
Callen, D.F.; Baker, E.; Simmers, R.N.; Seshadri, R.; Roninson, I.B. Localization of the human multiple drug resistance gene, MDR1, to 7q21.1. Hum. Genet., 1987, 77(2), 142-144.
[3]
Hsu, S.I.; Lothstein, L.; Horwitz, S.B. Differential overexpression of three mdr gene family members in multidrugresistant J774.2 mouse cells. Evidence that distinct P-glycoprotein precursors are encoded by unique mdr genes. J. Biol. Chem., 1989, 264, 12053-12062.
[4]
Benet, L.Z. The drug transporter-metabolism alliance: uncovering and defining the interplay. Mol. Pharm., 2009, 6(6), 1631-1643.
[5]
Borst, P.; Evers, R.; Kool, M.; Wijnholds, J. A family of drug transporters: the multidrug resistance-associated proteins. J. Natl. Cancer Inst., 2000, 92(16), 1295-1302.
[6]
Cole, S.P.; Bhardwaj, G.; Gerlach, J.H.; Mackie, J.E.; Grant, C.E.; Almquist, K.C.; Stewart, A.J.; Kurz, E.U.; Duncan, A.M.; Deeley, R.G. Overexpression of a transporter gene in a multidrugresistant human lung cancer cell line. Science, 1992, 258, 1650-1654.
[7]
Leier, I.; Jedlitschky, G.; Buchholz, U.; Cole, S.P.; Deeley, R.G.; Keppler, D. The MRP gene encodes an ATP-dependent export pump for leukotriene C4 and structurally related conjugates. J. Biol. Chem., 1994, 269, 27807-27810.
[8]
Cole, S.P.; Deeley, R.G. Multidrug resistance mediated by the ATP-binding cassette transporter protein MRP. BioEssays, 1998, 20, 931-940.
[9]
Renes, J.; de Vries, E.E.; Hooiveld, G.J.; Krikken, I.; Jansen, P.L.; Müller, M. Multidrug resistance protein MRP1 protects against the toxicity of the major lipid peroxidation product 4-hydroxynonenal. Biochem. J., 2000, 350, 555-561.
[10]
Leslie, E.M.; Ito, K.; Upadhyaya, P.; Hecht, S.S.; Deeley, R.G.; Cole, S.P. Transport of the β-O-glucuronide conjugate of the tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) by the multidrug resistance protein 1 (MRP1). Requirement for glutathione or a non-sulfur-containing analog. J. Biol. Chem., 2000, 276, 27846-27854.
[11]
Jungsuwadee, P.; Zhao, T.; Stolarczyk, E.I.; Paumi, C.M.; Butterfield, D.A.; St Clair, D.K.; Vore, M. The G671V variant of MRP1/ABCC1 links doxorubicin-induced acute cardiac toxicity to disposition of the glutathione conjugate of 4-hydroxy-2-trans-nonenal. Pharmacogenet. Genomics, 2012, 22, 273-284.
[12]
Doyle, L.A.; Yang, W.; Abruzzo, L.V.; Krogmann, T.; Gao, Y.; Rishi, A.K.; Ross, D.D. A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc. Natl. Acad. Sci. USA, 1998, 95(26), 15665-15670.
[13]
Doyle, L.A.; Ross, D.D. Multidrug resistance mediated by the breast cancer resistance protein BCRP (ABCG2). Oncogene, 2003, 22(47), 7340-7358.
[14]
Jani, M.; Ambrus, C.; Magnan, R.; Jakab, K.T.; Beéry, E.; Zolnerciks, J.K.; Krajcsi, P. Structure and function of BCRP, a broad specificity transporter of xenobiotics and endobiotics. Arch. Toxicol., 2014, 88(6), 1205-1248.
[15]
Schinkel, A.H.; Jonker, J.W. Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: an overview. Adv. Drug Deliv. Rev., 2003, 55, 3-29.
[16]
Thiebaut, F.; Tsuruo, T.; Hamada, H.; Gottesman, M.M.; Pastan, I.; Willingham, M.C. Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues. Proc. Natl. Acad. Sci. USA, 1987, 84(21), 7735-7738.
[17]
Schaub, T.P.; Kartenbeck, J.; König, J.; Vogel, O.; Witzgall, R.; Kriz, W.; Keppler, D. Expression of the conjugate export pump encoded by the mrp2 gene in the apical membrane of kidney proximal tubules. J. Am. Soc. Nephrol., 1997, 8, 1213-1221.
[18]
Belinsky, M.G.; Chen, Z.S.; Shchaveleva, I.; Zeng, H.; Kruh, G.D. Characterization of the drug resistance and transport properties of multidrug resistance protein 6 (MRP6, ABCC6). Cancer Res., 2002, 62(21), 6172-6177.
[19]
Borst, P.; van de Wetering, K.; Schlingemann, R. Does the absence of ABCC6 (multidrug resistance protein 6) in patients with Pseudoxanthoma elasticum prevent the liver from providing sufficient vitamin K to the periphery? Cell Cycle, 2008, 7(11), 1575-1579.
[20]
Huls, M.; Brown, C.D.; Windass, A.S.; Sayer, R.; van den Heuvel, J.J.; Heemskerk, S.; Russel, F.G.; Masereeuw, R. The breast cancer resistance protein transporter ABCG2 is expressed in the human kidney proximal tubule apical membrane. Kidney Int., 2008, 73(2), 220-225.
[21]
Woodward, O.M.; Kottgen, A.; Coresh, J.; Boerwinkle, E.; Guggino, W.B.; Köttgen, M. Identification of a urate transporter, ABCG2, with a common functional polymorphism causing gout. Proc. Natl. Acad. Sci. USA, 2009, 106(25), 10338-10342.
[22]
Lepist, E.I.; Ray, A.S. Renal drug-drug interactions: what we have learned and where we are going. Expert Opin. Drug Metab. Toxicol., 2012, 8(4), 433-448.
[23]
Scherrmann, J.M. Expression and function of multidrug resistance transporters at the blood-brain barriers. Expert Opin. Drug Metab. Toxicol., 2005, 1, 233-246.
[24]
Bendayan, R.; Ronaldson, P.T.; Gingras, D.; Bendayan, M. In situ localization of P-glycoprotein (ABCB1) in human and rat brain. J. Histochem. Cytochem., 2006, 54, 1159-1167.
[25]
Cooray, H.C.; Blackmore, C.G.; Maskell, L.; Barrand, M.A. Localisation of breast cancer resistance protein in microvessel endothelium of human brain. Neuroreport, 2002, 13, 2059-2063.
[26]
Lee, G.; Babakhanian, K.; Ramaswamy, M.; Prat, A.; Wosik, K.; Bendayan, R. Expression of the ATP-binding cassette membrane transporter, ABCG2, in human and rodent brain microvessel endothelial and glial cell culture systems. Pharm. Res., 2007, 24, 1262-1274.
[27]
Qosa, H.; Miller, D.S. Pasinelli, P3.; Trotti, D. Regulation of ABCefflux transporters at blood-brain barrier in health and neurological disorders. Brain Res., 2005, 1628, 298-316.
[28]
Gazzin, S.; Strazielle, N.; Schmitt, C.; Fevre-Montange, M.; Ostrow, J.D.; Tiribelli, C.; Ghersi-Egea, J.F. Differential expression of the multidrug resistance-related proteins ABCb1 and ABCc1 between blood-brain interfaces. J. Comp. Neurol., 2008, 510, 497-507.
[29]
Daood, M.; Tsai, C.; Ahdab-Barmada, M.; Watchko, J.F. ABC transporter (P-gp/ABCB1,MRP1/ABCC1, BCRP/ABCG2) expression in the developing human CNS. Neuropediatrics, 2008, 39, 211-218.
[30]
Dallas, S.; Miller, D.S.; Bendayan, R. Multidrug resistance- associated proteins: expression and function in the central nervous system. Pharmacol. Rev., 2006, 58, 140-161.
[31]
Dallas, S.; Zhu, X.; Baruchel, S.; Schlichter, L.; Bendayan, R. Functional expression of the multidrug resistance protein 1 in microglia. J. Pharmacol. Exp. Ther., 2003, 307, 282-290.
[32]
Jones, D.P. Radical-free biology of oxidative stress. Am. J. Physiol. Cell Physiol., 2008, 295, C849-C868.
[33]
Cole, S.P. Targeting the multidrug resistance protein (MRP1, ABCC1): past, present and future. Annu. Rev. Pharmacol. Toxicol., 2014, 54, 95-117.
[34]
Lorico, A.; Rappa, G.; Finch, R.A.; Yang, D.; Flavell, R.A.; Sartorelli, A.C. Disruption of the murine MRP (multidrug resistance protein) gene leads to increased sensitivity to etoposide (VP-16) and increased levels of glutathione. Cancer Res., 1997, 57, 5238-5242.
[35]
Deng, J.; Coy, D.; Zhang, W.; Sunkara, M.; Morris, A.J.; Wang, C.; Chaiswing, L.; St Clair, D.; Vore, M.; Jungsuwadee, P. Elevated glutathione in multidrug resistance associated protein 1 (Mrp1/Abcc1) null mice does not protect against doxorubicin-induced nuclear damage in heart in multidrug resistance-associated protein 1 (Mrp1/Abcc1) null mice. J. Pharmacol. Exp. Ther., 2015, 355(2), 272-279.
[36]
Zhang, W.; Deng, J.; Sunkara, M.; Morris, A.J.; Wang, C.; St Clair, D.; Vore, M. Loss of multidrug resistance-associated protein 1 potentiates chronic doxorubicin-induced cardiac dysfunction in mice. J. Pharmacol. Exp. Ther., 2015, 355, 280-287.
[37]
Hirrlinger, J.; König, J.; Keppler, D.; Lindenau, J.; Schulz, J.B.; Dringen, R. The multidrug resistance protein MRP1 mediates the release of glutathione disulfide from rat astrocytes during oxidative stress. J. Neurochem., 2001, 76, 627-636.
[38]
Minich, T.; Riemer, J.; Schulz, J.B.; Wielinga, P.; Wijnholds, J.; Dringen, R. The multidrug resistance protein 1 (Mrp1), but not Mrp5, mediates export of glutathione and glutathione disulfide from brain astrocytes. J. Neurochem., 2006, 97, 373-384.
[39]
Cole, S.P.; Deeley, R.G. Transport of glutathione and glutathione conjugates by MRP1. Trends Pharmacol. Sci., 2006, 27, 438-446.
[40]
Zhang, W.; St Clair, D.; Butterfield, D.A.; Vore, M. Loss of Mrp1 potentiates Doxorubicin-induced cardiotoxicity in neonatal mouse cardiomyocytes and cardiac fibroblasts. Toxicol. Sci., 2016, 151, 44-56.
[41]
Wijnholds, J.; Mol, C.A.; van Deemter, L.; de Haas, M.; Scheffer, G.L.; Baas, F.; Beijnen, J.H.; Scheper, R.J.; Hatse, S.; De Clercq, E.; Balzarini, J.; Borst, P. Multidrug-resistance protein 5 is a multispecific organic anion transporter able to transport nucleotide analogs. Proc. Natl. Acad. Sci. USA, 2000, 97, 7476-7481.
[42]
Sasabe, H.; Kato, Y.; Suzuki, T.; Hose, M.; Miyamoto, G.; Sugiyama, Y. Differential involvement of multidrug resistance-associated protein 1 and P-glycoprotein in tissue distribution and excretion of grepafloxacin in mice. J. Pharmacol. Exp. Ther., 2004, 310, 648-655.
[43]
Muramatsu, T.; Johnson, D.R.; Finch, R.A.; Johnson, L.K.; Leffert, J.J.; Lin, Z.P.; Pizzorno, G.; Sartorelli, A.C. Age-related differences in vincristine toxicity and biodistribution in wild-type and transporter-deficient mice. Oncol. Res., 2004, 14, 331-343.
[44]
Stride, B.D.; Grant, C.E.; Loe, D.W.; Hipfner, D.R.; Cole, S.P.; Deeley, R.G. Pharmacological characterization of the murine and human orthologs of multidrug-resistance protein in transfected human embryonic kidney cells. Mol. Pharmacol., 1997, 52, 344-353.
[45]
Volkel, W.; Alvarez-Sanchez, R.; Weick, I.; Mally, A.; Dekant, W.; Pahler, A. Glutathione conjugates of 4-hydroxy-2(E)-nonenal as biomarkers of hepatic oxidative stress-induced lipid peroxidation in rats. Free Radic. Biol. Med., 2005, 38(11), 1526-1536.
[46]
Wojnowski, L.; Kulle, B.; Schirmer, M.; Schlüter, G.; Schmidt, A.; Rosenberger, A. NAD(P)H oxidase and multidrug resistance protein genetic polymorphisms are associated with doxorubicin-induced cardiotoxicity. Circulation, 2005, 112, 3754-3762.
[47]
Jungsuwadee, P.; Cole, M.P.; Sultana, R.; Joshi, G.; Tangpong, J.; Butterfield, D.A.; St. Clair, D.K.; Vore, M. Increase in Mrp1 expression and 4-hydroxy-2-nonenal adduction in heart tissue of Adriamycin-treated C57BL/6 mice. Mol. Cancer Ther., 2006, 5, 2851-2860.
[48]
Semsei, A.F.; Erdelyi, D.J.; Ungvari, I.; Csagoly, E.; Hegyi, M.Z.; Kiszel, P.S. ABCC1 polymorphisms in anthracycline-induced cardiotoxicity in childhood acute lymphoblastic leukaemia. Cell Biol. Int., 2012, 36, 79-86.
[49]
Visscher, H.; Ross, C.J.; Rassekh, S.R.; Barhdadi, A.; Dubé, M.P.; Al-Saloos, H. Pharmacogenomic prediction of anthracycline-induced cardiotoxicity in children. J. Clin. Oncol., 2012, 30, 1422-1428.
[50]
Hayashi, A.; Suzuki, H.; Itoh, K.; Yamamoto, M.; Sugiyama, Y. Transcription factor Nrf2 is required for the constitutive and inducible expression of multidrug resistance-associated protein1 in mouse embryo fibroblasts. Biochem. Biophys. Res. Commun., 2003, 310, 824-829.
[51]
Itoh, K.; Wakabayashi, N.; Katoh, Y.; Ishii, T.; O’Connor, T.; Yamamoto, M. Keap1 regulates both cytoplasmic-nuclear shuttling and degradation of Nrf2 in response to electrophiles. Genes Cells, 2003, 8, 379-391.
[52]
Nguyen, T.; Sherratt, P.J.; Nioi, P.; Yang, C.S.; Pickett, C.B. Nrf2 controls constitutive and inducible expression of ARE-driven genes through a dynamic pathway involving nucleocytoplasmic shuttling by Keap1. J. Biol. Chem., 2005, 280, 32485-32492.
[53]
Meissner, K.; Sperker, B.; Karsten, C.; Meyer, Z.; Schwabedissen, H.; Seeland, U.; Böhm, M.; Bien, S.; Dazert, P.; Kunert-Keil, C.; Vogelgesang, S.; Warzok, R.; Siegmund, W.; Cascorbi, I.; Wendt, M.; Kroemer, H.K. Expression and localization of Pglycoprotein in human heart: effects of cardiomyopathy. J. Histochem. Cytochem., 2002, 50, 1351-1356.
[54]
Lazarowski, A.J.; García Rivello, H.J.; Vera Janavel, G.L.; Cuniberti, L.A.; Cabeza Meckert, P.M.; Yannarelli, G.G.; Mele, A.; Crottogini, A.J.; Laguens, R.P. Cardiomyocytes of chronically ischemic pig hearts express the MDR-1 gene-encoded P-glycoprotein. J. Histochem. Cytochem., 2005, 53, 845-850.
[55]
Schinkel, A.H.; Smit, J.J.; van Tellingen, O.; Beijnen, J.H.; Wagenaar, E.; van Deemter, L.; Mol, C.A.; van der Valk, M.A.; Robanus-Maandag, E.C.; te Riele, H.P.; Berns, A.J.M.; Borst, P. Disruption of the mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs. Cell, 1994, 77, 491-502.
[56]
Schinkel, A.H.; Wagenaar, E.; Mol, C.A.; van Deemter, L. P-glycoprotein in the blood-brain barrier of mice influences the brain penetration and pharmacological activity of many drugs. J. Clin. Invest., 1996, 97, 2517-2524.
[57]
Cox, D.S.; Scott, K.R.; Gao, H.; Eddington, N.D. Effect of P-glycoprotein on the pharmacokinetics and tissue distribution of enaminone anticonvulsants: analysis by population and physiological approaches. J. Pharmacol. Exp. Ther., 2002, 302, 1096-1104.
[58]
Van Asperen, J.; van Tellingen, O.; Tijssen, F.; Schinkel, A.H.; Beijnen, J.H. Increased accumulation of doxorubicin and doxorubicinol in cardiac tissue of mice lacking mdr1a P-glycoprotein. Br. J. Cancer, 1999, 79, 108-113.
[59]
Dell’Acqua, G.; Polishchuck, R.; Fallon, J.T.; Gordon, J.W. Cardiac resistance to adriamycin in transgenic mice expressing a rat alpha-cardiac myosin heavy chain/human multiple drug resistance 1 fusion gene. Hum. Gene Ther., 1999, 10, 1269-1279.
[60]
Estevez, M.D.; Wolf, A.; Schramm, U. Effect of PSC 833, verapamil and amiodarone on adriamycin toxicity in cultured rat cardiomyocytes. Toxicol. In Vitro, 2000, 14, 17-23.
[61]
Sridhar, R.; Dwivedi, C.; Anderson, J.; Baker, P.B.; Sharma, H.M.; Desai, P.; Engineer, F.N. Effects of verapamil on the acute toxicity of doxorubicin in vivo. J. Natl. Cancer Inst., 1992, 84, 1653-1660.
[62]
Bunting, K.D. ABC transporters as phenotypic markers and functional regulators of stem cells. Stem Cells, 2002, 20, 11-20.
[63]
Oyama, T.; Nagai, T.; Wada, H.; Naito, A.T.; Matsuura, K.; Iwanaga, K.; Takahashi, T.; Goto, M.; Mikami, Y.; Yasuda, N.; Akazawa, H.; Uezumi, A.; Takeda, S.; Komuro, I. Cardiac side population cells have a potential to migrate and differentiate into cardiomyocytes in vitro and in vivo. J. Cell Biol., 2007, 176, 329-341.
[64]
Doyle, M.J.; Maher, T.J.; Li, Q.; Garry, M.G.; Sorrentino, B.P.; Martin, C.M. Abcg2-Labeled Cells Contribute to Different Cell Populations in the Embryonic and Adult Heart. Stem Cells Dev., 2016, 25, 277-284.
[65]
Higashikuni, Y.; Sainz, J.; Nakamura, K.; Takaoka, M.; Enomoto, S.; Iwata, H.; Sahara, M.; Tanaka, K.; Koibuchi, N.; Ito, S.; Kusuhara, H.; Sugiyama, Y.; Hirata, Y.; Nagai, R.; Sata, M. The ATP-binding cassette transporter BCRP1/ABCG2 plays a pivotal role in cardiac repair after myocardial infarction via modulation of microvascular endothelial cell survival and function. Arterioscler. Thromb. Vasc. Biol., 2010, 30, 2128-2135.
[66]
Higashikuni, Y.; Sainz, J.; Nakamura, K.; Takaoka, M.; Enomoto, S.; Iwata, H.; Tanaka, K.; Sahara, M.; Hirata, Y.; Nagai, R.; Sata, M. The ATP-binding cassette transporter ABCG2 protects against pressure overload-induced cardiac hypertrophy and heart failure by promoting angiogenesis and antioxidant response. Arterioscler. Thromb. Vasc. Biol., 2012, 32, 654-661.
[67]
Martin, C.M.; Ferdous, A.; Gallardo, T.; Humphries, C.; Sadek, H.; Caprioli, A.; Garcia, J.A.; Szweda, L.I.; Garry, M.G.; Garry, D.J. Hypoxia-inducible factor-2α transactivates Abcg2 and promotes cytoprotection in cardiac side population cells. Circ. Res., 2008, 102, 1075-1081.
[68]
Maher, T.J.; Ren, Y.; Li, Q.; Braunlin, E.; Garry, M.G.; Sorrentino, B.P.; Martin, C.M. ATP-binding cassette transporter Abcg2 lineage contributes to the cardiac vasculature after oxidative stress. Am. J. Physiol. Heart Circ. Physiol., 2014, 306, H1610-H1618.
[69]
Takeuchi, R.; Shinozaki, K.; Nakanishi, T.; Tamai, I. Local Drug-Drug Interaction of Donepezil with Cilostazol at Breast Cancer Resistance Protein (ABCG2) Increases Drug Accumulation in Heart. Drug Metab. Dispos., 2016, 44, 68-74.
[70]
Takaya, T.; Okamoto, M.; Yodoi, K.; Hata, K.; Kijima, Y.; Nakajima, H.; Nishikawa, Y.; Kita, T.; Ito, M.; Seo, T.; Kawashima, S. Torsades de Pointes with QT prolongation related to donepezil use. J. Cardiol., 2009, 54, 507-511.
[71]
Tanaka, A.; Koga, S.; Hiramatsu, Y. Donepezil-induced adverse side effects of cardiac rhythm: 2 cases report of atrioventricular block and Torsade de Pointes. Intern. Med., 2009, 48, 1219-1223.
[72]
Shinozaki, K. Shortening of donepezil-induced QTc prolongation with a change in the interacting drug, after electrocardiograph monitoring by community pharmacists: a case report. Yakugaku Zasshi, 2012, 132, 237-241.
[73]
Igeta, H. Suzuki., Y; Motegi., T; Sasaki., A; Yokoyama., Y; Someya., T. Deterioration in donepezil-induced PR prolongation after a coadministration of memantine in a patient with Alzheimer’s disease. Gen. Hosp. Psychiatry, 2013, 35, 680.
[74]
Mitani, A.; Nakahara, T.; Sakamoto, K.; Ishii, K. Expression of multidrug resistance protein 4 and 5 in the porcine coronary and pulmonary arteries. Eur. J. Pharmacol., 2003, 466, 223-224.
[75]
Dazert, P.; Meissner, K.; Vogelgesang, S.; Heydrich, B.; Eckel, L.; Böhm, M.; Warzok, R.; Kerb, R.; Brinkmann, U.; Schaeffeler, E.; Schwab, M.; Cascorbi, I.; Jedlitschky, G.; Kroemer, H.K. Expression and localization of the multidrug resistance protein 5 (MRP5/ ABCC5), a cellular export pump for cyclic nucleotides, in human heart. Am. J. Pathol., 2003, 163, 1567-1577.
[76]
Fojo, A.T.; Ueda, K.; Slamon, D.J.; Poplack, D.G.; Gottesman, M.M.; Pastan, I. Expression of a multidrug-resistance gene in human tumors and tissues. Proc. Natl. Acad. Sci. USA, 1987, 84(1), 265-269.
[77]
Taipalensuu, J.; Törnblom, H.; Lindberg, G.; Einarsson, C.; Sjöqvist, F.; Melhus, H.; Garberg, P.; Sjöström, B.; Lundgren, B.; Artursson, P. J. Pharmacol. Exp. Ther., 2001, 299, 164-170.
[78]
Burk, O.; Arnold, K.A.; Nussler, A.K.; Schaeffeler, E.; Efimova, E.; Avery, B.A.; Avery, M.A.; Fromm, M.F.; Eichelbaum, M. Antimalarial artemisinin drugs induce cytochrome P450 and MDR1 expression by activation of xenosensors pregnane X receptor and constitutive androstane receptor. Mol. Pharmacol., 2005, 67(6), 1954-1965.
[79]
Ma, L.; Wei, S.; Yang, B.; Ma, W.; Wu, X.; Ji, H.; Sui, H.; Chen, J. Chrysosplenetin inhibits artemisinin efflux in P-gp-over-expressing Caco-2 cells and reverses P-gp/MDR1 mRNA up-regulated expression induced by artemisinin in mouse small intestine. Pharm. Biol., 2017, 55(1), 374-380.
[80]
Perdomo, V.G.; Rigalli, J.P.; Villanueva, S.S.; Ruiz, M.L.; Luquita, M.G.; Echenique, C.G.; Catania, V.A. Modulation of biotransformation systems and ABC transporters by benznidazole in rats. Antimicrob. Agents Chemother., 2013, 57(10), 4894-4902.
[81]
Rigalli, J.P.; Perdomo, V.G.; Luquita, M.G.; Villanueva, S.S.; Arias, A.; Theile, D.; Weiss, J.; Mottino, A.D.; Ruiz, M.L.; Catania, V.A. Regulation of biotransformation systems and ABC transporters by benznidazole in HepG2 cells: involvement of pregnane X-receptor. PLoS Negl. Trop. Dis., 2012, 6(12), e1951.
[82]
Schuetz, E.G.; Beck, W.T.; Schuetz, J.D. Modulators and substrates of P-glycoprotein and cytochrome P4503A coordinately up-regulate these proteins in human colon carcinoma cells. Mol. Pharmacol., 1996, 49(2), 311-318.
[83]
Greiner, B.; Eichelbaum, M.; Fritz, P.; Kreichgauer, H.P.; von Richter, O.; Zundler, J.; Kroemer, H.K. The role of intestinal P-glycoprotein in the interaction of digoxin and rifampin. J. Clin. Invest., 1999, 104(2), 147-153.
[84]
Westphal, K.; Weinbrenner, A.; Zschiesche, M.; Franke, G.; Knoke, M.; Oertel, R.; Fritz, P.; von Richter, O.; Warzok, R.; Hachenberg, T.; Kauffmann, H.M.; Schrenk, D.; Terhaag, B.; Kroemer, H.K.; Siegmund, W. Induction of P-glycoprotein by rifampin increases intestinal secretion of talinolol in human beings: a new type of drug/drug interaction. Clin. Pharmacol. Ther., 2000, 68(4), 345-355.
[85]
Geick, A.; Eichelbaum, M.; Burk, O. Nuclear receptor response elements mediate induction of intestinal MDR1 by rifampin. J. Biol. Chem., 2001, 276(18), 14581-14587.
[86]
Haslam, I.S.; Jones, K.; Coleman, T.; Simmons, N.L. Rifampin and digoxin induction of MDR1 expression and function in human intestinal (T84) epithelial cells. Br. J. Pharmacol., 2008, 154(1), 246-255.
[87]
Naruhashi, K.; Kurahashi, Y.; Fujita, Y.; Kawakita, E.; Yamasaki, Y.; Hattori, K.; Nishimura, A.; Shibata, N. Comparison of the expression and function of ATP binding cassette transporters in Caco-2 and T84 cells on stimulation by selected endogenous compounds and xenobiotics. Drug Metab. Pharmacokinet., 2011, 26(2), 145-153.
[88]
Jin, S.; Scotto, K.W. Transcriptional regulation of the MDR1 gene by histone acetyltransferase and deacetylase is mediated by NF-Y. Mol. Cell. Biol., 1998, 18(7), 4377-4384.
[89]
Kwatra, D.; Vadlapudi, A.D.; Vadlapatla, R.K.; Khurana, V.; Pal, D.; Mitra, A.K. Binary and ternary combinations of anti-HIV protease inhibitors: effect on gene expression and functional activity of CYP3A4 and efflux transporters. Drug Metabol. Drug Interact., 2014, 29(2), 101-110.
[90]
Haslam, I.S.; Jones, K.; Coleman, T.; Simmons, N.L. Induction of P-glycoprotein expression and function in human intestinal epithelial cells (T84). Biochem. Pharmacol., 2008, 76(7), 850-861.
[91]
Weiss, J.; Herzog, M.; König, S.; Storch, C.H.; Ketabi-Kiyanvash, N.; Haefeli, W.E. Induction of multiple drug transporters by efavirenz. J. Pharmacol. Sci., 2009, 109(2), 242-250.
[92]
Perloff, M.D.; von Moltke, L.L.; Fahey, J.M.; Daily, J.P.; Greenblatt, D.J. Induction of P-glycoprotein expression by HIV protease inhibitors in cell culture. AIDS, 2000, 14(9), 1287-1289.
[93]
Weiss, J.; Haefeli, W.E. Potential of the novel antiretroviral drug rilpivirine to modulate the expression and function of drug transporters and drug-metabolising enzymes in vitro. Int. J. Antimicrob. Agents, 2013, 41(5), 484-487.
[94]
Chin, K.V.; Chauhan, S.S.; Pastan, I.; Gottesman, M.M. Regulation of mdr RNA levels in response to cytotoxic drugs in rodent cells. Cell Growth Differ., 1990, 1(8), 361-365.
[95]
Harmsen, S.; Meijerman, I.; Febus, C.L.; Maas-Bakker, R.F.; Beijnen, J.H.; Schellens, J.H. PXR-mediated induction of P-glycoprotein by anticancer drugs in a human colon adenocarcinoma-derived cell line. Cancer Chemother. Pharmacol., 2010, 66(4), 765-771.
[96]
Silva, R.; Carmo, H.; Dinis-Oliveira, R.; Cordeiro-da-Silva, A.; Lima, S.C.; Carvalho, F.; Bastos, M.L.; Remião, F. In vitro study of P-glycoprotein induction as an antidotal pathway to prevent cytotoxicity in Caco-2 cells. Arch. Toxicol., 2011, 85(4), 315-326.
[97]
Wongwanakul, R.; Vardhanabhuti, N.; Siripong, P. ianmongkol, S. Effects of rhinacanthin-C on function and expression of drug efflux transporters in Caco-2 cells. Fitoterapia, 2013, 89, 80-85.
[98]
Lo, Y.L. A potential daidzein derivative enhances cytotoxicity of epirubicin on human colon adenocarcinoma Caco-2 cells. Int. J. Mol. Sci., 2012, 14(1), 158-176.
[99]
Harmsen, S.; Meijerman, I.; Maas-Bakker, R.F.; Beijnen, J.H.; Schellens, J.H. PXR-mediated P-glycoprotein induction by small molecule tyrosine kinase inhibitors. Eur. J. Pharm. Sci., 2013, 48(4-5), 644-649.
[100]
Theile, D.; Haefeli, W.E.; Weiss, J. Effects of adrenolytic mitotane on drug elimination pathways assessed in vitro. Endocrine, 2015, 49(3), 842-853.
[101]
Schrenk, D.; Michalke, A.; Gant, T.W.; Brown, P.C.; Silverman, J.A.; Thorgeirsson, S.S. Multidrug resistance gene expression in rodents and rodent hepatocytes treated with mitoxantrone. Biochem. Pharmacol., 1996, 52(9), 1453-1460.
[102]
Hartley, D.P.; Dai, X.; Yabut, J.; Chu, X.; Cheng, O.; Zhang, T.; He, Y.D.; Roberts, C.; Ulrich, R.; Evers, R.; Evans, D.C. Identification of potential pharmacological and toxicological targets differentiating structural analogs by a combination of transcriptional profiling and promoter analysis in LS-180 and Caco-2 adenocarcinoma cell lines. Pharmacogenet. Genomics, 2006, 16(8), 579-599.
[103]
Hariparsad, N.; Nallani, S.C.; Sane, R.S.; Buckley, D.J.; Buckley, A.R.; Desai, P.B. Induction of CYP3A4 by efavirenz in primary human hepatocytes: comparison with rifampin and phenobarbital. J. Clin. Pharmacol., 2004, 44(11), 1273-1281.
[104]
Anderle, P.; Niederer, E.; Rubas, W.; Hilgendorf, C.; Spahn-Langguth, H.; Wunderli-Allenspach, H.; Merkle, H.P.; Langguth, P. P-Glycoprotein (P-gp) mediated efflux in Caco-2 cell monolayers: the influence of culturing conditions and drug exposure on P-gp expression levels. J. Pharm. Sci., 1998, 87(6), 757-762.
[105]
Shirasaka, Y.; Kawasaki, M.; Sakane, T.; Omatsu, H.; Moriya, Y.; Nakamura, T.; Sakaeda, T.; Okumura, K.; Langguth, P.; Yamashita, S. Induction of human P-glycoprotein in Caco-2 cells: development of a highly sensitive assay system for P-glycoprotein-mediated drug transport. Drug Metab. Pharmacokinet., 2006, 21(5), 414-423.
[106]
Chen, Q.; Bian, Y.; Zeng, S. Involvement of AP-1 and NF-κB in the up-regulation of P-gp in vinblastine resistant Caco-2 cells. Drug Metab. Pharmacokinet., 2014, 29(2), 223-226.
[107]
Haberl, I.; Swatonek, H.; Schaufler, K.; Ulsperger, E.; Wenzl, E.; Theyer, G.; Hamilton, G.; Thalhammer, T. P-glycoprotein-mediated multidrug resistance is modulated by pretreatment with chemosensitizers in HCT-8 carcinoma cells in vitro. Int. J. Oncol., 1998, 12(5), 1137-1142.
[108]
Herzog, C.E.; Tsokos, M.; Bates, S.E.; Fojo, A.T. Increased mdr-1/P-glycoprotein expression after treatment of human colon carcinoma cells with P-glycoprotein antagonists. J. Biol. Chem., 1993, 268(4), 2946-2952.
[109]
Maier, A.; Zimmermann, C.; Beglinger, C.; Drewe, J.; Gutmann, H. Effects of budesonide on P-glycoprotein expression in intestinal cell lines. Br. J. Pharmacol., 2007, 150(3), 361-368.
[110]
Lin, J.H.; Chiba, M.; Chen, I.W.; Nishime, J.A. Effect of dexamethasone on the intestinal first-pass metabolism of indinavir in rats: evidence of cytochrome P-450A and p-glycoprotein induction. Drug Metab. Dispos., 1999, 27(10), 1187-1193.
[111]
Mei, Q.; Richards, K.; Strong-Basalyga, K.; Fauty, S.E.; Taylor, A.; Yamazaki, M.; Prueksaritanont, T.; Lin, J.H.; Hochman, J. Using real-time quantitative TaqMan RT-PCR to evaluate the role of dexamethasone in gene regulation of rat P-glycoproteins mdr1a/1b and cytochrome P450 3A1/2. J. Pharm. Sci., 2004, 93(10), 2488-2496.
[112]
Martin, P.; Riley, R.; Back, D.J.; Owen, A. Comparison of the induction profile for drug disposition proteins by typical nuclear receptor activators in human hepatic and intestinal cells. Br. J. Pharmacol., 2008, 153(4), 805-819.
[113]
Abuznait, A.H.; Patrick, S.G.; Kaddoumi, A. Exposure of LS-180 cells to drugs of diverse physicochemical and therapeutic properties upregulates P-glycoprotein expression and activity. J. Pharm. Pharm. Sci., 2011, 14(2), 236-248.
[114]
Takara, K.; Hayashi, R.; Kokufu, M.; Yamamoto, K.; Kitada, N.; Ohnishi, N.; Yokoyama, T. Effects of nonsteroidal anti-inflammatory drugs on the expression and function of P-glycoprotein/MDR1 in Caco-2 cells. Drug Chem. Toxicol., 2009, 32(4), 332-337.
[115]
Arias, A.; Rigalli, J.P.; Villanueva, S.S.; Ruiz, M.L.; Luquita, M.G.; Perdomo, V.G.; Vore, M.; Catania, V.A.; Mottino, A.D. Regulation of expression and activity of multidrug resistance proteins MRP2 and MDR1 by estrogenic compounds in Caco-2 cells. Role in prevention of xenobioticinduced cytotoxicity. Toxicology, 2014, 320, 46-55.
[116]
Ghanem, C.I.; Gómez, P.C.; Arana, M.C.; Perassolo, M.; Carpini, G.D.; Luquita, M.G.; Veggi, L.M.; Catania, V.A.; Bengochea, L.A.; Mottino, A.D. Induction of Rat intestinal P-glycoprotein by spironolactone and its effect on absorption of orally administered digoxin. J. Pharmacol. Exp. Ther., 2006, 318(3), 1146-1152.
[117]
Sehirli, A.O.; Cetinel, S.; Ozkan, N.; Selman, S.; Tetik, S.; Yuksel, M.; Dulger, F.G.St. John’s wort may ameliorate 2,4,6-trinitrobenzenesulfonic acid colitis off rats through the induction of pregnane X receptors and/or P-glycoproteins. J. Physiol. Pharmacol., 2015, 66(2), 203-214.
[118]
Weiss, J.; Herzog, M.; Haefeli, W.E. Differential modulation of the expression of important drug metabolising enzymes and transporters by endothelin-1 receptor antagonists ambrisentan and bosentan in vitro. Eur. J. Pharmacol., 2011, 660(2-3), 298-304.
[119]
Weiss, J.; Theile, D.; Spalwisz, A.; Burhenne, J.; Riedel, K.D.; Haefeli, W.E. Influence of sildenafil and tadalafil on the enzyme- and transporter-inducing effects of bosentan and ambrisentan in LS180 cells. Biochem. Pharmacol., 2013, 85(2), 265-273.
[120]
Takara, K.; Tsujimoto, M.; Ohnishi, N.; Yokoyama, T. Digoxin Up-regulates MDR1 in human colon carcinoma caco-2 cells. Biochem. Biophys. Res. Commun., 2002, 292(1), 190-194.
[121]
Takara, K.; Takagi, K.; Tsujimoto, M.; Ohnishi, N.; Yokoyama, T. Digoxin up-regulates multidrug resistance transporter (MDR1) mRNA and simultaneously down-regulates steroid xenobiotic receptor mRNA. Biochem. Biophys. Res. Commun., 2003, 306(1), 116-120.
[122]
Collett, A.; Tanianis-Hughes, J.; Warhurst, G. Rapid induction of P-glycoprotein expression by high permeability compounds in colonic cells in vitro: a possible source of transporter mediated drug interactions? Biochem. Pharmacol., 2004, 68(4), 783-790.
[123]
Bhat, U.G.; Winter, M.A.; Pearce, H.L.; Beck, W.T. A structure-function relationship among reserpine and yohimbine analogues in their ability to increase expression of mdr1 and P-glycoprotein in a human colon carcinoma cell line. Mol. Pharmacol., 1995, 48(4), 682-689.
[124]
Giessmann, T.; May, K.; Modess, C.; Wegner, D.; Hecker, U.; Zschiesche, M.; Dazert, P.; Grube, M.; Schroeder, E.; Warzok, R.; Cascorbi, I.; Kroemer, H.K.; Siegmund, W. Carbamazepine regulates intestinal P-glycoprotein and multidrug resistance protein MRP2 and influences disposition of talinolol in humans. Clin. Pharmacol. Ther., 2004, 76(3), 192-200.
[125]
Shen, S.; He, Y.; Zeng, S. Stereoselective regulation of MDR1 expression in Caco-2 cells by cetirizine enantiomers. Chirality, 2007, 19(6), 485-490.
[126]
Störmer, E.; von Moltke, L.L.; Perloff, M.D.; Greenblatt, D.J. P-glycoprotein interactions of nefazodone and trazodone in cell culture. J. Clin. Pharmacol., 2001, 41(7), 708-714.
[127]
Ehret, M.J.; Levin, G.M.; Narasimhan, M.; Rathinavelu, A. Venlafaxine induces P-glycoprotein in human Caco-2 cells. Hum. Psychopharmacol., 2007, 22(1), 49-53.
[128]
Sachs-Barrable, K.; Thamboo, A.; Lee, S.D.; Wasan, K.M. Lipid excipients Peceol and Gelucire 44/14 decrease P-glycoprotein mediated efflux of rhodamine 123 partially due to modifying P-glycoprotein protein expression within Caco-2 cells. J. Pharm. Pharm. Sci., 2007, 10(3), 319-331.
[129]
Ghanem, C.I.; Arias, A.; Novak, A.; Carpini, G.D.; Villanueva, S.; Blazquez, A.G.; Marin, J.J.; Mottino, A.D.; Rubio, M.C. Acetaminophen-induced stimulation of MDR1 expression and activity in rat intestine and in LS 174T human intestinal cell line. Biochem. Pharmacol., 2011, 81(2), 244-250.
[130]
Luo, G.; Cunningham, M.; Kim, S.; Burn, T.; Lin, J.; Sinz, M.; Hamilton, G.; Rizzo, C.; Jolley, S.; Gilbert, D.; Downey, A.; Mudra, D.; Graham, R.; Carroll, K.; Xie, J.; Madan, A.; Parkinson, A.; Christ, D.; Selling, B.; LeCluyse, E.; Gan, L.S. CYP3A4 induction by drugs: correlation between a pregnane X receptor reporter gene assay and CYP3A4 expression in human hepatocytes. Drug Metab. Dispos., 2002, 30(7), 795-804.
[131]
Perloff, M.D.; Von Moltke, L.L.; Marchand, J.E.; Greenblatt, D.J. Ritonavir induces P-glycoprotein expression, multidrug resistance-associated protein (MRP1) expression, and drug transporter-mediated activity in a human intestinal cell line. J. Pharm. Sci., 2001, 90(11), 1829-1837.
[132]
Svärd, J.; Spiers, J.P.; Mulcahy, F.; Hennessy, M. Nuclear receptor-mediated induction of CYP450 by antiretrovirals: functional consequences of NR1I2 (PXR) polymorphisms and differential prevalence in whites and sub-Saharan Africans. J. Acquir. Immune Defic. Syndr., 2010, 55(5), 536-549.
[133]
Faucette, S.R.; Zhang, T.C.; Moore, R.; Sueyoshi, T.; Omiecinski, C.J.; LeCluyse, E.L.; Negishi, M.; Wang, H. Relative activation of human pregnane X receptor versus constitutive androstane receptor defines distinct classes of CYP2B6 and CYP3A4 inducers. J. Pharmacol. Exp. Ther., 2007, 320(1), 72-80.
[134]
Osborn, M.T.; Chambers, T.C. Role of the stress-activated/c-Jun NH2-terminal protein kinase pathway in the cellular response to adriamycin and other chemotherapeutic drugs. J. Biol. Chem., 1996, 271(48), 30950-30955.
[135]
Ford, J.M.; Hait, W.N. Pharmacology of drugs that alter multidrug resistance in cancer. Pharmacol. Rev., 1990, 42(3), 155-199.
[136]
Zacherl, J.; Hamilton, G.; Thalhammer, T.; Riegler, M.; Cosentini, E.P.; Ellinger, A.; Bischof, G.; Schweitzer, M.; Teleky, B.; Koperna, T.; Wenzl, E. Inhibition of P-glycoprotein-mediated vinblastine transport across HCT-8 intestinal carcinoma monolayers by verapamil, cyclosporine A and SDZ PSC 833 in dependence on extracellular pH. Cancer Chemother. Pharmacol., 1994, 34(2), 125-132.
[137]
Song, C.W.; Lyons, J.C.; Luo, Y. Intra- and extracellular
pH in solid tumors: influence on therapeutic response. In:
Teicher BA (ed) Drug resistance in oncology. Marcel Dekker,
New York Basel Hong Kong, 1993, p 25.
[138]
Yu, L.; Zeng, S. Transport characteristics of zolmitriptan in a human intestinal epithelial cell line Caco-2. J. Pharm. Pharmacol., 2007, 59(5), 655-660.
[139]
O’Brian, C.A.; Liskamp, R.M.; Soloman, D.H.; Weinstein, I.B. Inhibition of protein kinase C by tamoxifen. Cancer Res., 1985, 45, 24462-2465.
[140]
Awad, S.; Yokozeki, H.; Miyazaki, Y.; Igawa, K.; Minatohara, K.; Satoh, T.; Nishioka, K. Glucocorticoids induced the production and gene expression of IL-1alpha through AP-1 and partially NF-kappaB activation in murine epidermal cells. J. Med. Dent. Sci., 2002, 49(1), 27-35.
[141]
Mottino, A.D.; Catania, V.A. Hepatic drug transporters and nuclear receptors: regulation by therapeutic agents. World J. Gastroenterol., 2008, 14(46), 7068-7074.
[142]
Burk, O.; Arnold, K.A.; Geick, A.; Tegude, H.; Eichelbaum, M. A role for constitutive androstane receptor in the regulation of human intestinal MDR1 expression. Biol. Chem., 2005, 386(6), 503-513.
[143]
Priyamvada, S.; Anbazhagan, A.N.; Kumar, A.; Soni, V.; Alrefai, W.A.; Gill, R.K.; Dudeja, P.K.; Saksena, S. Lactobacillus acidophilus stimulates intestinal P-glycoprotein expression via a c-Fos/c-Jun-dependent mechanism in intestinal epithelial cells. Am. J. Physiol. Gastrointest. Liver Physiol., 2016, 310(8), G599-G560.
[144]
Troutman, M.D.; Trakker, D.R. Rhodamine 123 requires carrier-mediated influx for its activity as a P-glycoprotein substrate in Caco-2 cells. Pharm. Res., 2003, 20, 1192-1199.
[145]
Guo, J.Y.; Li, X.; Browning, J.D., Jr; Rottinghaus, G.E.; Lubahn, D.B.; Constantinou, A.; Bennink, M.; MacDonald, R.S. Dietary soy isoflavones and estrone protect ovariectomized ER alpha KO and wild-type mice from carcinogen-induced colon cancer. J. Nutr., 2004, 134(1), 179-182.
[146]
Weige, C.C.; Allred, K.F.; Allred, C.D. Estradiol alters cell growth in nonmalignant colonocytes and reduces the formation of preneoplastic lesions in the colon. Cancer Res., 2009, 69(23), 9118-9124.
[147]
Riganti, C.; Campia, I.; Polimeni, M.; Pescarmona, G.; Ghigo, D.; Bosia, A. Digoxin and ouabain induce P-glycoprotein by activating calmodulin kinase II and hypoxiainducible factor-1α in human colon cancer cells. Toxicol. Appl. Pharmacol., 2009, 240(3), 385-392.
[148]
Ekins, S.; Erickson, J.A. A pharmacophore for human pregnane X receptor ligands. Drug Metab. Dispos., 2002, 30(1), 96-99.
[149]
Drocourt, L.; Pascussi, J.M.; Assenat, E.; Fabre, J.M.; Maurel, P.; Vilarem, M.J. Calcium channel modulators of the dihydropyridine family are human pregnane X receptor activators and inducers of CYP3A, CYP2B, and CYP2C in human hepatocytes. Drug Metab. Dispos., 2001, 29(10), 1325-1331.
[150]
Shan, Y.Q.; Zhu, Y.P.; Pang, J.; Wang, Y.X.; Song, D.Q.; Kong, W.J.; Jiang, J.D. Tetrandrine potentiates the hypoglycemic efficacy of berberine by inhibiting P-glycoprotein function. Biol. Pharm. Bull., 2013, 36(10), 1562-1569.
[151]
Wils, P.; Phung-Ba, V.; Warnery, A.; Lechardeur, D.; Raeissi, S.; Hidalgo, I.J.; Scherman, D. Polarized transport of docetaxel and vinblastine mediated by P-glycoprotein in human intestinal epithelial cell monolayers. Biochem. Pharmacol., 1994, 48(7), 1528-1530.
[152]
Phung-Ba, V.; Warnery, A.; Scherman, D.; Wils, P. Interaction of pristinamycin IA with P-glycoprotein in human intestinal epithelial cells. Eur. J. Pharmacol., 1995, 288(2), 187-192.
[153]
Kobayashi, N.; Mita, S.; Yoshida, K.; Honda, T.; Kobayashi, T.; Hara, K.; Nakano, S.; Tsubokou, Y.; Matsuoka, H. Celiprolol activates eNOS through the PI3K-Akt pathway and inhibits VCAM-1 Via NF-kappaB induced by oxidative stress. Hypertension, 2003, 42(5), 1004-1013.
[154]
Nwaozuzu, O.M.; Sellers, L.A.; Barrand, M.A. Signalling pathways influencing basal and H2O2-induced P-glycoprotein expression in endothelial cells derived from the blood-brain barrier. J. Neurochem., 2003, 87, 1043-1051.
[155]
Faucette, S.R.; Sueyoshi, T.; Smith, C.M.; Negishi, M.; LeCluyse, E.L.; Wang, H. Differential regulation of hepatic CYP2B6 and CYP3A4 genes by constitutive androstane receptor but not pregnane X receptor. J. Pharmacol. Exp. Ther., 2006, 317(3), 1200-1209.
[156]
Moore, L.B.; Parks, D.J.; Jones, S.A.; Bledsoe, R.K.; Consler, T.G.; Stimmel, J.B.; Goodwin, B.; Liddle, C.; Blanchard, S.G.; Willson, T.M.; Collins, J.L.; Kliewer, S.A. Orphan nuclear receptors constitutive androstane receptor and pregnane X receptor share xenobiotic and steroid ligands. J. Biol. Chem., 2000, 275(20), 15122-15127.
[157]
Lombardo, L.; Pellitteri, R.; Balazy, M.; Cardile, V. Induction of nuclear receptors and drug resistance in the brain microvascular endothelial cells treated with antiepileptic drugs. Curr. Neurovasc. Res., 2008, 5(2), 82-92.
[158]
Lukasiuk, K.; Kaczmarek, L. AP-1 and CRE DNA binding activities in rat brain following pentylenetetrazole induced seizures. Brain Res., 1994, 643(1-2), 227-233.
[159]
Wald, A.; Back, C.; Bayless, T.M. Effect of caffeine on the human small intestine. Gastroenterology, 1976, 71(5), 738-742.
[160]
Shen, Q.; Lin, Y.; Handa, T.; Doi, M.; Sugie, M.; Wakayama, K.; Okada, N.; Fujita, T.; Yamamoto, A. Modulation of intestinal P-glycoprotein function by polyethylene glycols and their derivatives by in vitro transport and in situ absorption studies. Int. J. Pharm., 2006, 313, 49-56.
[161]
Hugger, E.D.; Audus, K.L.; Borchardt, R.T. Effects of poly(ethylene glycol) on efflux transporter activity in Caco-2 cell monolayers. J. Pharm. Sci., 2002, 91, 1980-1990.
[162]
Shen, Q.; Li, W.; Lin, Y.; Katsumi, H.; Okada, N.; Sakane, T.; Fujita, T.; Yamamoto, A. Modulating effect of polyethylene glycol on the intestinal transport and absorption of prednisolone, methylprednisolone and quinidine in rats by in-vitro and in-situ absorption studies. J. Pharm. Pharmacol., 2008, 60, 1633-1641.
[163]
Alvarez-Lorenzo, C.; Rey-Rico, A.; Brea, J.; Loza, M.I.; Concheiro, A.; Sosnik, A. Inhibition of P-glycoprotein pumps by PEO-PPO amphiphiles: branched versus linear derivatives. Nanomedicine (Lond.), 2010, 5, 1371-1383.
[164]
Johnson, B.M.; Charman, W.N.; Porter, C.J.H. An in vitro examination of the impact of polyehtylene glycol 400, pluronic P 85 and vitamin E D-a-tocopheryl polyethylene glycol 1000 succinate on p-glycoprotein efflux and enterocyte-based metabolism in excised rat intestine. AAPS PharmSci, 2002, 4, E40.
[165]
Chiappetta, D.A.; Sosnik, A. Poly(ethylene oxide)-poly(propylene oxide) block copolymer micelles as drug delivery agents: improved hydrosolubility, stability and bioavailability of drugs. Eur. J. Pharm. Biopharm., 2007, 66, 303-317.
[166]
Alvarez-Lorenzo, C.; Sosnik, A.; Concheiro, A. PEO-PPO block copolymers for passive micellar targeting and overcoming multidrug resistance in cancer therapy. Curr. Drug Targets, 2011, 12, 1112-1130.
[167]
Kabanov, A.V.; Batrakova, E.V.; Alakhov, V.Y. Pluronic® block copolymers for overcoming drug resistance in cancer. Adv. Drug Deliv. Rev., 2002, 54, 759-779.
[168]
Wolf, K.K.; Wood, S.G.; Hunt, J.A.; Walton-Strong, B.W.; Yasuda, K.; Lan, L.; Duan, S.X.; Hao, Q.; Wrighton, S.A.; Jeffery, E.H.; Evans, R.M.; Szakacs, J.G.; von Moltke, L.L.; Greenblatt, D.J.; Court, M.H. Schuetz, E.G.; Sinclair, P.R.; Sinclair, J.F. Role of the nuclear receptor pregnane X receptor in acetaminophen hepatotoxicity. Drug Metab. Dispos., 2005, 33(12), 1827-1836.
[169]
Slosky, L.M.; Thompson, B.J.; Sanchez-Covarrubias, L.; Zhang, Y.; Laracuente, M.L.; Vanderah, T.W.; Ronaldson, P.T.; Davis, T.P. Acetaminophen modulates P-glycoprotein functional expression at the blood-brain barrier by a constitutive androstane receptor-dependent mechanism. Mol. Pharmacol., 2013, 84(5), 774-786.
[170]
Mottino, A.D.; Hoffman, T.; Jennes, L.; Vore, M. Expression and localization of multidrug resistant protein MRP2 in rat small intestine. J. Pharmacol. Exp. Ther., 2000, 293, 717-723.
[171]
Fromm, M.F.; Kauffmann, H.M.; Fritz, P.; Burk, O.; Kroemer, H.K.; Warzok, R.W.; Eichelbaum, M.; Siegmund, W.; Schrenk, D. The effect of rifampin treatment on intestinal expression of human MRP transporters. Am. J. Pathol., 2000, 157, 1575-1580.
[172]
Oswald, S.; Haenisch, S.; Fricke, C.; Sudhop, T.; Remmler, C.; Giessmann, T.; Jedlitschky, G.; Adam, U.; Dazert, E.; Warzok, R.; Wacke, W.; Cascorbi, I.; Kroemer, H.K.; Weitschies, W.; Von Bergmann, K.; Siegmund, W. Intestinal expression of P-glycoprotein (ABCB1), multidrug resistance associated protein 2 (ABCC2), and uridine diphosphate-glucuronosyltransferase 1A1 predicts the disposition and modulates the effects of the cholesterol absorption inhibitor ezetimibe in. Clin. Pharmacol. Ther., 2006, 79, 206-217.
[173]
König, S.K.; Herzog, M.; Theile, D.; Zembruski, N.; Haefeli, W.E.; Weiss, J. Impact of drug transporters on cellular resistance towards saquinavir and darunavir. J. Antimicrob. Chemother., 2010, 65, 2319-2328.
[174]
Theile, D.; Grebhardt, S.; Haefeli, W.E.; Weiss, J. Involvement of drug transporters in the synergistic action of FOLFOX combination chemotherapy. Biochem. Pharmacol., 2009, 78, 1366-1373.
[175]
Shibayama, Y.; Iwashita, Y.; Yoshikawa, Y.; Kondo, T.; Ikeda, R.; Takeda, Y.; Osada, T.; Sugawara, M.; Yamada, K.; Iseki, K. Effect of 5-fluorouracil treatment on SN-38 absorption from intestine in rats. Biol. Pharm. Bull., 2011, 34, 1418-1425.
[176]
Ebert, B.; Kisiela, M.; Wsól, V.; Maser, E. Proteasome inhibitors MG-132 and bortezomib induce AKR1C1, AKR1C3, AKR1B1, and AKR1B10 in human colon cancer cell lines SW-480 and HT-29. Chem. Biol. Interact., 2011, 191, 239-249.
[177]
Herraez, E.; Gonzalez-Sanchez, E.; Vaquero, J.; Romero, M.R.; Serrano, M.A.; Marin, J.J.G.; Briz, O. Cisplatin-induced chemoresistance in colon cancer cells involves FXR-dependent and FXR-independent up-regulation of ABC proteins. Mol. Pharm., 2012, 9, 2565-2576.
[178]
Theile, D.; Allendorf, D.; Köhler, B.; Jassowicz, A.; Weiss, J. Obatoclax as a perpetrator in drug-drug interactions and its efficacy in multidrug resistance cell lines. J. Pharm. Pharmacol., 2015, 67, 1575-1584.
[179]
Huang, R.; Murry, D.J.; Kolwankar, D.; Hall, S.D.; Foster, D.R. Vincristine transcriptional regulation of efflux drug transporters in carcinoma cell lines. Biochem. Pharmacol., 2006, 71, 1695-1704.
[180]
Arias, A.; Villanueva, S.S.M.; Ruiz, M.L.; Luquita, M.G.; Veggi, L.M.; Pellegrino, M.; Vore, M.; Catania, V.A.; Mottino, A.D. Regulation of expression and activity of rat intestinal multidrug resistance-associated protein 2 by cholestatic estrogens. Drug Metab. Dispos., 2009, 37, 1277-1285.
[181]
Jones, B.R.; Li, W.; Cao, J.; Hoffman, T.A.; Gerk, P.M.; Vore, M. The role of protein synthesis and degradation in the post-transcriptional regulation of rat multidrug resistance-associated protein 2 (Mrp2, Abcc2). Mol. Pharmacol., 2005, 68, 701-710.
[182]
Ruiz, M.L.; Villanueva, S.S.M.; Luquita, M.G.; Pellegrino, J.M.; Rigalli, J.P.; Arias, A.; Sánchez Pozzi, E.J.; Mottino, A.D.; Catania, V.A. Induction of intestinal multidrug resistance-associated protein 2 (Mrp2) by spironolactone in rats. Eur. J. Pharmacol., 2009, 623, 103-106.
[183]
Jia, J.X.; Wasan, K.M. Effects of monoglycerides on rhodamine 123 accumulation, estradiol 17 beta-D-glucuronide bidirectional transport and MRP2 protein expression within Caco-2 cells. J. Pharm. Pharm. Sci., 2008, 11(3), 45-62.
[184]
Sharma, D.; Lau, A.J.; Sherman, M.; Chang, T.K.H. Agonism of human pregnane X receptor by rilpivirine and etravirine: comparison with first generation nonnucleoside reverse transcriptase inhibitors. Biochem. Pharmacol., 2013, 85, 1700-1711.
[185]
Weiss, J.; Becker, J.P.; Haefeli, W.E. Telaprevir is a substrate andmoderate inhibitor of P-glycoprotein, a strong inductor of ABCG2, but not an activator of PXR in vitro. Int. J. Antimicrob. Agents, 2014, 43, 184-188.
[186]
Zembruski, N.C.L.; Büchel, G.; Jödicke, L.; Herzog, M.; Haefeli, W.E.; Weiss, J. Potential of novel antiretrovirals to modulate expression and function of drug transporters in vitro. J. Antimicrob. Chemother., 2011, 66, 802-812.
[187]
Zembruski, N.C.L.; Haefeli, W.E.; Weiss, J. Interaction potential of etravirine with drug transporters assessed in vitro. Antimicrob. Agents Chemother., 2011, 55, 1282-1284.
[188]
Masuyama, H.; Suwaki, N.; Tateishi, Y.; Nakatsukasa, H.; Segawa, T.; Hiramatsu, Y. The pregnane X receptor regulates gene expression in a ligand- and promoterselective fashion. Mol. Endocrinol., 2005, 19, 1170-1180.
[189]
Ghanem, C.I.; Rudraiah, S.; Bataille, A.M.; Vigo, M.B.; Goedken, M.J.; Manautou, J.E. Role of nuclear factor-erythroid 2-related factor 2 (Nrf2) in the transcriptional regulation of brain ABC transporters during acute acetaminophen (APAP) intoxication in mice. Biochem. Pharmacol., 2015, 94, 203-211.
[190]
Aleksunes, L.M.; Goedken, M.J.; Rockwell, C.E.; Thomale, J.; Manautou, J.E.; Klaassen, C.D. Transcriptional regulation of renal cytoprotective genes by Nrf2 and its potential use as a therapeutic target to mitigate cisplatin-induced nephrotoxicity. J. Pharmacol. Exp. Ther., 2010, 335, 2-12.
[191]
Maher, J.M.; Dieter, M.Z.; Aleksunes, L.M.; Slitt, A.L.; Guo, G.; Tanaka, Y.; Scheffer, G.L.; Chan, J.Y.; Manautou, J.E.; Chen, Y.; Dalton, T.P.; Yamamoto, M.; Klaassen, C.D. Oxidative and electrophilic stress induces multidrug resistance-associated protein transporters via the nuclear factor-E2-related factor-2 transcriptional pathway. Hepatology, 2007, 46, 1597-1610.
[192]
Edvardsson, K.; Nguyen-Vu, T.; Kalasekar, S.M.; Ponten, F.; Gustafsson, J.A.; Williams, C. Estrogen receptor beta expression induces changes in the microRNA pool in human colon cancer cells. Carcinogenesis, 2013, 34(7), 1431-1441.
[193]
Weiss, J.; Baumann, S.; Theile, D.; Haefeli, W.E. Desmethyl bosentan displays a similar in vitro interaction profile as bosentan. Pulm. Pharmacol. Ther., 2015, 30, 80-86.
[194]
Weiss, J.; Haefeli, W.E. Interaction potential of the endothelin-A receptor antagonist atrasentan with drug transporters and drug-metabolising enzymes assessed in vitro. Cancer Chemother. Pharmacol., 2011, 68, 1093-1098.
[195]
Weiss, J.; Theile, D.; Rüppell, M.A.; Speck, T.; Spalwisz, A.; Haefeli, W.E. Interaction profile of macitentan, a new non-selective endothelin-1 receptor antagonist, in vitro. Eur. J. Pharmacol., 2013, 701, 168-175.
[196]
Fahrmayr, C.; König, J.; Auge, D.; Mieth, M.; Münch, K.; Segrestaa, J.; Pfeifer, T.; Treiber, A.; Fromm, M.F. Phase I and II metabolism and MRP2-mediated export of bosentan in a MDCKII-OATP1B1-CYP3A4-UGT1A1-MRP2 quadruple-transfected cell line. Br. J. Pharmacol., 2013, 169, 21-33.
[197]
Porter, C.J.; Trevaskis, N.L.; Charman, W.N. Lipids and lipid-based formulations: optimizing the oral delivery of lipophilic drugs. Nat. Rev. Drug Discov., 2007, 6(3), 231-248.
[198]
Gotoh, Y.; Suzuki, H.; Kinoshita, S.; Hirohashi, T.; Kato, Y.; Sugiyama, Y. Involvement of an organic anion transporter (canalicular multispecific organic anion transporter/multidrug resistance-associated protein 2) in gastrointestinal secretion of glutathioneconjugates in rats. J. Pharmacol. Exp. Ther., 2000, 292, 433-439.
[199]
Taipalensuu, J.; Törnblom, H.; Lindberg, G.; Einarsson, C.; Sjöqvist, F.; Melhus, H.; Garberg, P.; Sjöström, B.; Lundgren, B.; Artursson, P. Correlation of gene expression of ten drug efflux proteins of the ATP-binding cassette transporter family in normal human jejunum and in human intestinal epithelial Caco-2 cell monolayers. J. Pharmacol. Exp. Ther., 2001, 299(1), 164-170.
[200]
Peroni, R.N.; Di Gennaro, S.S.; Hocht, C.; Chiappetta, D.A.; Rubio, M.C.; Sosnik, A.; Bramuglia, G.F. Efavirenz is a substrate and in turn modulates the expression of the efflux transporter ABCG2/BCRP in the gastrointestinal tract of the rat. Biochem. Pharmacol., 2011, 82(9), 1227-1233.
[201]
Gou, M.; Dai, X.; Hu, D.; Zhang, Y.; Sun, Y.; Ren, W.; Wang, L. Potential pharmacokinetic effect of rifampicin on enrofloxacin in broilers: Roles of P-glycoprotein and BCRP induction by rifampicin. Poult. Sci., 2016, 95(9), 2129-2135.
[202]
Wright, J.A.; Haslam, I.S.; Coleman, T.; Simmons, N.L. Breast cancer resistance protein BCRP (ABCG2)-mediated transepithelial nitrofurantoin secretion and its regulation in human intestinal epithelial (Caco-2) layers. Eur. J. Pharmacol., 2011, 672(1-3), 70-76.
[203]
Burger, H.; Van Tol, H.; Brok, M.; Wiemer, E.A.; De Brujin, E.A.; Guetens, G.; De Boeck, G.; Sparreboom, A.; Verweij, J.; Nooter, K. Chronic imatinib mesylate exposure leads to reduced intracellular drug accumulation by induction of the ABCG2 (BCRP) and ABCB1 (MDR1) drug transport pumps. Cancer Biol. Ther., 2005, 4(7), 747-752.
[204]
Bachmeier, C.; Levin, G.M.; Beaulieu-Abdelahad, D.; Reed, J.; Mullan, M. Effect of venlafaxine and desvenlafaxine on drug efflux protein expression and biodistribution in vivo. J. Pharm. Sci., 2013, 102(10), 3838-3843.
[205]
Ebert, B.; Seidel, A.; Lampen, A. Identification of BCRP as transporter of benzo[a]pyrene conjugates metabolically formed in Caco-2 cells and its induction by Ah-receptor agonists. Carcinogenesis, 2005, 26(10), 1754-1763.
[206]
Szatmari, I.; Vámosi, G.; Brazda, P.; Balint, B.L.; Benko, S.; Széles, L.; Jeney, V.; Ozvegy-Laczka, C.; Szántó, A.; Barta, E.; Balla, J.; Sarkadi, B.; Nagy, L. Peroxisome proliferator-activated receptor gamma-regulated ABCG2 expression confers cytoprotection to human dendritic cells. J. Biol. Chem., 2006, 281(33), 23812-23823.