Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

ADAM Metalloproteinases as Potential Drug Targets

Author(s): Caterina Camodeca, Doretta Cuffaro, Elisa Nuti* and Armando Rossello

Volume 26, Issue 15, 2019

Page: [2661 - 2689] Pages: 29

DOI: 10.2174/0929867325666180326164104

Price: $65

Abstract

The ADAMs, together with ADAMTSs and snake venom metalloproteases (SVMPs), are members of the Adamalysin family. Differences in structural organization, functions and localization are known and their domains, catalytic or non-catalytic, show key roles in the substrate recognition and protease activity. Some ADAMs, as membrane-bound enzymes, show sheddase activity. Sheddases are key to modulation of functional proteins such as the tumor necrosis factor, growth factors, cytokines and their receptors, adhesion proteins, signaling molecules and stress molecules involved in immunity. These activities take part in the regulation of several physiological and pathological processes including inflammation, tumor growth, metastatic progression and infectious diseases. On these bases, some ADAMs are currently investigated as drug targets to develop new alternative therapies in many fields of medicine. This review will be focused on these aspects.

Keywords: Metalloendopeptidases, ectodomain shedding, adhesion molecules, hydroxamate inhibitors, zincbinding group, small molecules.

[1]
Edwards, D.R.; Handsley, M.M.; Pennington, C.J. The ADAM metalloproteinases. Mol. Aspects Med., 2008, 29(5), 258-289.
[http://dx.doi.org/10.1016/j.mam.2008.08.001] [PMID: 18762209]
[2]
Seals, D.F.; Courtneidge, S.A. The ADAMs family of metalloproteases: Multidomain proteins with multiple functions. Genes Dev., 2003, 17(1), 7-30.
[http://dx.doi.org/10.1101/gad.1039703] [PMID: 12514095]
[3]
Blobel, C.P.; Wolfsberg, T.G.; Turck, C.W.; Myles, D.G.; Primakoff, P.; White, J.M. A potential fusion peptide and an integrin ligand domain in a protein active in sperm-egg fusion. Nature, 1992, 356(6366), 248-252.
[http://dx.doi.org/10.1038/356248a0] [PMID: 1552944]
[4]
Wolfsberg, T.G.; Bazan, J.F.; Blobel, C.P.; Myles, D.G.; Primakoff, P.; White, J.M. The precursor region of a protein active in sperm-egg fusion contains a metalloprotease and a disintegrin domain: structural, functional, and evolutionary implications. Proc. Natl. Acad. Sci. USA, 1993, 90(22), 10783-10787.
[http://dx.doi.org/10.1073/pnas.90.22.10783] [PMID: 8248170]
[5]
Wolfsberg, T.G.; Straight, P.D.; Gerena, R.L.; Huovila, A-P.J.; Primakoff, P.; Myles, D.G.; White, J.M. ADAM, a widely distributed and developmentally regulated gene family encoding membrane proteins with a disintegrin and metalloprotease domain. Dev. Biol., 1995, 169(1), 378-383.
[http://dx.doi.org/10.1006/dbio.1995.1152] [PMID: 7750654]
[6]
Huxley-Jones, J.; Clarke, T-K.; Beck, C.; Toubaris, G.; Robertson, D.L.; Boot-Handford, R.P. The evolution of the vertebrate metzincins: Insights from Ciona intestinalis and Danio rerio. BMC Evol. Biol., 2007, 7(1), 63.
[http://dx.doi.org/10.1186/1471-2148-7-63] [PMID: 17439641]
[7]
Weber, S.; Saftig, P. Ectodomain shedding and ADAMs in development. Development, 2012, 139(20), 3693-3709.
[http://dx.doi.org/10.1242/dev.076398] [PMID: 22991436]
[8]
Reiss, K.; Saftig, P. The “a disintegrin and metalloprotease” (ADAM) family of sheddases: Physiological and cellular functions. Semin. Cell Dev. Biol., 2009, 20(2), 126-137.
[http://dx.doi.org/10.1016/j.semcdb.2008.11.002] [PMID: 19049889]
[9]
Duffy, M.J.; McKiernan, E.; O’Donovan, N.; McGowan, P.M. The role of ADAMs in disease pathophysiology. Clin. Chim. Acta, 2009, 403(1-2), 31-36.
[http://dx.doi.org/10.1016/j.cca.2009.01.007] [PMID: 19408347]
[10]
Moss, M.L.; White, J.M.; Lambert, M.H.; Andrews, R.C. TACE and other ADAM proteases as targets for drug discovery. Drug Discov. Today, 2001, 6(8), 417-426.
[http://dx.doi.org/10.1016/S1359-6446(01)01738-X] [PMID: 11301286]
[11]
Moss, M.L.; Bartsch, J.W. Therapeutic benefits from targeting of ADAM family members. Biochemistry, 2004, 43(23), 7227-7235.
[http://dx.doi.org/10.1021/bi049677f] [PMID: 15182168]
[12]
Saftig, P.; Reiss, K. The “A Disintegrin And Metalloproteases” ADAM10 and ADAM17: Novel drug targets with therapeutic potential? Eur. J. Cell Biol., 2011, 90(6-7), 527-535.
[http://dx.doi.org/10.1016/j.ejcb.2010.11.005] [PMID: 21194787]
[13]
Duffy, M.J.; Mullooly, M.; O’Donovan, N.; Sukor, S.; Crown, J.; Pierce, A.; McGowan, P.M. The ADAMs family of proteases: New biomarkers and therapeutic targets for cancer? Clin. Proteomics, 2011, 8(1), 9.
[http://dx.doi.org/10.1186/1559-0275-8-9] [PMID: 21906355]
[14]
Mullooly, M.; McGowan, P.M.; Crown, J.; Duffy, M.J. The ADAMs family of proteases as targets for the treatment of cancer. Cancer Biol. Ther., 2016, 17(8), 870-880.
[http://dx.doi.org/10.1080/15384047.2016.1177684] [PMID: 27115328]
[15]
Gilpin, B.J.; Loechel, F.; Mattei, M-G.; Engvall, E.; Albrechtsen, R.; Wewer, U.M.; Novel, A. A novel, secreted form of human ADAM 12 (meltrin α) provokes myogenesis in vivo. J. Biol. Chem., 1998, 273(1), 157-166.
[http://dx.doi.org/10.1074/jbc.273.1.157] [PMID: 9417060]
[16]
Powell, R.M.; Wicks, J.; Holloway, J.W.; Holgate, S.T.; Davies, D.E. The splicing and fate of ADAM33 transcripts in primary human airways fibroblasts. Am. J. Respir. Cell Mol. Biol., 2004, 31(1), 13-21.
[http://dx.doi.org/10.1165/rcmb.2003-0330OC] [PMID: 14742294]
[17]
Bode, W.; Gomis-Rüth, F-X.; Stöckler, W. Astacins, serralysins, snake venom and matrix metalloproteinases exhibit identical zinc-binding environments (HEXXHXXGXXH and Met-turn) and topologies and should be grouped into a common family, the ‘metzincins’. FEBS Lett., 1993, 331(1-2), 134-140.
[http://dx.doi.org/10.1016/0014-5793(93)80312-I] [PMID: 8405391]
[18]
Maskos, K.; Fernandez-Catalan, C.; Huber, R.; Bourenkov, G.P.; Bartunik, H.; Ellestad, G.A.; Reddy, P.; Wolfson, M.F.; Rauch, C.T.; Castner, B.J.; Davis, R.; Clarke, H.R.G.; Petersen, M.; Fitzner, J.N.; Cerretti, D.P.; March, C.J.; Paxton, R.J.; Black, R.A.; Bode, W. Crystal structure of the catalytic domain of human tumor necrosis factor-α-converting enzyme. Proc. Natl. Acad. Sci. USA, 1998, 95(7), 3408-3412.
[http://dx.doi.org/10.1073/pnas.95.7.3408] [PMID: 9520379]
[19]
Orth, P.; Reichert, P.; Wang, W.; Prosise, W.W.; Yarosh-Tomaine, T.; Hammond, G.; Ingram, R.N.; Xiao, L.; Mirza, U.A.; Zou, J.; Strickland, C.; Taremi, S.S.; Le, H.V.; Madison, V. Crystal structure of the catalytic domain of human ADAM33. J. Mol. Biol., 2004, 335(1), 129-137.
[http://dx.doi.org/10.1016/j.jmb.2003.10.037] [PMID: 14659745]
[20]
Hall, T.; Shieh, H-S.; Day, J.E.; Caspers, N.; Chrencik, J.E.; Williams, J.M.; Pegg, L.E.; Pauley, A.M.; Moon, A.F.; Krahn, J.M.; Fischer, D.H.; Kiefer, J.R.; Tomasselli, A.G.; Zack, M.D. Structure of human ADAM-8 catalytic domain complexed with batimastat. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun., 2012, 68(Pt 6), 616-621.
[http://dx.doi.org/10.1107/S1744309112015618] [PMID: 22684055]
[21]
Seegar, T.C.M.; Killingsworth, L.B.; Saha, N.; Meyer, P.A.; Patra, D.; Zimmerman, B.; Janes, P.W.; Rubinstein, E.; Nikolov, D.B.; Skiniotis, G.; Kruse, A.C.; Blacklow, S.C. Structural basis for regulated proteolysis by the α-secretase ADAM10. Cell, 2017. 171(7), 1638-1648.e1637.
[22]
Gomis-Rüth, F.X. Structural aspects of the metzincin clan of metalloendopeptidases. Mol. Biotechnol., 2003, 24(2), 157-202.
[http://dx.doi.org/10.1385/MB:24:2:157] [PMID: 12746556]
[23]
White, J.M. ADAMs: Modulators of cell-cell and cell-matrix interactions. Curr. Opin. Cell Biol., 2003, 15(5), 598-606.
[http://dx.doi.org/10.1016/j.ceb.2003.08.001] [PMID: 14519395]
[24]
Reddy, P.; Slack, J.L.; Davis, R.; Cerretti, D.P.; Kozlosky, C.J.; Blanton, R.A.; Shows, D.; Peschon, J.J.; Black, R.A. Functional analysis of the domain structure of tumor necrosis factor-α converting enzyme. J. Biol. Chem., 2000, 275(19), 14608-14614.
[http://dx.doi.org/10.1074/jbc.275.19.14608] [PMID: 10799547]
[25]
Zolkiewska, A. Disintegrin-like/cysteine-rich region of ADAM 12 is an active cell adhesion domain. Exp. Cell Res., 1999, 252(2), 423-431.
[http://dx.doi.org/10.1006/excr.1999.4632] [PMID: 10527632]
[26]
Milla, M.E.; Leesnitzer, M.A.; Moss, M.L.; Clay, W.C.; Carter, H.L.; Miller, A.B.; Su, J-L.; Lambert, M.H.; Willard, D.H.; Sheeley, D.M.; Kost, T.A.; Burkhart, W.; Moyer, M.; Blackburn, R.K.; Pahel, G.L.; Mitchell, J.L.; Hoffman, C.R.; Becherer, J.D. Specific sequence elements are required for the expression of functional tumor necrosis factor-α-converting enzyme (TACE). J. Biol. Chem., 1999, 274(43), 30563-30570.
[http://dx.doi.org/10.1074/jbc.274.43.30563] [PMID: 10521439]
[27]
Janes, P.W.; Saha, N.; Barton, W.A.; Kolev, M.V.; Wimmer-Kleikamp, S.H.; Nievergall, E.; Blobel, C.P.; Himanen, J-P.; Lackmann, M.; Nikolov, D.B. Adam meets Eph: An ADAM substrate recognition module acts as a molecular switch for ephrin cleavage in trans. Cell, 2005, 123(2), 291-304.
[http://dx.doi.org/10.1016/j.cell.2005.08.014] [PMID: 16239146]
[28]
Díaz-Rodríguez, E.; Montero, J.C.; Esparís-Ogando, A.; Yuste, L.; Pandiella, A. Extracellular signal-regulated kinase phosphorylates tumor necrosis factor α-converting enzyme at threonine 735: A potential role in regulated shedding. Mol. Biol. Cell, 2002, 13(6), 2031-2044.
[http://dx.doi.org/10.1091/mbc.01-11-0561] [PMID: 12058067]
[29]
Mori, S.; Tanaka, M.; Nanba, D.; Nishiwaki, E.; Ishiguro, H.; Higashiyama, S.; Matsuura, N. PACSIN3 binds ADAM12/meltrin α and up-regulates ectodomain shedding of heparin-binding epidermal growth factor-like growth factor. J. Biol. Chem., 2003, 278(46), 46029-46034.
[http://dx.doi.org/10.1074/jbc.M306393200] [PMID: 12952982]
[30]
Roghani, M.; Becherer, J.D.; Moss, M.L.; Atherton, R.E.; Erdjument-Bromage, H.; Arribas, J.; Blackburn, R.K.; Weskamp, G.; Tempst, P.; Blobel, C.P. Metalloprotease-disintegrin MDC9:Intracellular maturation and catalytic activity. J. Biol. Chem., 1999, 274(6), 3531-3540.
[http://dx.doi.org/10.1074/jbc.274.6.3531] [PMID: 9920899]
[31]
Endres, K.; Anders, A.; Kojro, E.; Gilbert, S.; Fahrenholz, F.; Postina, R. Tumor necrosis factor-α converting enzyme is processed by proprotein-convertases to its mature form which is degraded upon phorbol ester stimulation. Eur. J. Biochem., 2003, 270(11), 2386-2393.
[http://dx.doi.org/10.1046/j.1432-1033.2003.03606.x] [PMID: 12755693]
[32]
Schlomann, U.; Wildeboer, D.; Webster, A.; Antropova, O.; Zeuschner, D.; Knight, C.G.; Docherty, A.J.P.; Lambert, M.; Skelton, L.; Jockusch, H.; Bartsch, J.W. The metalloprotease disintegrin ADAM8. Processing by autocatalysis is required for proteolytic activity and cell adhesion. J. Biol. Chem., 2002, 277(50), 48210-48219.
[http://dx.doi.org/10.1074/jbc.M203355200] [PMID: 12372841]
[33]
Howard, L.; Maciewicz, R.A.; Blobel, C.P. Cloning and characterization of ADAM28: Evidence for autocatalytic pro-domain removal and for cell surface localization of mature ADAM28. Biochem. J., 2000, 348(Pt 1), 21-27.
[http://dx.doi.org/10.1042/bj3480021] [PMID: 10794709]
[34]
Schlöndorff, J.; Becherer, J.D.; Blobel, C.P. Intracellular maturation and localization of the tumour necrosis factor alpha convertase (TACE). Biochem. J., 2000, 347(Pt 1), 131-138.
[http://dx.doi.org/10.1042/bj3470131] [PMID: 10727411]
[35]
Brown, M.S.; Ye, J.; Rawson, R.B.; Goldstein, J.L. Regulated intramembrane proteolysis: A control mechanism conserved from bacteria to humans. Cell, 2000, 100(4), 391-398.
[http://dx.doi.org/10.1016/S0092-8674(00)80675-3] [PMID: 10693756]
[36]
Tousseyn, T.; Jorissen, E.; Reiss, K.; Hartmann, D. (Make) stick and cut loose--disintegrin metalloproteases in development and disease. Birth Defects Res. C Embryo Today, 2006, 78(1), 24-46.
[http://dx.doi.org/10.1002/bdrc.20066] [PMID: 16622847]
[37]
Murphy, G. The ADAMs: Signalling scissors in the tumour microenvironment. Nat. Rev. Cancer, 2008, 8(12), 929-941.
[http://dx.doi.org/10.1038/nrc2459] [PMID: 19005493]
[38]
Blobel, C.P. ADAMs: Key components in EGFR signalling and development. Nat. Rev. Mol. Cell Biol., 2005, 6(1), 32-43.
[http://dx.doi.org/10.1038/nrm1548] [PMID: 15688065]
[39]
Sahin, U.; Weskamp, G.; Kelly, K.; Zhou, H-M.; Higashiyama, S.; Peschon, J.; Hartmann, D.; Saftig, P.; Blobel, C.P. Distinct roles for ADAM10 and ADAM17 in ectodomain shedding of six EGFR ligands. J. Cell Biol., 2004, 164(5), 769-779.
[http://dx.doi.org/10.1083/jcb.200307137] [PMID: 14993236]
[40]
Sahin, U.; Blobel, C.P. Ectodomain shedding of the EGF-receptor ligand epigen is mediated by ADAM17. FEBS Lett., 2007, 581(1), 41-44.
[http://dx.doi.org/10.1016/j.febslet.2006.11.074] [PMID: 17169360]
[41]
Bray, S.J. Notch signalling: A simple pathway becomes complex. Nat. Rev. Mol. Cell Biol., 2006, 7(9), 678-689.
[http://dx.doi.org/10.1038/nrm2009] [PMID: 16921404]
[42]
Weber, S.; Niessen, M.T.; Prox, J.; Lüllmann-Rauch, R.; Schmitz, A.; Schwanbeck, R.; Blobel, C.P.; Jorissen, E.; de Strooper, B.; Niessen, C.M.; Saftig, P. The disintegrin/metalloproteinase Adam10 is essential for epidermal integrity and Notch-mediated signaling. Development, 2011, 138(3), 495-505.
[http://dx.doi.org/10.1242/dev.055210] [PMID: 21205794]
[43]
Hartmann, D.; de Strooper, B.; Serneels, L.; Craessaerts, K.; Herreman, A.; Annaert, W.; Umans, L.; Lübke, T.; Lena Illert, A.; von Figura, K.; Saftig, P. The disintegrin/metalloprotease ADAM 10 is essential for Notch signalling but not for α-secretase activity in fibroblasts. Hum. Mol. Genet., 2002, 11(21), 2615-2624.
[http://dx.doi.org/10.1093/hmg/11.21.2615] [PMID: 12354787]
[44]
Balkwill, F. TNF-α in promotion and progression of cancer. Cancer Metastasis Rev., 2006, 25(3), 409-416.
[http://dx.doi.org/10.1007/s10555-006-9005-3] [PMID: 16951987]
[45]
Lammich, S.; Kojro, E.; Postina, R.; Gilbert, S.; Pfeiffer, R.; Jasionowski, M.; Haass, C.; Fahrenholz, F. Constitutive and regulated α-secretase cleavage of Alzheimer’s amyloid precursor protein by a disintegrin metalloprotease. Proc. Natl. Acad. Sci. USA, 1999, 96(7), 3922-3927.
[http://dx.doi.org/10.1073/pnas.96.7.3922] [PMID: 10097139]
[46]
Deuss, M.; Reiss, K.; Hartmann, D. Part-time α-secretases: The functional biology of ADAM 9, 10 and 17. Curr. Alzheimer Res., 2008, 5(2), 187-201.
[http://dx.doi.org/10.2174/156720508783954686] [PMID: 18393804]
[47]
Fourie, A.M.; Coles, F.; Moreno, V.; Karlsson, L. Catalytic activity of ADAM8, ADAM15, and MDC-L (ADAM28) on synthetic peptide substrates and in ectodomain cleavage of CD23. J. Biol. Chem., 2003, 278(33), 30469-30477.
[http://dx.doi.org/10.1074/jbc.M213157200] [PMID: 12777399]
[48]
Naus, S.; Richter, M.; Wildeboer, D.; Moss, M.; Schachner, M.; Bartsch, J.W. Ectodomain shedding of the neural recognition molecule CHL1 by the metalloprotease-disintegrin ADAM8 promotes neurite outgrowth and suppresses neuronal cell death. J. Biol. Chem., 2004, 279(16), 16083-16090.
[http://dx.doi.org/10.1074/jbc.M400560200] [PMID: 14761956]
[49]
Naus, S.; Reipschläger, S.; Wildeboer, D.; Lichtenthaler, S.F.; Mitterreiter, S.; Guan, Z.; Moss, M.L.; Bartsch, J.W. Identification of candidate substrates for ectodomain shedding by the metalloprotease-disintegrin ADAM8. Biol. Chem., 2006, 387(3), 337-346.
[http://dx.doi.org/10.1515/BC.2006.045] [PMID: 16542157]
[50]
Amour, A.; Knight, C.G.; English, W.R.; Webster, A.; Slocombe, P.M.; Knäuper, V.; Docherty, A.J.P.; Becherer, J.D.; Blobel, C.P.; Murphy, G. The enzymatic activity of ADAM8 and ADAM9 is not regulated by TIMPs. FEBS Lett., 2002, 524(1-3), 154-158.
[http://dx.doi.org/10.1016/S0014-5793(02)03047-8] [PMID: 12135759]
[51]
Gómez-Gaviro, M.; Domínguez-Luis, M.; Canchado, J.; Calafat, J.; Janssen, H.; Lara-Pezzi, E.; Fourie, A.; Tugores, A.; Valenzuela-Fernández, A.; Mollinedo, F.; Sánchez-Madrid, F.; Díaz-González, F. Expression and regulation of the metalloproteinase ADAM-8 during human neutrophil pathophysiological activation and its catalytic activity on L-selectin shedding. J. Immunol., 2007, 178(12), 8053-8063.
[http://dx.doi.org/10.4049/jimmunol.178.12.8053] [PMID: 17548643]
[52]
Bartsch, J.W.; Wildeboer, D.; Koller, G.; Naus, S.; Rittger, A.; Moss, M.L.; Minai, Y.; Jockusch, H. Tumor necrosis factor-α (TNF-α) regulates shedding of TNF-α receptor 1 by the metalloprotease-disintegrin ADAM8: Evidence for a protease-regulated feedback loop in neuroprotection. J. Neurosci., 2010, 30(36), 12210-12218.
[http://dx.doi.org/10.1523/JNEUROSCI.1520-10.2010] [PMID: 20826683]
[53]
Guaiquil, V.H.; Swendeman, S.; Zhou, W.; Guaiquil, P.; Weskamp, G.; Bartsch, J.W.; Blobel, C.P. ADAM8 is a negative regulator of retinal neovascularization and of the growth of heterotopically injected tumor cells in mice. J. Mol. Med. (Berl.), 2010, 88(5), 497-505.
[http://dx.doi.org/10.1007/s00109-010-0591-8] [PMID: 20119708]
[54]
Mazzocca, A.; Coppari, R.; De Franco, R.; Cho, J-Y.; Libermann, T.A.; Pinzani, M.; Toker, A. A secreted form of ADAM9 promotes carcinoma invasion through tumor-stromal interactions. Cancer Res., 2005, 65(11), 4728-4738.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-4449] [PMID: 15930291]
[55]
Koike, H.; Tomioka, S.; Sorimachi, H.; Saido, T.C.; Maruyama, K.; Okuyama, A.; Fujisawa-Sehara, A.; Ohno, S.; Suzuki, K.; Ishiura, S. Membrane-anchored metalloprotease MDC9 has an alpha-secretase activity responsible for processing the amyloid precursor protein. Biochem. J., 1999, 343(Pt 2), 371-375.
[http://dx.doi.org/10.1042/bj3430371] [PMID: 10510302]
[56]
Asai, M.; Hattori, C.; Szabó, B.; Sasagawa, N.; Maruyama, K.; Tanuma, S.; Ishiura, S. Putative function of ADAM9, ADAM10, and ADAM17 as APP α-secretase. Biochem. Biophys. Res. Commun., 2003, 301(1), 231-235.
[http://dx.doi.org/10.1016/S0006-291X(02)02999-6] [PMID: 12535668]
[57]
Franzke, C-W.; Tasanen, K.; Borradori, L.; Huotari, V.; Bruckner-Tuderman, L. Shedding of collagen XVII/BP180: Structural motifs influence cleavage from cell surface. J. Biol. Chem., 2004, 279(23), 24521-24529.
[http://dx.doi.org/10.1074/jbc.M308835200] [PMID: 15047704]
[58]
Dyczynska, E.; Sun, D.; Yi, H.; Sehara-Fujisawa, A.; Blobel, C.P.; Zolkiewska, A. Proteolytic processing of delta-like 1 by ADAM proteases. J. Biol. Chem., 2007, 282(1), 436-444.
[http://dx.doi.org/10.1074/jbc.M605451200] [PMID: 17107962]
[59]
Peduto, L.; Reuter, V.E.; Shaffer, D.R.; Scher, H.I.; Blobel, C.P. Critical function for ADAM9 in mouse prostate cancer. Cancer Res., 2005, 65(20), 9312-9319.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-1063] [PMID: 16230393]
[60]
Izumi, Y.; Hirata, M.; Hasuwa, H.; Iwamoto, R.; Umata, T.; Miyado, K.; Tamai, Y.; Kurisaki, T.; Sehara-Fujisawa, A.; Ohno, S.; Mekada, E. A metalloprotease-disintegrin, MDC9/meltrin-γ/ADAM9 and PKCdelta are involved in TPA-induced ectodomain shedding of membrane-anchored heparin-binding EGF-like growth factor. EMBO J., 1998, 17(24), 7260-7272.
[http://dx.doi.org/10.1093/emboj/17.24.7260] [PMID: 9857183]
[61]
Mohan, S.; Thompson, G.R.; Amaar, Y.G.; Hathaway, G.; Tschesche, H.; Baylink, D.J. ADAM-9 is an insulin-like growth factor binding protein-5 protease produced and secreted by human osteoblasts. Biochemistry, 2002, 41(51), 15394-15403.
[http://dx.doi.org/10.1021/bi026458q] [PMID: 12484779]
[62]
Cissé, M.A.; Sunyach, C.; Lefranc-Jullien, S.; Postina, R.; Vincent, B.; Checler, F. The disintegrin ADAM9 indirectly contributes to the physiological processing of cellular prion by modulating ADAM10 activity. J. Biol. Chem., 2005, 280(49), 40624-40631.
[http://dx.doi.org/10.1074/jbc.M506069200] [PMID: 16236709]
[63]
Chen, C-D.; Podvin, S.; Gillespie, E.; Leeman, S.E.; Abraham, C.R. Insulin stimulates the cleavage and release of the extracellular domain of Klotho by ADAM10 and ADAM17. Proc. Natl. Acad. Sci. USA, 2007, 104(50), 19796-19801.
[http://dx.doi.org/10.1073/pnas.0709805104] [PMID: 18056631]
[64]
Postina, R.; Schroeder, A.; Dewachter, I.; Bohl, J.; Schmitt, U.; Kojro, E.; Prinzen, C.; Endres, K.; Hiemke, C.; Blessing, M.; Flamez, P.; Dequenne, A.; Godaux, E.; van Leuven, F.; Fahrenholz, F. A disintegrin-metalloproteinase prevents amyloid plaque formation and hippocampal defects in an Alzheimer disease mouse model. J. Clin. Invest., 2004, 113(10), 1456-1464.
[http://dx.doi.org/10.1172/JCI20864] [PMID: 15146243]
[65]
Pan, D.; Rubin, G.M. Kuzbanian controls proteolytic processing of Notch and mediates lateral inhibition during Drosophila and vertebrate neurogenesis. Cell, 1997, 90(2), 271-280.
[http://dx.doi.org/10.1016/S0092-8674(00)80335-9] [PMID: 9244301]
[66]
Bech-Serra, J.J.; Santiago-Josefat, B.; Esselens, C.; Saftig, P.; Baselga, J.; Arribas, J.; Canals, F. Proteomic identification of desmoglein 2 and activated leukocyte cell adhesion molecule as substrates of ADAM17 and ADAM10 by difference gel electrophoresis. Mol. Cell. Biol., 2006, 26(13), 5086-5095.
[http://dx.doi.org/10.1128/MCB.02380-05] [PMID: 16782893]
[67]
Hattori, M.; Osterfield, M.; Flanagan, J.G. Regulated cleavage of a contact-mediated axon repellent. Science, 2000, 289(5483), 1360-1365.
[http://dx.doi.org/10.1126/science.289.5483.1360] [PMID: 10958785]
[68]
Maretzky, T.; Reiss, K.; Ludwig, A.; Buchholz, J.; Scholz, F.; Proksch, E.; de Strooper, B.; Hartmann, D.; Saftig, P. ADAM10 mediates E-cadherin shedding and regulates epithelial cell-cell adhesion, migration, and β-catenin translocation. Proc. Natl. Acad. Sci. USA, 2005, 102(26), 9182-9187.
[http://dx.doi.org/10.1073/pnas.0500918102] [PMID: 15958533]
[69]
Reiss, K.; Maretzky, T.; Ludwig, A.; Tousseyn, T.; de Strooper, B.; Hartmann, D.; Saftig, P. ADAM10 cleavage of N-cadherin and regulation of cell-cell adhesion and β-catenin nuclear signalling. EMBO J., 2005, 24(4), 742-752.
[http://dx.doi.org/10.1038/sj.emboj.7600548] [PMID: 15692570]
[70]
Schulz, B.; Pruessmeyer, J.; Maretzky, T.; Ludwig, A.; Blobel, C.P.; Saftig, P.; Reiss, K. ADAM10 regulates endothelial permeability and T-Cell transmigration by proteolysis of vascular endothelial cadherin. Circ. Res., 2008, 102(10), 1192-1201.
[http://dx.doi.org/10.1161/CIRCRESAHA.107.169805] [PMID: 18420943]
[71]
Weskamp, G.; Ford, J.W.; Sturgill, J.; Martin, S.; Docherty, A.J.P.; Swendeman, S.; Broadway, N.; Hartmann, D.; Saftig, P.; Umland, S.; Sehara-Fujisawa, A.; Black, R.A.; Ludwig, A.; Becherer, J.D.; Conrad, D.H.; Blobel, C.P. ADAM10 is a principal ‘sheddase’ of the low-affinity immunoglobulin E receptor CD23. Nat. Immunol., 2006, 7(12), 1293-1298.
[http://dx.doi.org/10.1038/ni1399] [PMID: 17072319]
[72]
Eichenauer, D.A.; Simhadri, V.L.; von Strandmann, E.P.; Ludwig, A.; Matthews, V.; Reiners, K.S.; von Tresckow, B.; Saftig, P.; Rose-John, S.; Engert, A.; Hansen, H.P. ADAM10 inhibition of human CD30 shedding increases specificity of targeted immunotherapy in vitro. Cancer Res., 2007, 67(1), 332-338.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-2470] [PMID: 17210715]
[73]
Nagano, O.; Saya, H. Mechanism and biological significance of CD44 cleavage. Cancer Sci., 2004, 95(12), 930-935.
[http://dx.doi.org/10.1111/j.1349-7006.2004.tb03179.x] [PMID: 15596040]
[74]
Hundhausen, C.; Misztela, D.; Berkhout, T.A.; Broadway, N.; Saftig, P.; Reiss, K.; Hartmann, D.; Fahrenholz, F.; Postina, R.; Matthews, V.; Kallen, K-J.; Rose-John, S.; Ludwig, A. The disintegrin-like metalloproteinase ADAM10 is involved in constitutive cleavage of CX3CL1 (fractalkine) and regulates CX3CL1-mediated cell-cell adhesion. Blood, 2003, 102(4), 1186-1195.
[http://dx.doi.org/10.1182/blood-2002-12-3775] [PMID: 12714508]
[75]
Schulte, A.; Schulz, B.; Andrzejewski, M.G.; Hundhausen, C.; Mletzko, S.; Achilles, J.; Reiss, K.; Paliga, K.; Weber, C.; John, S.R.; Ludwig, A. Sequential processing of the transmembrane chemokines CX3CL1 and CXCL16 by α- and γ-secretases. Biochem. Biophys. Res. Commun., 2007, 358(1), 233-240.
[http://dx.doi.org/10.1016/j.bbrc.2007.04.100] [PMID: 17467666]
[76]
Qi, H.; Rand, M.D.; Wu, X.; Sestan, N.; Wang, W.; Rakic, P.; Xu, T.; Artavanis-Tsakonas, S. Processing of the notch ligand delta by the metalloprotease Kuzbanian. Science, 1999, 283(5398), 91-94.
[http://dx.doi.org/10.1126/science.283.5398.91] [PMID: 9872749]
[77]
Six, E.; Ndiaye, D.; Laâbi, Y.; Brou, C.; Gupta-Rossi, N.; Israël, A.; Logeat, F. The Notch ligand Delta1 is sequentially cleaved by an ADAM protease and γ-secretase. Proc. Natl. Acad. Sci. USA, 2003, 100(13), 7638-7643.
[http://dx.doi.org/10.1073/pnas.1230693100] [PMID: 12794186]
[78]
Matthews, V.; Schuster, B.; Schütze, S.; Bussmeyer, I.; Ludwig, A.; Hundhausen, C.; Sadowski, T.; Saftig, P.; Hartmann, D.; Kallen, K-J.; Rose-John, S. Cellular cholesterol depletion triggers shedding of the human interleukin-6 receptor by ADAM10 and ADAM17 (TACE). J. Biol. Chem., 2003, 278(40), 38829-38839.
[http://dx.doi.org/10.1074/jbc.M210584200] [PMID: 12832423]
[79]
Liu, X.; Fridman, J.S.; Wang, Q.; Caulder, E.; Yang, G.; Covington, M.; Liu, C.; Marando, C.; Zhuo, J.; Li, Y.; Yao, W.; Vaddi, K.; Newton, R.C.; Scherle, P.A.; Friedman, S.M. Selective inhibition of ADAM metalloproteases blocks HER-2 Extracellular Domain (ECD) cleavage and potentiates the anti-tumor effects of trastuzumab. Cancer Biol. Ther., 2006, 5(6), 648-656.
[http://dx.doi.org/10.4161/cbt.5.6.2707] [PMID: 16627988]
[80]
Li, N.; Wang, Y.; Forbes, K.; Vignali, K.M.; Heale, B.S.; Saftig, P.; Hartmann, D.; Black, R.A.; Rossi, J.J.; Blobel, C.P.; Dempsey, P.J.; Workman, C.J.; Vignali, D.A.A. Metalloproteases regulate T-cell proliferation and effector function via LAG-3. EMBO J., 2007, 26(2), 494-504.
[http://dx.doi.org/10.1038/sj.emboj.7601520] [PMID: 17245433]
[81]
Gutwein, P.; Mechtersheimer, S.; Riedle, S.; Stoeck, A.; Gast, D.; Joumaa, S.; Zentgraf, H.; Fogel, M.; Altevogt, D.P. ADAM10-mediated cleavage of L1 adhesion molecule at the cell surface and in released membrane vesicles. FASEB J., 2003, 17(2), 292-294.
[http://dx.doi.org/10.1096/fj.02-0430fje] [PMID: 12475894]
[82]
Waldhauer, I.; Goehlsdorf, D.; Gieseke, F.; Weinschenk, T.; Wittenbrink, M.; Ludwig, A.; Stevanovic, S.; Rammensee, H-G.; Steinle, A. Tumor-associated MICA is shed by ADAM proteases. Cancer Res., 2008, 68(15), 6368-6376.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-6768] [PMID: 18676862]
[83]
Reiss, K.; Maretzky, T.; Haas, I.G.; Schulte, M.; Ludwig, A.; Frank, M.; Saftig, P. Regulated ADAM10-dependent ectodomain shedding of γ-protocadherin C3 modulates cell-cell adhesion. J. Biol. Chem., 2006, 281(31), 21735-21744.
[http://dx.doi.org/10.1074/jbc.M602663200] [PMID: 16751190]
[84]
Hikita, A.; Yana, I.; Wakeyama, H.; Nakamura, M.; Kadono, Y.; Oshima, Y.; Nakamura, K.; Seiki, M.; Tanaka, S. Negative regulation of osteoclastogenesis by ectodomain shedding of receptor activator of NF-kappaB ligand. J. Biol. Chem., 2006, 281(48), 36846-36855.
[http://dx.doi.org/10.1074/jbc.M606656200] [PMID: 17018528]
[85]
Asakura, M.; Kitakaze, M.; Takashima, S.; Liao, Y.; Ishikura, F.; Yoshinaka, T.; Ohmoto, H.; Node, K.; Yoshino, K.; Ishiguro, H.; Asanuma, H.; Sanada, S.; Matsumura, Y.; Takeda, H.; Beppu, S.; Tada, M.; Hori, M.; Higashiyama, S. Cardiac hypertrophy is inhibited by antagonism of ADAM12 processing of HB-EGF: Metalloproteinase inhibitors as a new therapy. Nat. Med., 2002, 8(1), 35-40.
[http://dx.doi.org/10.1038/nm0102-35] [PMID: 11786904]
[86]
Roy, R.; Wewer, U.M.; Zurakowski, D.; Pories, S.E.; Moses, M.A. ADAM 12 cleaves extracellular matrix proteins and correlates with cancer status and stage. J. Biol. Chem., 2004, 279(49), 51323-51330.
[http://dx.doi.org/10.1074/jbc.M409565200] [PMID: 15381692]
[87]
Jacobsen, J.; Visse, R.; Sørensen, H.P.; Enghild, J.J.; Brew, K.; Wewer, U.M.; Nagase, H. Catalytic properties of ADAM12 and its domain deletion mutants. Biochemistry, 2008, 47(2), 537-547.
[http://dx.doi.org/10.1021/bi701629c] [PMID: 18081311]
[88]
Loechel, F.; Fox, J.W.; Murphy, G.; Albrechtsen, R.; Wewer, U.M. ADAM 12-S cleaves IGFBP-3 and IGFBP-5 and is inhibited by TIMP-3. Biochem. Biophys. Res. Commun., 2000, 278(3), 511-515.
[http://dx.doi.org/10.1006/bbrc.2000.3835] [PMID: 11095942]
[89]
Okada, A.; Mochizuki, S.; Yatabe, T.; Kimura, T.; Shiomi, T.; Fujita, Y.; Matsumoto, H.; Sehara-Fujisawa, A.; Iwamoto, Y.; Okada, Y. ADAM-12 (meltrin α) is involved in chondrocyte proliferation via cleavage of insulin-like growth factor binding protein 5 in osteoarthritic cartilage. Arthritis Rheum., 2008, 58(3), 778-789.
[http://dx.doi.org/10.1002/art.23262] [PMID: 18311789]
[90]
Schäfer, B.; Gschwind, A.; Ullrich, A. Multiple G-protein-coupled receptor signals converge on the epidermal growth factor receptor to promote migration and invasion. Oncogene, 2004, 23(4), 991-999.
[http://dx.doi.org/10.1038/sj.onc.1207278] [PMID: 14647423]
[91]
Najy, A.J.; Day, K.C.; Day, M.L. The ectodomain shedding of E-cadherin by ADAM15 supports ErbB receptor activation. J. Biol. Chem., 2008, 283(26), 18393-18401.
[http://dx.doi.org/10.1074/jbc.M801329200] [PMID: 18434311]
[92]
Hart, S.; Fischer, O.M.; Prenzel, N.; Zwick-Wallasch, E.; Schneider, M.; Hennighausen, L.; Ullrich, A. GPCR-induced migration of breast carcinoma cells depends on both EGFR signal transactivation and EGFR-independent pathways. Biol. Chem., 2005, 386(9), 845-855.
[http://dx.doi.org/10.1515/BC.2005.099] [PMID: 16164409]
[93]
Hansen, H.P.; Dietrich, S.; Kisseleva, T.; Mokros, T.; Mentlein, R.; Lange, H.H.; Murphy, G.; Lemke, H. CD30 shedding from Karpas 299 lymphoma cells is mediated by TNF-α-converting enzyme. J. Immunol., 2000, 165(12), 6703-6709.
[http://dx.doi.org/10.4049/jimmunol.165.12.6703] [PMID: 11120787]
[94]
Contin, C.; Pitard, V.; Itai, T.; Nagata, S.; Moreau, J-F.; Déchanet-Merville, J. Membrane-anchored CD40 is processed by the tumor necrosis factor-α-converting enzyme. Implications for CD40 signaling. J. Biol. Chem., 2003, 278(35), 32801-32809.
[http://dx.doi.org/10.1074/jbc.M209993200] [PMID: 12810728]
[95]
Buxbaum, J.D.; Liu, K-N.; Luo, Y.; Slack, J.L.; Stocking, K.L.; Peschon, J.J.; Johnson, R.S.; Castner, B.J.; Cerretti, D.P.; Black, R.A. Evidence that tumor necrosis factor α converting enzyme is involved in regulated α-secretase cleavage of the Alzheimer amyloid protein precursor. J. Biol. Chem., 1998, 273(43), 27765-27767.
[http://dx.doi.org/10.1074/jbc.273.43.27765] [PMID: 9774383]
[96]
Lambert, D.W.; Yarski, M.; Warner, F.J.; Thornhill, P.; Parkin, E.T.; Smith, A.I.; Hooper, N.M.; Turner, A.J. Tumor necrosis factor-α convertase (ADAM17) mediates regulated ectodomain shedding of the severe-acute respiratory syndrome-coronavirus (SARS-CoV) receptor, angiotensin-converting enzyme-2 (ACE2). J. Biol. Chem., 2005, 280(34), 30113-30119.
[http://dx.doi.org/10.1074/jbc.M505111200] [PMID: 15983030]
[97]
Tsakadze, N.L.; Sithu, S.D.; Sen, U.; English, W.R.; Murphy, G.; D’Souza, S.E. Tumor necrosis factor-α-converting enzyme (TACE/ADAM-17) mediates the ectodomain cleavage of intercellular adhesion molecule-1 (ICAM-1). J. Biol. Chem., 2006, 281(6), 3157-3164.
[http://dx.doi.org/10.1074/jbc.M510797200] [PMID: 16332693]
[98]
Kalus, I.; Bormann, U.; Mzoughi, M.; Schachner, M.; Kleene, R. Proteolytic cleavage of the neural cell adhesion molecule by ADAM17/TACE is involved in neurite outgrowth. J. Neurochem., 2006, 98(1), 78-88.
[http://dx.doi.org/10.1111/j.1471-4159.2006.03847.x] [PMID: 16805798]
[99]
Garton, K.J.; Gough, P.J.; Blobel, C.P.; Murphy, G.; Greaves, D.R.; Dempsey, P.J.; Raines, E.W. TACE (ADAM17) mediates the cleavage and shedding of Fractalkine (CX3CL1). J. Biol. Chem., 2001, 276, 37993-38001.
[PMID: 11495925]
[100]
Black, R.A.; Rauch, C.T.; Kozlosky, C.J.; Peschon, J.J.; Slack, J.L.; Wolfson, M.F.; Castner, B.J.; Stocking, K.L.; Reddy, P.; Srinivasan, S.; Nelson, N.; Boiani, N.; Schooley, K.A.; Gerhart, M.; Davis, R.; Fitzner, J.N.; Johnson, R.S.; Paxton, R.J.; March, C.J.; Cerretti, D.P. A metalloproteinase disintegrin that releases tumour-necrosis factor-α from cells. Nature, 1997, 385(6618), 729-733.
[http://dx.doi.org/10.1038/385729a0] [PMID: 9034190]
[101]
Chalaris, A.; Rabe, B.; Paliga, K.; Lange, H.; Laskay, T.; Fielding, C.A.; Jones, S.A.; Rose-John, S.; Scheller, J. Apoptosis is a natural stimulus of IL6R shedding and contributes to the proinflammatory trans-signaling function of neutrophils. Blood, 2007, 110(6), 1748-1755.
[http://dx.doi.org/10.1182/blood-2007-01-067918] [PMID: 17567983]
[102]
Horiuchi, K.; Zhou, H-M.; Kelly, K.; Manova, K.; Blobel, C.P. Evaluation of the contributions of ADAMs 9, 12, 15, 17, and 19 to heart development and ectodomain shedding of neuregulins β1 and β2. Dev. Biol., 2005, 283(2), 459-471.
[http://dx.doi.org/10.1016/j.ydbio.2005.05.004] [PMID: 15936750]
[103]
Fabre-Lafay, S.; Garrido-Urbani, S.; Reymond, N.; Gonçalves, A.; Dubreuil, P.; Lopez, M. Nectin-4, a new serological breast cancer marker, is a substrate for tumor necrosis factor-α-converting enzyme (TACE)/ADAM-17. J. Biol. Chem., 2005, 280(20), 19543-19550.
[http://dx.doi.org/10.1074/jbc.M410943200] [PMID: 15784625]
[104]
Brou, C.; Logeat, F.; Gupta, N.; Bessia, C.; LeBail, O.; Doedens, J.R.; Cumano, A.; Roux, P.; Black, R.A.; Israël, A. A novel proteolytic cleavage involved in Notch signaling: the role of the disintegrin-metalloprotease TACE. Mol. Cell, 2000, 5(2), 207-216.
[http://dx.doi.org/10.1016/S1097-2765(00)80417-7] [PMID: 10882063]
[105]
Rio, C.; Buxbaum, J.D.; Peschon, J.J.; Corfas, G. Tumor necrosis factor-α-converting enzyme is required for cleavage of erbB4/HER4. J. Biol. Chem., 2000, 275(14), 10379-10387.
[http://dx.doi.org/10.1074/jbc.275.14.10379] [PMID: 10744726]
[106]
Ludwig, A.; Hundhausen, C.; Lambert, M.H.; Broadway, N.; Andrews, R.C.; Bickett, D.M.; Leesnitzer, M.A.; Becherer, J.D. Metalloproteinase inhibitors for the disintegrin-like metalloproteinases ADAM10 and ADAM17 that differentially block constitutive and phorbol ester-inducible shedding of cell surface molecules. Comb. Chem. High Throughput Screen., 2005, 8(2), 161-171.
[http://dx.doi.org/10.2174/1386207053258488] [PMID: 15777180]
[107]
Lum, L.; Wong, B.R.; Josien, R.; Becherer, J.D.; Erdjument-Bromage, H.; Schlöndorff, J.; Tempst, P.; Choi, Y.; Blobel, C.P. Evidence for a role of a tumor necrosis factor-α (TNF-α)-converting enzyme-like protease in shedding of TRANCE, a TNF family member involved in osteoclastogenesis and dendritic cell survival. J. Biol. Chem., 1999, 274(19), 13613-13618.
[http://dx.doi.org/10.1074/jbc.274.19.13613] [PMID: 10224132]
[108]
Aktas, B.; Pozgajova, M.; Bergmeier, W.; Sunnarborg, S.; Offermanns, S.; Lee, D.; Wagner, D.D.; Nieswandt, B. Aspirin induces platelet receptor shedding via ADAM17 (TACE). J. Biol. Chem., 2005, 280(48), 39716-39722.
[http://dx.doi.org/10.1074/jbc.M507762200] [PMID: 16179345]
[109]
Cho, R.W.; Park, J.M.; Wolff, S.B.E.; Xu, D.; Hopf, C.; Kim, J.A.; Reddy, R.C.; Petralia, R.S.; Perin, M.S.; Linden, D.J.; Worley, P.F. mGluR1/5-dependent long-term depression requires the regulated ectodomain cleavage of neuronal pentraxin NPR by TACE. Neuron, 2008, 57(6), 858-871.
[http://dx.doi.org/10.1016/j.neuron.2008.01.010] [PMID: 18367087]
[110]
Kawaguchi, N.; Horiuchi, K.; Becherer, J.D.; Toyama, Y.; Besmer, P.; Blobel, C.P. Different ADAMs have distinct influences on Kit ligand processing: phorbol-ester-stimulated ectodomain shedding of Kitl1 by ADAM17 is reduced by ADAM19. J. Cell Sci., 2007, 120(Pt 6), 943-952.
[http://dx.doi.org/10.1242/jcs.03403] [PMID: 17344430]
[111]
Zhang, Y.; Jiang, J.; Black, R.A.; Baumann, G.; Frank, S.J. Tumor necrosis factor-α converting enzyme (TACE) is a growth hormone binding protein (GHBP) sheddase: the metalloprotease TACE/ADAM-17 is critical for (PMA-induced) GH receptor proteolysis and GHBP generation. Endocrinology, 2000, 141(12), 4342-4348.
[http://dx.doi.org/10.1210/endo.141.12.7858] [PMID: 11108241]
[112]
Weskamp, G.; Schlöndorff, J.; Lum, L.; Becherer, J.D.; Kim, T-W.; Saftig, P.; Hartmann, D.; Murphy, G.; Blobel, C.P. Evidence for a critical role of the tumor necrosis factor α convertase (TACE) in ectodomain shedding of the p75 neurotrophin receptor (p75NTR). J. Biol. Chem., 2004, 279(6), 4241-4249.
[http://dx.doi.org/10.1074/jbc.M307974200] [PMID: 14638693]
[113]
Vincent, B.; Paitel, E.; Saftig, P.; Frobert, Y.; Hartmann, D.; De Strooper, B.; Grassi, J.; Lopez-Perez, E.; Checler, F. The disintegrins ADAM10 and TACE contribute to the constitutive and phorbol ester-regulated normal cleavage of the cellular prion protein. J. Biol. Chem., 2001, 276(41), 37743-37746.
[http://dx.doi.org/10.1074/jbc.M105677200] [PMID: 11477090]
[114]
Yokozeki, T.; Wakatsuki, S.; Hatsuzawa, K.; Black, R.A.; Wada, I.; Sehara-Fujisawa, A. Meltrin β (ADAM19) mediates ectodomain shedding of Neuregulin β1 in the Golgi apparatus: Fluorescence correlation spectroscopic observation of the dynamics of ectodomain shedding in living cells. Genes Cells, 2007, 12(3), 329-343.
[http://dx.doi.org/10.1111/j.1365-2443.2007.01060.x] [PMID: 17352738]
[115]
Zheng, Y.; Saftig, P.; Hartmann, D.; Blobel, C. Evaluation of the contribution of different ADAMs to tumor necrosis factor α (TNFalpha) shedding and of the function of the TNFalpha ectodomain in ensuring selective stimulated shedding by the TNFalpha convertase (TACE/ADAM17). J. Biol. Chem., 2004, 279(41), 42898-42906.
[http://dx.doi.org/10.1074/jbc.M403193200] [PMID: 15292243]
[116]
Kang, T.; Park, H.I.; Suh, Y.; Zhao, Y-G.; Tschesche, H.; Sang, Q-X.A. Autolytic processing at Glu586-Ser587 within the cysteine-rich domain of human adamalysin 19/disintegrin-metalloproteinase 19 is necessary for its proteolytic activity. J. Biol. Chem., 2002, 277(50), 48514-48522.
[http://dx.doi.org/10.1074/jbc.M208961200] [PMID: 12393862]
[117]
Chesneau, V.; Becherer, J.D.; Zheng, Y.; Erdjument-Bromage, H.; Tempst, P.; Blobel, C.P. Catalytic properties of ADAM19. J. Biol. Chem., 2003, 278(25), 22331-22340.
[http://dx.doi.org/10.1074/jbc.M302781200] [PMID: 12682046]
[118]
Howard, L.; Zheng, Y.; Horrocks, M.; Maciewicz, R.A.; Blobel, C. Catalytic activity of ADAM28. FEBS Lett., 2001, 498(1), 82-86.
[http://dx.doi.org/10.1016/S0014-5793(01)02506-6] [PMID: 11389903]
[119]
Mochizuki, S.; Shimoda, M.; Shiomi, T.; Fujii, Y.; Okada, Y. ADAM28 is activated by MMP-7 (matrilysin-1) and cleaves insulin-like growth factor binding protein-3. Biochem. Biophys. Res. Commun., 2004, 315(1), 79-84.
[http://dx.doi.org/10.1016/j.bbrc.2004.01.022] [PMID: 15013428]
[120]
Mitsui, Y.; Mochizuki, S.; Kodama, T.; Shimoda, M.; Ohtsuka, T.; Shiomi, T.; Chijiiwa, M.; Ikeda, T.; Kitajima, M.; Okada, Y. ADAM28 is overexpressed in human breast carcinomas: Implications for carcinoma cell proliferation through cleavage of insulin-like growth factor binding protein-3. Cancer Res., 2006, 66(20), 9913-9920.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-0377] [PMID: 17047053]
[121]
Mochizuki, S.; Tanaka, R.; Shimoda, M.; Onuma, J.; Fujii, Y.; Jinno, H.; Okada, Y. Connective tissue growth factor is a substrate of ADAM28. Biochem. Biophys. Res. Commun., 2010, 402(4), 651-657.
[http://dx.doi.org/10.1016/j.bbrc.2010.10.077] [PMID: 20971063]
[122]
Meng, J.F.; McFall, C.; Rosenwasser, L.J. Polymorphism R62W results in resistance of CD23 to enzymatic cleavage in cultured cells. Genes Immun., 2007, 8(3), 215-223.
[http://dx.doi.org/10.1038/sj.gene.6364376] [PMID: 17301828]
[123]
Zou, J.; Zhu, F.; Liu, J.; Wang, W.; Zhang, R.; Garlisi, C.G.; Liu, Y-H.; Wang, S.; Shah, H.; Wan, Y.; Umland, S.P. Catalytic activity of human ADAM33. J. Biol. Chem., 2004, 279(11), 9818-9830.
[http://dx.doi.org/10.1074/jbc.M309696200] [PMID: 14676211]
[124]
Yoshida, S.; Setoguchi, M.; Higuchi, Y.; Akizuki, S.; Yamamoto, S. Molecular cloning of cDNA encoding MS2 antigen, a novel cell surface antigen strongly expressed in murine monocytic lineage. Int. Immunol., 1990, 2(6), 585-591.
[http://dx.doi.org/10.1093/intimm/2.6.585] [PMID: 1982220]
[125]
Yoshiyama, K.; Higuchi, Y.; Kataoka, M.; Matsuura, K.; Yamamoto, S. CD156 (human ADAM8): Expression, primary amino acid sequence, and gene location. Genomics, 1997, 41(1), 56-62.
[http://dx.doi.org/10.1006/geno.1997.4607] [PMID: 9126482]
[126]
Koller, G.; Schlomann, U.; Golfi, P.; Ferdous, T.; Naus, S.; Bartsch, J.W. ADAM8/MS2/CD156, an emerging drug target in the treatment of inflammatory and invasive pathologies. Curr. Pharm. Des., 2009, 15(20), 2272-2281.
[http://dx.doi.org/10.2174/138161209788682361] [PMID: 19601829]
[127]
Kelly, K.; Hutchinson, G.; Nebenius-Oosthuizen, D.; Smith, A.J.H.; Bartsch, J.W.; Horiuchi, K.; Rittger, A.; Manova, K.; Docherty, A.J.P.; Blobel, C.P. Metalloprotease-disintegrin ADAM8: Expression analysis and targeted deletion in mice. Dev. Dyn., 2005, 232(1), 221-231.
[http://dx.doi.org/10.1002/dvdy.20221] [PMID: 15580619]
[128]
Fritzsche, F.R.; Jung, M.; Xu, C.; Rabien, A.; Schicktanz, H.; Stephan, C.; Dietel, M.; Jung, K.; Kristiansen, G. ADAM8 expression in prostate cancer is associated with parameters of unfavorable prognosis. Virchows Arch., 2006, 449(6), 628-636.
[http://dx.doi.org/10.1007/s00428-006-0315-1] [PMID: 17106710]
[129]
Ishikawa, N.; Daigo, Y.; Yasui, W.; Inai, K.; Nishimura, H.; Tsuchiya, E.; Kohno, N.; Nakamura, Y. ADAM8 as a novel serological and histochemical marker for lung cancer. Clin. Cancer Res., 2004, 10(24), 8363-8370.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-1436] [PMID: 15623614]
[130]
Li, Z.; Liao, Q.; Wu, Y.; Liao, M.; Hao, Y.; Zhang, S.; Song, S.; Li, B.; Zhang, Y.D. Upregulation of a disintegrin and metalloprotease 8 influences tumor metastasis and prognosis in patients with osteosarcoma. Pathol. Oncol. Res., 2012, 18(3), 657-661.
[http://dx.doi.org/10.1007/s12253-011-9491-7] [PMID: 22215309]
[131]
Wildeboer, D.; Naus, S.; Amy Sang, Q.X.; Bartsch, J.W.; Pagenstecher, A. Metalloproteinase disintegrins ADAM8 and ADAM19 are highly regulated in human primary brain tumors and their expression levels and activities are associated with invasiveness. J. Neuropathol. Exp. Neurol., 2006, 65(5), 516-527.
[http://dx.doi.org/10.1097/01.jnen.0000229240.51490.d3] [PMID: 16772875]
[132]
Romagnoli, M.; Mineva, N.D.; Polmear, M.; Conrad, C.; Srinivasan, S.; Loussouarn, D.; Barillé-Nion, S.; Georgakoudi, I.; Dagg, Á.; McDermott, E.W.; Duffy, M.J.; McGowan, P.M.; Schlomann, U.; Parsons, M.; Bartsch, J.W.; Sonenshein, G.E. ADAM8 expression in invasive breast cancer promotes tumor dissemination and metastasis. EMBO Mol. Med., 2014, 6(2), 278-294.
[PMID: 24375628]
[133]
Valkovskaya, N.; Kayed, H.; Felix, K.; Hartmann, D.; Giese, N.A.; Osinsky, S.P.; Friess, H.; Kleeff, J. ADAM8 expression is associated with increased invasiveness and reduced patient survival in pancreatic cancer. J. Cell. Mol. Med., 2007, 11(5), 1162-1174.
[http://dx.doi.org/10.1111/j.1582-4934.2007.00082.x] [PMID: 17979891]
[134]
Schlomann, U.; Koller, G.; Conrad, C.; Ferdous, T.; Golfi, P.; Garcia, A.M.; Höfling, S.; Parsons, M.; Costa, P.; Soper, R.; Bossard, M.; Hagemann, T.; Roshani, R.; Sewald, N.; Ketchem, R.R.; Moss, M.L.; Rasmussen, F.H.; Miller, M.A.; Lauffenburger, D.A.; Tuveson, D.A.; Nimsky, C.; Bartsch, J.W. ADAM8 as a drug target in pancreatic cancer. Nat. Commun., 2015, 6, 6175.
[http://dx.doi.org/10.1038/ncomms7175] [PMID: 25629724]
[135]
Zack, M.D.; Malfait, A-M.; Skepner, A.P.; Yates, M.P.; Griggs, D.W.; Hall, T.; Hills, R.L.; Alston, J.T.; Nemirovskiy, O.V.; Radabaugh, M.R.; Leone, J.W.; Arner, E.C.; Tortorella, M.D. ADAM-8 isolated from human osteoarthritic chondrocytes cleaves fibronectin at Ala(271). Arthritis Rheum., 2009, 60(9), 2704-2713.
[http://dx.doi.org/10.1002/art.24753] [PMID: 19714641]
[136]
Knolle, M.D.; Owen, C.A. ADAM8: A new therapeutic target for asthma. Expert Opin. Ther. Targets, 2009, 13(5), 523-540.
[http://dx.doi.org/10.1517/14728220902889788] [PMID: 19397475]
[137]
Dormán, G.; Cseh, S.; Hajdú, I.; Barna, L.; Kónya, D.; Kupai, K.; Kovács, L.; Ferdinandy, P. Matrix metalloproteinase inhibitors: A critical appraisal of design principles and proposed therapeutic utility. Drugs, 2010, 70(8), 949-964.
[http://dx.doi.org/10.2165/11318390-000000000-00000] [PMID: 20481653]
[138]
Bartsch, J.; Koller, G. Protease inhibition. WO2009047523 A1, [April 16]. 2009.
[139]
Chen, J.; Deng, L.; Dreymüller, D.; Jiang, X.; Long, J.; Duan, Y.; Wang, Y.; Luo, M.; Lin, F.; Mao, L.; Müller, B.; Koller, G.; Bartsch, J.W. A novel peptide ADAM8 inhibitor attenuates bronchial hyperresponsiveness and Th2 cytokine mediated inflammation of murine asthmatic models. Sci. Rep., 2016, 6, 30451.
[http://dx.doi.org/10.1038/srep30451] [PMID: 27458083]
[140]
Yim, V.; Noisier, A.F.M.; Hung, K.Y.; Bartsch, J.W.; Schlomann, U.; Brimble, M.A. Synthesis and biological evaluation of analogues of the potent ADAM8 inhibitor cyclo(RLsKDK) for the treatment of inflammatory diseases and cancer metastasis. Bioorg. Med. Chem., 2016, 24(18), 4032-4037.
[http://dx.doi.org/10.1016/j.bmc.2016.06.042] [PMID: 27407033]
[141]
Ebsen, H.; Lettau, M.; Kabelitz, D.; Janssen, O. Identification of SH3 domain proteins interacting with the cytoplasmic tail of the a disintegrin and metalloprotease 10 (ADAM10). PLoS One, 2014, 9(7)e102899
[http://dx.doi.org/10.1371/journal.pone.0102899] [PMID: 25036101]
[142]
Saftig, P.; Hartmann, D. A major membrane protein ectodomain sheddase involved in regulated intramembrane proteolysis.The ADAM Family of Proteases. Proteases in Biology and Disease., 2005, Vol. 4, 85-121.
[http://dx.doi.org/10.1007/0-387-25151-0_5]
[143]
Saftig, P.; Lichtenthaler, S.F. The alpha secretase ADAM10: A metalloprotease with multiple functions in the brain. Prog. Neurobiol., 2015, 135, 1-20.
[http://dx.doi.org/10.1016/j.pneurobio.2015.10.003] [PMID: 26522965]
[144]
van Tetering, G.; van Diest, P.; Verlaan, I.; van der Wall, E.; Kopan, R.; Vooijs, M. Metalloprotease ADAM10 is required for Notch1 site 2 cleavage. J. Biol. Chem., 2009, 284(45), 31018-31027.
[http://dx.doi.org/10.1074/jbc.M109.006775] [PMID: 19726682]
[145]
Toonen, J.A.; Ronchetti, A.; Sidjanin, D.J. A disintegrin and metalloproteinase10 (adam10) regulates notch signaling during early retinal development. PLoS One, 2016, 11(5)e0156184
[http://dx.doi.org/10.1371/journal.pone.0156184] [PMID: 27224017]
[146]
Murai, T.; Miyauchi, T.; Yanagida, T.; Sako, Y. Epidermal growth factor-regulated activation of Rac GTPase enhances CD44 cleavage by metalloproteinase disintegrin ADAM10. Biochem. J., 2006, 395(1), 65-71.
[http://dx.doi.org/10.1042/BJ20050582] [PMID: 16390331]
[147]
Anderegg, U.; Eichenberg, T.; Parthaune, T.; Haiduk, C.; Saalbach, A.; Milkova, L.; Ludwig, A.; Grosche, J.; Averbeck, M.; Gebhardt, C.; Voelcker, V.; Sleeman, J.P.; Simon, J.C. ADAM10 is the constitutive functional sheddase of CD44 in human melanoma cells. J. Invest. Dermatol., 2009, 129(6), 1471-1482.
[http://dx.doi.org/10.1038/jid.2008.323] [PMID: 18971959]
[148]
Teupser, D.; Pavlides, S.; Tan, M.; Gutierrez-Ramos, J-C.; Kolbeck, R.; Breslow, J.L. Major reduction of atherosclerosis in fractalkine (CX3CL1)-deficient mice is at the brachiocephalic artery, not the aortic root. Proc. Natl. Acad. Sci. USA, 2004, 101(51), 17795-17800.
[http://dx.doi.org/10.1073/pnas.0408096101] [PMID: 15596719]
[149]
Crawford, H.C.; Dempsey, P.J.; Brown, G.; Adam, L.; Moss, M.L. ADAM10 as a therapeutic target for cancer and inflammation. Curr. Pharm. Des., 2009, 15(20), 2288-2299.
[http://dx.doi.org/10.2174/138161209788682442] [PMID: 19601831]
[150]
Shimaoka, T.; Kume, N.; Minami, M.; Hayashida, K.; Kataoka, H.; Kita, T.; Yonehara, S. Molecular cloning of a novel scavenger receptor for oxidized low density lipoprotein, SR-PSOX, on macrophages. J. Biol. Chem., 2000, 275(52), 40663-40666.
[http://dx.doi.org/10.1074/jbc.C000761200] [PMID: 11060282]
[151]
Abel, S.; Hundhausen, C.; Mentlein, R.; Schulte, A.; Berkhout, T.A.; Broadway, N.; Hartmann, D.; Sedlacek, R.; Dietrich, S.; Muetze, B.; Schuster, B.; Kallen, K-J.; Saftig, P.; Rose-John, S.; Ludwig, A. The transmembrane CXC-chemokine ligand 16 is induced by IFN-γ and TNF-α and shed by the activity of the disintegrin-like metalloproteinase ADAM10. J. Immunol., 2004, 172(10), 6362-6372.
[http://dx.doi.org/10.4049/jimmunol.172.10.6362] [PMID: 15128827]
[152]
Endres, K.; Deller, T. Regulation of alpha-secretase adam10 in vitro and in vivo: Genetic, epigenetic, and protein-based mechanisms. Front. Mol. Neurosci., 2017, 10(56), 56.
[http://dx.doi.org/10.3389/fnmol.2017.00056] [PMID: 28367112]
[153]
Vincent, B. Regulation of the α-secretase ADAM10 at transcriptional, translational and post-translational levels. Brain Res. Bull., 2016, 126(Pt 2), 154-169.
[http://dx.doi.org/10.1016/j.brainresbull.2016.03.020] [PMID: 27060611]
[154]
Parkin, E.; Harris, B. A disintegrin and metalloproteinase (ADAM)-mediated ectodomain shedding of ADAM10. J. Neurochem., 2009, 108(6), 1464-1479.
[http://dx.doi.org/10.1111/j.1471-4159.2009.05907.x] [PMID: 19183255]
[155]
Shitomi, Y.; Thøgersen, I.B.; Ito, N.; Leitinger, B.; Enghild, J.J.; Itoh, Y. ADAM10 controls collagen signaling and cell migration on collagen by shedding the ectodomain of discoidin domain receptor 1 (DDR1). Mol. Biol. Cell, 2015, 26(4), 659-673.
[http://dx.doi.org/10.1091/mbc.E14-10-1463] [PMID: 25540428]
[156]
Wetzel, S.; Seipold, L.; Saftig, P. The metalloproteinase ADAM10: A useful therapeutic target? Biochim Biophys Acta Mol Cell Res, 2017. 1864(11 Pt B)(11, Part B), 2071- 2081.
[http://dx.doi.org/10.1016/j.bbamcr.2017.06.005] [PMID: 28624438]
[158]
Tosello, V.; Ferrando, A.A. The NOTCH signaling pathway: Role in the pathogenesis of T-cell acute lymphoblastic leukemia and implication for therapy. Ther. Adv. Hematol., 2013, 4(3), 199-210.
[http://dx.doi.org/10.1177/2040620712471368] [PMID: 23730497]
[159]
Pruessmeyer, J.; Ludwig, A. The good, the bad and the ugly substrates for ADAM10 and ADAM17 in brain pathology, inflammation and cancer. Semin. Cell Dev. Biol., 2009, 20(2), 164-174.
[http://dx.doi.org/10.1016/j.semcdb.2008.09.005] [PMID: 18951988]
[160]
Li, D.; Xiao, Z.; Wang, G.; Song, X. Knockdown of ADAM10 inhibits migration and invasion of fibroblast-like synoviocytes in rheumatoid arthritis. Mol. Med. Rep., 2015, 12(4), 5517-5523.
[http://dx.doi.org/10.3892/mmr.2015.4011] [PMID: 26135838]
[161]
Müller, M.; Wetzel, S.; Köhn-Gaone, J.; Chalupsky, K.; Lüllmann-Rauch, R.; Barikbin, R.; Bergmann, J.; Wöhner, B.; Zbodakova, O.; Leuschner, I.; Martin, G.; Tiegs, G.; Rose-John, S.; Sedlacek, R.; Tirnitz-Parker, J.E.; Saftig, P.; Schmidt-Arras, D. A disintegrin and metalloprotease 10 (ADAM10) is a central regulator of murine liver tissue homeostasis. Oncotarget, 2016, 7(14), 17431-17441.
[http://dx.doi.org/10.18632/oncotarget.7836] [PMID: 26942887]
[162]
van der Vorst, E.P.C.; Jeurissen, M.; Wolfs, I.M.J.; Keijbeck, A.; Theodorou, K.; Wijnands, E.; Schurgers, L.; Weber, S.; Gijbels, M.J.; Hamers, A.A.J.; Dreymueller, D.; Rose-John, S.; de Winther, M.P.J.; Ludwig, A.; Saftig, P.; Biessen, E.A.L.; Donners, M.M.P.C.; Myeloid, A. Myeloid A disintegrin and metalloproteinase domain 10 deficiency modulates atherosclerotic plaque composition by shifting the balance from inflammation toward fibrosis. Am. J. Pathol., 2015, 185(4), 1145-1155.
[http://dx.doi.org/10.1016/j.ajpath.2014.11.028] [PMID: 25659879]
[163]
Fukasawa, H.; Nakagomi, M.; Yamagata, N.; Katsuki, H.; Kawahara, K.; Kitaoka, K.; Miki, T.; Shudo, K. Tamibarotene: A candidate retinoid drug for Alzheimer’s disease. Biol. Pharm. Bull., 2012, 35(8), 1206-1212.
[http://dx.doi.org/10.1248/bpb.b12-00314] [PMID: 22863914]
[164]
Obregon, D.F.; Rezai-Zadeh, K.; Bai, Y.; Sun, N.; Hou, H.; Ehrhart, J.; Zeng, J.; Mori, T.; Arendash, G.W.; Shytle, D.; Town, T.; Tan, J. ADAM10 activation is required for green tea (-)-epigallocatechin-3-gallate-induced α-secretase cleavage of amyloid precursor protein. J. Biol. Chem., 2006, 281(24), 16419-16427.
[http://dx.doi.org/10.1074/jbc.M600617200] [PMID: 16624814]
[165]
Marcade, M.; Bourdin, J.; Loiseau, N.; Peillon, H.; Rayer, A.; Drouin, D.; Schweighoffer, F.; Désiré, L. Etazolate, a neuroprotective drug linking GABA(A) receptor pharmacology to amyloid precursor protein processing. J. Neurochem., 2008, 106(1), 392-404.
[http://dx.doi.org/10.1111/j.1471-4159.2008.05396.x] [PMID: 18397369]
[166]
Dreymueller, D.; Uhlig, S.; Ludwig, A. ADAM-family metalloproteinases in lung inflammation: Potential therapeutic targets. Am. J. Physiol. Lung Cell. Mol. Physiol., 2015, 308(4), L325-L343.
[http://dx.doi.org/10.1152/ajplung.00294.2014] [PMID: 25480335]
[167]
Mullooly, M.; McGowan, P.M.; Kennedy, S.A.; Madden, S.F.; Crown, J.; O’ Donovan, N.; Duffy, M.J. ADAM10: A new player in breast cancer progression? Br. J. Cancer, 2015, 113(6), 945-951.
[http://dx.doi.org/10.1038/bjc.2015.288] [PMID: 26284334]
[168]
Fridman, J.S.; Caulder, E.; Hansbury, M.; Liu, X.; Yang, G.; Wang, Q.; Lo, Y.; Zhou, B-B.; Pan, M.; Thomas, S.M.; Grandis, J.R.; Zhuo, J.; Yao, W.; Newton, R.C.; Friedman, S.M.; Scherle, P.A.; Vaddi, K. Selective inhibition of ADAM metalloproteases as a novel approach for modulating ErbB pathways in cancer. Clin. Cancer Res., 2007, 13(6), 1892-1902.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-2116] [PMID: 17363546]
[169]
Zhou, B-B.S.; Peyton, M.; He, B.; Liu, C.; Girard, L.; Caudler, E.; Lo, Y.; Baribaud, F.; Mikami, I.; Reguart, N.; Yang, G.; Li, Y.; Yao, W.; Vaddi, K.; Gazdar, A.F.; Friedman, S.M.; Jablons, D.M.; Newton, R.C.; Fridman, J.S.; Minna, J.D.; Scherle, P.A. Targeting ADAM-mediated ligand cleavage to inhibit HER3 and EGFR pathways in non-small cell lung cancer. Cancer Cell, 2006, 10(1), 39-50.
[http://dx.doi.org/10.1016/j.ccr.2006.05.024] [PMID: 16843264]
[170]
Friedman, S.; Levy, R.; Garrett, W.; Doval, D.; Bondarde, S.; Sahoo, T.; Lokanatha, D.; Julka, P.; Shenoy, K.; Nagarkar, R.; Bhattacharyya, G.; Kumar, K.; Nag, S.; Mohan, P.; Narang, N.; Raghunadharao, D.; Walia, M.; Yao, W.; Li, J.; Emm, T.; Yeleswaram, S.; Scherle, P.; Newton, R. Clinical benefit of INCB7839, a potent and selective inhibitor of ADAM10 and ADAM17, in combination with trastuzumab in metastatic HER2 positive breast cancer patients. Cancer Res., 2009, 69(24)(Suppl.), 5056-5056.
[http://dx.doi.org/10.1158/0008-5472.SABCS-09-5056]
[171]
Grabowska, M.M.; Sandhu, B.; Day, M.L. EGF promotes the shedding of soluble E-cadherin in an ADAM10-dependent manner in prostate epithelial cells. Cell. Signal., 2012, 24(2), 532-538.
[http://dx.doi.org/10.1016/j.cellsig.2011.10.004] [PMID: 22024284]
[172]
Camodeca, C.; Nuti, E.; Tepshi, L.; Boero, S.; Tuccinardi, T.; Stura, E.A.; Poggi, A.; Zocchi, M.R.; Rossello, A. Discovery of a new selective inhibitor of A Disintegrin And Metalloprotease 10 (ADAM-10) able to reduce the shedding of NKG2D ligands in Hodgkin’s lymphoma cell models. Eur. J. Med. Chem., 2016, 111, 193-201.
[http://dx.doi.org/10.1016/j.ejmech.2016.01.053] [PMID: 26871660]
[173]
Zocchi, M.R.; Camodeca, C.; Nuti, E.; Rossello, A.; Venè, R.; Tosetti, F.; Dapino, I.; Costa, D.; Musso, A.; Poggi, A. ADAM10 new selective inhibitors reduce NKG2D ligand release sensitizing Hodgkin lymphoma cells to NKG2D-mediated killing. OncoImmunology, 2015, 5(5)e1123367
[http://dx.doi.org/10.1080/2162402X.2015.1123367] [PMID: 27467923]
[174]
Madoux, F.; Dreymuller, D.; Pettiloud, J-P.; Santos, R.; Becker-Pauly, C.; Ludwig, A.; Fields, G.B.; Bannister, T.; Spicer, T.P.; Cudic, M.; Scampavia, L.D.; Minond, D. Discovery of an enzyme and substrate selective inhibitor of ADAM10 using an exosite-binding glycosylated substrate. Sci. Rep., 2016, 6(1), 11.
[http://dx.doi.org/10.1038/s41598-016-0013-4] [PMID: 28442704]
[175]
Zhang, S.; Salemi, J.; Hou, H.; Zhu, Y.; Mori, T.; Giunta, B.; Obregon, D.; Tan, J. Rapamycin promotes β-amyloid production via ADAM-10 inhibition. Biochem. Biophys. Res. Commun., 2010, 398(3), 337-341.
[http://dx.doi.org/10.1016/j.bbrc.2010.06.017] [PMID: 20542014]
[176]
Soundararajan, R.; Sayat, R.; Robertson, G.S.; Marignani, P.A. Triptolide: An inhibitor of a disintegrin and metalloproteinase 10 (ADAM10) in cancer cells. Cancer Biol. Ther., 2009, 8(21), 2054-2062.
[http://dx.doi.org/10.4161/cbt.8.21.9803] [PMID: 19783906]
[177]
Gooz, M. ADAM-17: the enzyme that does it all. Crit. Rev. Biochem. Mol. Biol., 2010, 45(2), 146-169.
[http://dx.doi.org/10.3109/10409231003628015] [PMID: 20184396]
[178]
Düsterhöft, S.; Michalek, M.; Kordowski, F.; Oldefest, M.; Sommer, A.; Röseler, J.; Reiss, K.; Grötzinger, J.; Lorenzen, I. Extracellular juxtamembrane segment of adam17 interacts with membranes and is essential for its shedding activity. Biochemistry, 2015, 54(38), 5791-5801.
[http://dx.doi.org/10.1021/acs.biochem.5b00497] [PMID: 26348730]
[179]
Amour, A.; Slocombe, P.M.; Webster, A.; Butler, M.; Knight, C.G.; Smith, B.J.; Stephens, P.E.; Shelley, C.; Hutton, M.; Knäuper, V.; Docherty, A.J.P.; Murphy, G. TNF-α converting enzyme (TACE) is inhibited by TIMP-3. FEBS Lett., 1998, 435(1), 39-44.
[http://dx.doi.org/10.1016/S0014-5793(98)01031-X] [PMID: 9755855]
[180]
Kassiri, Z.; Defamie, V.; Hariri, M.; Oudit, G.Y.; Anthwal, S.; Dawood, F.; Liu, P.; Khokha, R. Simultaneous transforming growth factor β-tumor necrosis factor activation and cross-talk cause aberrant remodeling response and myocardial fibrosis in Timp3-deficient heart. J. Biol. Chem., 2009, 284(43), 29893-29904.
[http://dx.doi.org/10.1074/jbc.M109.028449] [PMID: 19625257]
[181]
Fiorentino, L.; Vivanti, A.; Cavalera, M.; Marzano, V.; Ronci, M.; Fabrizi, M.; Menini, S.; Pugliese, G.; Menghini, R.; Khokha, R.; Lauro, R.; Urbani, A.; Federici, M. Increased tumor necrosis factor α-converting enzyme activity induces insulin resistance and hepatosteatosis in mice. Hepatology, 2010, 51(1), 103-110.
[http://dx.doi.org/10.1002/hep.23250] [PMID: 19877183]
[182]
Wang, Y.; Herrera, A.H.; Li, Y.; Belani, K.K.; Walcheck, B. Regulation of mature ADAM17 by redox agents for L-selectin shedding. J. Immunol., 2009, 182(4), 2449-2457.
[http://dx.doi.org/10.4049/jimmunol.0802770] [PMID: 19201900]
[183]
Willems, S.H.; Tape, C.J.; Stanley, P.L.; Taylor, N.A.; Mills, I.G.; Neal, D.E.; McCafferty, J.; Murphy, G. Thiol isomerases negatively regulate the cellular shedding activity of ADAM17. Biochem. J., 2010, 428(3), 439-450.
[http://dx.doi.org/10.1042/BJ20100179] [PMID: 20345372]
[184]
Chavaroche, A.; Cudic, M.; Giulianotti, M.; Houghten, R.A.; Fields, G.B.; Minond, D. Glycosylation of a disintegrin and metalloprotease 17 affects its activity and inhibition. Anal. Biochem., 2014, 449, 68-75.
[http://dx.doi.org/10.1016/j.ab.2013.12.018] [PMID: 24361716]
[185]
Dang, M.; Armbruster, N.; Miller, M.A.; Cermeno, E.; Hartmann, M.; Bell, G.W.; Root, D.E.; Lauffenburger, D.A.; Lodish, H.F.; Herrlich, A. Regulated ADAM17-dependent EGF family ligand release by substrate-selecting signaling pathways. Proc. Natl. Acad. Sci. USA, 2013, 110(24), 9776-9781.
[http://dx.doi.org/10.1073/pnas.1307478110] [PMID: 23720309]
[186]
Adrain, C.; Zettl, M.; Christova, Y.; Taylor, N.; Freeman, M. Tumor necrosis factor signaling requires iRhom2 to promote trafficking and activation of TACE. Science, 2012, 335(6065), 225-228.
[http://dx.doi.org/10.1126/science.1214400] [PMID: 22246777]
[187]
Issuree, P.D.A.; Maretzky, T.; McIlwain, D.R.; Monette, S.; Qing, X.; Lang, P.A.; Swendeman, S.L.; Park-Min, K-H.; Binder, N.; Kalliolias, G.D.; Yarilina, A.; Horiuchi, K.; Ivashkiv, L.B.; Mak, T.W.; Salmon, J.E.; Blobel, C.P. iRHOM2 is a critical pathogenic mediator of inflammatory arthritis. J. Clin. Invest., 2013, 123(2), 928-932.
[PMID: 23348744]
[188]
Caescu, C.I.; Jeschke, G.R.; Turk, B.E. Active-site determinants of substrate recognition by the metalloproteinases TACE and ADAM10. Biochem. J., 2009, 424(1), 79-88.
[http://dx.doi.org/10.1042/BJ20090549] [PMID: 19715556]
[189]
Rossello, A.; Nuti, E.; Ferrini, S.; Fabbi, M. Targeting ADAM17 sheddase activity in cancer. Curr. Drug Targets, 2016, 17(16), 1908-1927.
[http://dx.doi.org/10.2174/1389450117666160727143618] [PMID: 27469341]
[190]
Moss, M.L.; Minond, D. Recent advances in ADAM17 research: A promising target for cancer and inflammation. Mediators Inflamm., 2017, 20179673537
[http://dx.doi.org/10.1155/2017/9673537] [PMID: 29230082]
[191]
Rosso, O.; Piazza, T.; Bongarzone, I.; Rossello, A.; Mezzanzanica, D.; Canevari, S.; Orengo, A.M.; Puppo, A.; Ferrini, S.; Fabbi, M. The ALCAM shedding by the metalloprotease ADAM17/TACE is involved in motility of ovarian carcinoma cells. Mol. Cancer Res., 2007, 5(12), 1246-1253.
[http://dx.doi.org/10.1158/1541-7786.MCR-07-0060] [PMID: 18171982]
[192]
Kenny, P.A. TACE: A new target in epidermal growth factor receptor dependent tumors. Differentiation, 2007, 75(9), 800-808.
[http://dx.doi.org/10.1111/j.1432-0436.2007.00198.x] [PMID: 17608729]
[193]
Garton, K.J.; Gough, P.J.; Philalay, J.; Wille, P.T.; Blobel, C.P.; Whitehead, R.H.; Dempsey, P.J.; Raines, E.W. Stimulated shedding of vascular cell adhesion molecule 1 (VCAM-1) is mediated by tumor necrosis factor-α-converting enzyme (ADAM 17). J. Biol. Chem., 2003, 278(39), 37459-37464.
[http://dx.doi.org/10.1074/jbc.M305877200] [PMID: 12878595]
[194]
Guo, Z.; Jin, X.; Jia, H. Inhibition of ADAM-17 more effectively down-regulates the Notch pathway than that of γ-secretase in renal carcinoma. J. Exp. Clin. Cancer Res., 2013, 32(1), 26.
[http://dx.doi.org/10.1186/1756-9966-32-26] [PMID: 23659326]
[195]
Bell, J.H.; Herrera, A.H.; Li, Y.; Walcheck, B. Role of ADAM17 in the ectodomain shedding of TNF-α and its receptors by neutrophils and macrophages. J. Leukoc. Biol., 2007, 82(1), 173-176.
[http://dx.doi.org/10.1189/jlb.0307193] [PMID: 17510296]
[196]
Aggarwal, B.B. Signalling pathways of the TNF superfamily: A double-edged sword. Nat. Rev. Immunol., 2003, 3(9), 745-756.
[http://dx.doi.org/10.1038/nri1184] [PMID: 12949498]
[197]
Scheller, J.; Chalaris, A.; Garbers, C.; Rose-John, S. ADAM17: A molecular switch to control inflammation and tissue regeneration. Trends Immunol., 2011, 32(8), 380-387.
[http://dx.doi.org/10.1016/j.it.2011.05.005] [PMID: 21752713]
[198]
Lee, D.C.; Sunnarborg, S.W.; Hinkle, C.L.; Myers, T.J.; Stevenson, M.Y.; Russell, W.E.; Castner, B.J.; Gerhart, M.J.; Paxton, R.J.; Black, R.A.; Chang, A.; Jackson, L.F. TACE/ADAM17 processing of EGFR ligands indicates a role as a physiological convertase. Ann. N. Y. Acad. Sci., 2003, 995(1), 22-38.
[http://dx.doi.org/10.1111/j.1749-6632.2003.tb03207.x] [PMID: 12814936]
[199]
Groot, A.J.; Vooijs, M.A. The Role of Adams in Notch Signaling. Notch Signaling in Embryology and Cancer., 2012, Vol. 727, 15-36.
[http://dx.doi.org/10.1007/978-1-4614-0899-4_2]
[200]
Swendeman, S.; Mendelson, K.; Weskamp, G.; Horiuchi, K.; Deutsch, U.; Scherle, P.; Hooper, A.; Rafii, S.; Blobel, C.P. VEGF-A stimulates ADAM17-dependent shedding of VEGFR2 and crosstalk between VEGFR2 and ERK signaling. Circ. Res., 2008, 103(9), 916-918.
[http://dx.doi.org/10.1161/CIRCRESAHA.108.184416] [PMID: 18818406]
[201]
Lisi, S.; D’Amore, M.; Sisto, M. ADAM17 at the interface between inflammation and autoimmunity. Immunol. Lett, 2014. 162(1 Pt A)(1, Part A), 159-169.
[http://dx.doi.org/10.1016/j.imlet.2014.08.008] [PMID: 25171914]
[202]
Firestein, G.S. Evolving concepts of rheumatoid arthritis. Nature, 2003, 423(6937), 356-361.
[http://dx.doi.org/10.1038/nature01661] [PMID: 12748655]
[203]
Itoh, Y. Chapter Eight - Metalloproteinases in Rheumatoid Arthritis: Potential therapeutic targets to improve current therapies. Progress in Molecular Biology and Translational Science, 2017, Vol. 148, 327-338.
[http://dx.doi.org/10.1016/bs.pmbts.2017.03.002]
[204]
Gatzemeier, U.; Groth, G.; Butts, C.; Van Zandwijk, N.; Shepherd, F.; Ardizzoni, A.; Barton, C.; Ghahramani, P.; Hirsh, V. Randomized phase II trial of gemcitabine-cisplatin with or without trastuzumab in HER2-positive non-small-cell lung cancer. Ann. Oncol., 2004, 15(1), 19-27.
[http://dx.doi.org/10.1093/annonc/mdh031] [PMID: 14679114]
[205]
Borrell-Pagès, M.; Rojo, F.; Albanell, J.; Baselga, J.; Arribas, J. TACE is required for the activation of the EGFR by TGF-α in tumors. EMBO J., 2003, 22(5), 1114-1124.
[http://dx.doi.org/10.1093/emboj/cdg111] [PMID: 12606576]
[206]
Shen, H.; Li, L.; Zhou, S.; Yu, D.; Yang, S.; Chen, X.; Wang, D.; Zhong, S.; Zhao, J.; Tang, J. The role of ADAM17 in tumorigenesis and progression of breast cancer. Tumour Biol., 2016, 37(12), 15359-15370.
[http://dx.doi.org/10.1007/s13277-016-5418-y] [PMID: 27658778]
[207]
Merchant, N.B.; Voskresensky, I.; Rogers, C.M.; Lafleur, B.; Dempsey, P.J.; Graves-Deal, R.; Revetta, F.; Foutch, A.C.; Rothenberg, M.L.; Washington, M.K.; Coffey, R.J. TACE/ADAM-17: A component of the epidermal growth factor receptor axis and a promising therapeutic target in colorectal cancer. Clin. Cancer Res., 2008, 14(4), 1182-1191.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-1216] [PMID: 18281553]
[208]
Nagathihalli, N.S.; Beesetty, Y.; Lee, W.; Washington, M.K.; Chen, X.; Lockhart, A.C.; Merchant, N.B. Novel mechanistic insights into ectodomain shedding of EGFR Ligands Amphiregulin and TGF-α: impact on gastrointestinal cancers driven by secondary bile acids. Cancer Res., 2014, 74(7), 2062-2072.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-2329] [PMID: 24520077]
[209]
Hansen, A.G.; Freeman, T.J.; Arnold, S.A.; Starchenko, A.; Jones-Paris, C.R.; Gilger, M.A.; Washington, M.K.; Fan, K-H.; Shyr, Y.; Beauchamp, R.D.; Zijlstra, A. Elevated ALCAM shedding in colorectal cancer correlates with poor patient outcome. Cancer Res., 2013, 73(10), 2955-2964.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-2052] [PMID: 23539446]
[210]
Ringel, J.; Jesnowski, R.; Moniaux, N.; Lüttges, J.; Ringel, J.; Choudhury, A.; Batra, S.K.; Klöppel, G.; Löhr, M. Aberrant expression of a disintegrin and metalloproteinase 17/tumor necrosis factor-α converting enzyme increases the malignant potential in human pancreatic ductal adenocarcinoma. Cancer Res., 2006, 66(18), 9045-9053.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-3287] [PMID: 16982746]
[211]
Goumas, F.A.; Holmer, R.; Egberts, J-H.; Gontarewicz, A.; Heneweer, C.; Geisen, U.; Hauser, C.; Mende, M-M.; Legler, K.; Röcken, C.; Becker, T.; Waetzig, G.H.; Rose-John, S.; Kalthoff, H. Inhibition of IL-6 signaling significantly reduces primary tumor growth and recurrencies in orthotopic xenograft models of pancreatic cancer. Int. J. Cancer, 2015, 137(5), 1035-1046.
[http://dx.doi.org/10.1002/ijc.29445] [PMID: 25604508]
[212]
Karan, D.; Lin, F.C.; Bryan, M.; Ringel, J.; Moniaux, N.; Lin, M.F.; Batra, S.K. Expression of ADAMs (a disintegrin and metalloproteases) and TIMP-3 (tissue inhibitor of metalloproteinase-3) in human prostatic adenocarcinomas. Int. J. Oncol., 2003, 23(5), 1365-1371.
[PMID: 14532978]
[213]
Tanaka, Y.; Miyamoto, S.; Suzuki, S.O.; Oki, E.; Yagi, H.; Sonoda, K.; Yamazaki, A.; Mizushima, H.; Maehara, Y.; Mekada, E.; Nakano, H. Clinical significance of heparin-binding epidermal growth factor-like growth factor and a disintegrin and metalloprotease 17 expression in human ovarian cancer. Clin. Cancer Res., 2005, 11(13), 4783-4792.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-1426] [PMID: 16000575]
[214]
Lo, C-W.; Chen, M-W.; Hsiao, M.; Wang, S.; Chen, C-A.; Hsiao, S-M.; Chang, J-S.; Lai, T-C.; Rose-John, S.; Kuo, M-L.; Wei, L-H. IL-6 trans-signaling in formation and progression of malignant ascites in ovarian cancer. Cancer Res., 2011, 71(2), 424-434.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-1496] [PMID: 21123455]
[215]
Piazza, T.; Cha, E.; Bongarzone, I.; Canevari, S.; Bolognesi, A.; Polito, L.; Bargellesi, A.; Sassi, F.; Ferrini, S.; Fabbi, M. Internalization and recycling of ALCAM/CD166 detected by a fully human single-chain recombinant antibody. J. Cell Sci., 2005, 118(Pt 7), 1515-1525.
[http://dx.doi.org/10.1242/jcs.02280] [PMID: 15769845]
[216]
Takamune, Y.; Ikebe, T.; Nagano, O.; Nakayama, H.; Ota, K.; Obayashi, T.; Saya, H.; Shinohara, M. ADAM-17 associated with CD44 cleavage and metastasis in oral squamous cell carcinoma. Virchows Arch., 2007, 450(2), 169-177.
[http://dx.doi.org/10.1007/s00428-006-0350-y] [PMID: 17180679]
[217]
Nuti, E.; Casalini, F.; Avramova, S.I.; Santamaria, S.; Fabbi, M.; Ferrini, S.; Marinelli, L.; La Pietra, V.; Limongelli, V.; Novellino, E.; Cercignani, G.; Orlandini, E.; Nencetti, S.; Rossello, A. Potent arylsulfonamide inhibitors of tumor necrosis factor-α converting enzyme able to reduce activated leukocyte cell adhesion molecule shedding in cancer cell models. J. Med. Chem., 2010, 53(6), 2622-2635.
[http://dx.doi.org/10.1021/jm901868z] [PMID: 20180536]
[218]
Nuti, E.; Casalini, F.; Santamaria, S.; Fabbi, M.; Carbotti, G.; Ferrini, S.; Marinelli, L.; La Pietra, V.; Novellino, E.; Camodeca, C.; Orlandini, E.; Nencetti, S.; Rossello, A. Selective arylsulfonamide inhibitors of ADAM-17: Hit optimization and activity in ovarian cancer cell models. J. Med. Chem., 2013, 56(20), 8089-8103.
[http://dx.doi.org/10.1021/jm4011753] [PMID: 24044434]
[219]
Leung, C-H.; Liu, L-J.; Lu, L.; He, B.; Kwong, D.W.J.; Wong, C-Y.; Ma, D-L. A metal-based tumour necrosis factor-alpha converting enzyme inhibitor. Chem. Commun., 2015, 51(19), 3973-3976.
[http://dx.doi.org/10.1039/C4CC09251A] [PMID: 25610924]
[220]
Minond, D.; Cudic, M.; Bionda, N.; Giulianotti, M.; Maida, L.; Houghten, R.A.; Fields, G.B. Discovery of novel inhibitors of a disintegrin and metalloprotease 17 (ADAM17) using glycosylated and non-glycosylated substrates. J. Biol. Chem., 2012, 287(43), 36473-36487.
[http://dx.doi.org/10.1074/jbc.M112.389114] [PMID: 22927435]
[221]
Knapinska, A.M.; Dreymuller, D.; Ludwig, A.; Smith, L.; Golubkov, V.; Sohail, A.; Fridman, R.; Giulianotti, M.; LaVoi, T.M.; Houghten, R.A.; Fields, G.B.; Minond, D. SAR studies of exosite-binding substrate-selective inhibitors of a disintegrin and metalloprotease 17 (ADAM17) and application as selective in vitro probes. J. Med. Chem., 2015, 58(15), 5808-5824.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00354] [PMID: 26192023]
[222]
Hirata, M.; Ishigami, M.; Matsushita, Y.; Ito, T.; Hattori, H.; Hibi, H.; Goto, H.; Ueda, M.; Yamamoto, A. Multifaceted therapeutic benefits of factors derived from dental pulp stem cells for mouse liver fibrosis. Stem Cells Transl. Med., 2016, 5(10), 1416-1424.
[http://dx.doi.org/10.5966/sctm.2015-0353] [PMID: 27280796]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy