[1]
Santos-Laso, A.; Munoz-Garrido, P.; Felipe-Agirre, M.; Bujanda, L.; Banales, J.M.; Perugorria, M.J. New advances in the molecular mechanisms driving biliary fibrosis and emerging molecular targets. Curr. Drug Targets, 2017, 18(8), 908-920.
[2]
Tundis, R.; Loizzo, M.R.; Bonesi, M.; Menichini, F. Potential role of natural compounds against skin aging. Curr. Med. Chem., 2015, 22(12), 1515-1538.
[3]
Shoulders, M.D.; Raines, R.T. Collagen structure and stability. Annu. Rev. Biochem., 2009, 78, 929-958.
[4]
Gordon, M.K.; Hahn, R.A. Collagens. Cell Tissue Res., 2010, 339(1), 247-257.
[5]
Nagase, H.; Visse, R.; Murphy, G. Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc. Res., 2006, 69(3), 562-573.
[6]
Lauer-Fields, J.L.; Juska, D.; Fields, G.B. Matrix metalloproteinases and collagen catabolism. Biopolymers, 2002, 66(1), 19-32.
[7]
Overall, C.M.; López-Otín, C. Strategies for MMP inhibition in cancer: Innovations for the post trial era. Nat. Rev. Cancer, 2002, 2(9), 657-672.
[8]
Maradni, A.; Khoshnevisan, A.; Mousavi, S.H.; Emamirazavi, S.H.; Noruzijavidan, A. Role of matrix metalloproteinases (MMPs) and MMP inhibitors on intracranial aneurysms: A review article. Med. J. Islam. Repub. Iran, 2013, 27(4), 249-254.
[9]
Stolow, M.A.; Bauzon, D.D.; Li, J.; Sedgwick, T.; Liang, V.C.; Sang, Q.A.; Shi, Y.B. Identification and characterization of a novel collagenase in Xenopus laevis: possible roles during frog development. Mol. Biol. Cell, 1996, 7(10), 1471-1483.
[10]
Yu, Q.; Stamenkovic, I. Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Genes Dev., 2000, 14(2), 163-176.
[11]
McQuibban, G.A.; Gong, J.H.; Tam, E.M.; McCulloch, C.A.; Clark-Lewis, I.; Overall, C.M. Inflammation dampened by gelatinase A cleavage of monocyte chemoattractant protein-3. Science, 2000, 289(5482), 1202-1206.
[12]
Fernandez-Patron, C.; Radomski, M.W.; Davidge, S.T. Vascular matrix metalloproteinase-2 cleaves big endothelin-1 yielding a novel vasoconstrictor. Circ. Res., 1999, 85(10), 906-911.
[13]
Visse, R.; Nagase, H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: Structure, function, and biochemistry. Circ. Res., 2003, 92(8), 827-839.
[14]
Manzetti, S.; McCulloch, D.R.; Herington, A.C.; van der Spoel, D. Modeling of enzyme-substrate complexes for the metalloproteases MMP-3, ADAM-9 and ADAM-10. J. Comput. Aided Mol. Des., 2003, 17(9), 551-565.
[15]
Liu, Y.; Zhao, Y.; Lu, C.; Fu, M.; Dou, T.; Tan, X. Signatures of positive selection at hemopexin (PEX) domain of matrix metalloproteinase-9 (MMP-9) gene. J. Biosci., 2015, 40(5), 885-890.
[16]
Cheng, S.; Tada, M.; Hida, Y.; Asano, T.; Kuramae, T.; Takemoto, N.; Hamada, J.; Miyamoto, M.; Hirano, S.; Kondo, S.; Moriuchi, T. High MMP-1 mRNA expression is a risk factor for disease-free and overall survivals in patients with invasive breast carcinoma. J. Surg. Res., 2008, 146(1), 104-109.
[17]
Inoue, K.; Mikuni-Takagaki, Y.; Oikawa, K.; Itoh, T.; Inada, M.; Noguchi, T.; Park, J.S.; Onodera, T.; Krane, S.M.; Noda, M.; Itohara, S. A crucial role for matrix metalloproteinase 2 in osteocytic canalicular formation and bone metabolism. J. Biol. Chem., 2006, 281(44), 33814-33824.
[18]
Mehner, C.; Hockla, A.; Miller, E.; Ran, S.; Radisky, D.C.; Radisky, E.S. Tumor cell-produced matrix metalloproteinase 9 (MMP-9) drives malignant progression and metastasis of basal-like triple negative breast cancer. Oncotarget, 2014, 5(9), 2736-2749.
[19]
Pei, D.; Majmudar, G.; Weiss, S.J. Hydrolytic inactivation of a breast carcinoma cell-derived serpin by human stromelysin-3. J. Biol. Chem., 1994, 269(41), 25849-25855.
[20]
Luo, D.; Mari, B.; Stoll, I.; Anglard, P. Alternative splicing and promoter usage generates an intracellular stromelysin 3 isoform directly translated as an active matrix metalloproteinase. J. Biol. Chem., 2002, 277(28), 25527-25536.
[21]
Keles, D.; Arslan, B.; Terzi, C.; Tekmen, I.; Dursun, E.; Altungoz, O.; Oktay, G. Expression and activity levels of matrix metalloproteinase-7 and in situ localization of caseinolytic activity in colorectal cancer. Clin. Biochem., 2014, 47(13-14), 1265-1271.
[22]
Guan, P.P.; Yu, X.; Guo, J.J.; Wang, Y.; Wang, T.; Li, J.Y.; Konstantopoulos, K.; Wang, Z.Y.; Wang, P. By activating matrix metalloproteinase-7, shear stress promotes chondrosarcoma cell motility, invasion and lung colonization. Oncotarget, 2015, 6(11), 9140-9159.
[23]
Apte, S.S.; Fukai, N.; Beier, D.R.; Olsen, B.R. The matrix metalloproteinase-14 (MMP-14) gene is structurally distinct from other MMP genes and is co-expressed with the TIMP-2 gene during mouse embryogenesis. J. Biol. Chem., 1997, 272(41), 25511-25517.
[24]
Zigrino, P.; Ayachi, O.; Schild, A.; Kaltenberg, J.; Zamek, J.; Nischt, R.; Koch, M.; Mauch, C. Loss of epidermal MMP-14 expression interferes with angiogenesis but not with reepithelialization. Eur. J. Cell Biol., 2012, 91(10), 748-756.
[25]
Sekine-Aizawa, Y.; Hama, E.; Watanabe, K.; Tsubuki, S.; Kanai-Azuma, M.; Kanai, Y.; Arai, H.; Aizawa, H.; Iwata, N.; Saido, T.C. Matrix metalloproteinase (MMP) system in brain: identification and characterization of brain-specific MMP highly expressed in cerebellum. Eur. J. Neurosci., 2001, 13(5), 935-948.
[26]
Velasco, G.; Cal, S.; Merlos-Suárez, A.; Ferrando, A.A.; Alvarez, S.; Nakano, A.; Arribas, J.; López-Otín, C. Human MT6-matrix metalloproteinase: Identification, progelatinase A activation, and expression in brain tumors. Cancer Res., 2000, 60(4), 877-882.
[27]
Lamort, A.S.; Gravier, R.; Laffitte, A.; Juliano, L.; Zani, M.L.; Moreau, T. New insights into the substrate specificity of macrophage elastase MMP-12. Biol. Chem., 2016, 397(5), 469-484.
[28]
Cervinková, M.; Horák, P.; Kanchev, I.; Matěj, R.; Fanta, J.; Sequens, R.; Kašpárek, P.; Sarnová, L.; Turečková, J.; Sedláček, R. Differential expression and processing of matrix metalloproteinase 19 marks progression of gastrointestinal diseases. Folia Biol. (Praha), 2014, 60(3), 113-122.
[29]
Yu, G.; Kovkarova-Naumovski, E.; Jara, P.; Parwani, A.; Kass, D.; Ruiz, V.; Lopez-Otín, C.; Rosas, I.O.; Gibson, K.F.; Cabrera, S.; Ramírez, R.; Yousem, S.A.; Richards, T.J.; Chensny, L.J.; Selman, M.; Kaminski, N.; Pardo, A. Matrix metalloproteinase-19 is a key regulator of lung fibrosis in mice and humans. Am. J. Respir. Crit. Care Med., 2012, 186(8), 752-762.
[30]
Koli, K.; Saxena, G.; Ogbureke, K.U. Expression of matrix metalloproteinase (MMP)-20 and potential interaction with dentin sialophosphoprotein (DSPP) in human major salivary glands. J. Histochem. Cytochem., 2015, 63(7), 524-533.
[31]
Rodgers, U.R.; Kevorkian, L.; Surridge, A.K.; Waters, J.G.; Swingler, T.E.; Culley, K.; Illman, S.; Lohi, J.; Parker, A.E.; Clark, I.M. Expression and function of matrix metallopro-teinase (MMP)-28. Matrix Biol., 2009, 28(5), 263-272.
[32]
Chen, H.; Fok, K.L.; Yu, S.; Jiang, J.; Chen, Z.; Gui, Y.; Cai, Z.; Chan, H.C. CD147 is required for matrix metalloproteinases-2 production and germ cell migration during spermatogenesis. Mol. Hum. Reprod., 2011, 17(7), 405-414.
[33]
Ramón de Fata, F.; Ferruelo, A.; Andrés, G.; Gimbernat, H.; Sánchez-Chapado, M.; Angulo, J.C. The role of matrix metalloproteinase MMP-9 and TIMP-2 tissue inhibitor of metalloproteinases as serum markers of bladder cancer. Actas Urol. Esp., 2013, 37(8), 480-488.
[34]
Higashikata, T.; Yamagishi, M.; Sasaki, H.; Minatoya, K.; Ogino, H.; Ishibashi-Ueda, H.; Hao, H.; Nagaya, N.; Tomoike, H.; Sakamoto, A. Application of real-time RT-PCR to quantifying gene expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases in human abdominal aortic aneurysm. Atherosclerosis, 2004, 177(2), 353-360.
[35]
Ala-aho, R.; Kähäri, V.M. Collagenases in cancer. Biochimie, 2005, 87(3-4), 273-286.
[36]
Shuman Moss, L.A.; Jensen-Taubman, S.; Stetler-Stevenson, W.G. Matrix metalloproteinases: changing roles in tumor progression and metastasis. Am. J. Pathol., 2012, 181(6), 1895-1899.
[37]
Mohseni, S.; Moghadam, T.T.; Dabirmanesh, B.; Khajeh, K. Expression, purification, refolding and in vitro recovery of active full length recombinant human gelatinase MMP-9 in Escherichia coli. Protein Expr. Purif., 2016, 126, 42-48.
[38]
Rasch, M.G.; Lund, I.K.; Illemann, M.; Høyer-Hansen, G.; Gårdsvoll, H. Purification and characterization of recombinant full-length and protease domain of murine MMP-9 expressed in Drosophila S2 cells. Protein Expr. Purif., 2010, 72(1), 87-94.
[39]
Muta, Y.; Yasui, N.; Matsumiya, Y.; Kubo, M.; Inouye, K. Expression in Escherichia coli, refolding, and purification of the recombinant mature form of human matrix metalloproteinase 7 (MMP-7). Biosci. Biotechnol. Biochem., 2010, 74(12), 2515-2517.
[40]
Fields, G.B. Interstitial collagen catabolism. J. Biol. Chem., 2013, 288(13), 8785-8793.
[41]
Crowley, J.T.; Strle, K.; Drouin, E.E.; Pianta, A.; Arvikar, S.L.; Wang, Q.; Costello, C.E.; Steere, A.C. Matrix metalloproteinase-10 is a target of T and B cell responses that correlate with synovial pathology in patients with antibiotic-refractory Lyme arthritis. J. Autoimmun., 2016, 69, 24-37.
[42]
Paye, A.; Truong, A.; Yip, C.; Cimino, J.; Blacher, S.; Munaut, C.; Cataldo, D.; Foidart, J.M.; Maquoi, E.; Collignon, J.; Delvenne, P.; Jerusalem, G.; Noel, A.; Sounni, N.E. EGFR activation and signaling in cancer cells are enhanced by the membrane-bound metalloprotease MT4-MMP. Cancer Res., 2014, 74(23), 6758-6770.
[43]
Sedlacek, R.; Mauch, S.; Kolb, B.; Schätzlein, C.; Eibel, H.; Peter, H.H.; Schmitt, J.; Krawinkel, U. Matrix metalloproteinase MMP-19 (RASI-1) is expressed on the surface of activated peripheral blood mononuclear cells and is detected as an autoantigen in rheumatoid arthritis. Immunobiology, 1998, 198(4), 408-423.
[44]
Tamagno, G.; Vigolo, S.; Olivieri, M.; Martini, C.; De Carlo, E. From the rat to the beta cell: A fast and effective technique of separation of Langerhans islets and direct purification of pancreatic beta cells. Endocr. Res., 2014, 39(1), 18-21.
[45]
Kegel, V.; Deharde, D.; Pfeiffer, E.; Zeilinger, K.; Seehofer, D.; Damm, G. Protocol for isolation of primary human hepatocytes and corresponding major populations of non-parenchymal liver cells. J. Vis. Exp., 2016, (109), e53069.
[46]
Kuivaniemi, H.; Tromp, G.; Prockop, D.J. Mutations in collagen genes: causes of rare and some common diseases in humans. FASEB J., 1991, 5(7), 2052-2060.
[47]
Shi, L.; Ramsay, S.; Ermis, R.; Carson, D. pH in the bacteria-contaminated wound and its impact on Clostridium histo-lyticum collagenase activity: Implications for the use of collagenase wound debridement agents. J. Wound Ostomy Continence Nurs., 2011, 38(5), 514-521.
[48]
Bond, M.D.; Van Wart, H.E. Characterization of the individual collagenases from Clostridium histolyticum. Biochemistry, 1984, 23(13), 3085-3091.
[49]
Glyantsev, S.; Adamyan, A.; Sakharov, Y. Crab collagenase in wound debridement. J. Wound Care, 1997, 6(1), 13-16.
[50]
MacLennan, J.D.; Mandl, I.; Howes, E.L. Bacterial digestion of collagen. J. Clin. Invest., 1953, 32(12), 1317-1322.
[51]
Thomas, A.; Bayat, A. The emerging role of Clostridium histolyticum collagenase in the treatment of Dupuytren disease. Ther. Clin. Risk Manag., 2010, 6, 557-572.
[52]
Watanabe, K. Collagenolytic proteases from bacteria. Appl. Microbiol. Biotechnol., 2004, 63(5), 520-526.
[53]
Klimova, O.A.; Borukhov, S.I.; Solovyeva, N.I.; Balaevskaya, T.O. Strongin AYa, The isolation and properties of collagenolytic proteases from crab hepatopancreas. Biochem. Biophys. Res. Commun., 1990, 166(3), 1411-1420.
[54]
Sakharov, I.Y.; Litvin, F.E. Stability of serine collagenolytic protease A from hepatopancreas of crab Paralithodes camtschatica. Comp. Biochem. Physiol. B Biochem. Mol. Biol., 1990, 97(3), 407-410.
[55]
Sakharov, I.Y.; Litvin, F.E.; Artyukov, A.A. Purification and characterization of two serine collagenolytic proteases from crab Paralithodes camtschatica. Comp. Biochem. Physiol. Biochem. Mol. Biol., 1994, 108(4), 561-568.
[56]
Sakharov, I.Y.; Litvin, F.E.; Mitkevitch, O.V.; Samokhin, G.P.; Bespalova, Z.D. Substrate specificity of collagenolytic proteases from the king crab Paralithodes camtschatica. Comp. Biochem. Physiol. Biochem. Mol. Biol., 1994, 107(3), 411-417.
[57]
Grant, G.A.; Henderson, K.O.; Eisen, A.Z.; Bradshaw, R.A. Amino acid sequence of a collagenolytic protease from the hepatopancreas of the fiddler crab, Uca pugilator. Biochemistry, 1980, 19(20), 4653-4659.
[58]
Welgus, H.G.; Grant, G.A. Degradation of collagen substrates by a trypsin-like serine protease from the fiddler crab Uca pugilator. Biochemistry, 1983, 22(9), 2228-2233.
[59]
Duarte, A.S.; Pereira, A.O.; Cabrita, A.M.; Moir, A.J.; Pires, E.M.; Barros, M.M. The characterisation of the collagenolytic activity of cardosin a demonstrates its potential application for extracellular matrix degradative processes. Curr. Drug Discov. Technol., 2005, 2(1), 37-44.
[60]
Pereira, A.O.; Cartucho, D.J.; Duarte, A.S.; Gil, M.H.; Cabrita, A.M.; Patrício, J.A.; Barros, M.M. Immobilisation of cardosin A in chitosan sponges as a novel implant for drug delivery. Curr. Drug Discov. Technol., 2005, 2(4), 231-238.
[61]
Corvo, I.; Cancela, M.; Cappetta, M.; Pi-Denis, N.; Tort, J.F.; Roche, L. The major cathepsin L secreted by the invasive juvenile Fasciola hepatica prefers proline in the S2 subsite and can cleave collagen. Mol. Biochem. Parasitol., 2009, 167(1), 41-47.
[62]
Hamdy, H.S. Extracellular collagenase from Rhizoctonia solani: Production, purification and characterization. Indian J. Biotechnol., 2008, 7, 333-340.
[63]
Savvateeva, L.V.; Gorokhovets, N.V.; Makarov, V.A.; Serebryakova, M.V.; Solovyev, A.G.; Morozov, S.Y.; Reddy, V.P.; Zernii, E.Y.; Zamyatnin, A.A., Jr; Aliev, G. Glutenase and collagenase activities of wheat cysteine protease Triticain-α: feasibility for enzymatic therapy assays. Int. J. Biochem. Cell Biol., 2015, 62, 115-124.
[64]
Gorokhovets, N.V.; Makarov, V.A.; Petushkova, A.I.; Prokopets, O.S.; Rubtsov, M.A.; Savvateeva, L.V.; Zernii, E.Y.; Zamyatnin, A.A., Jr Rational design of recombinant papain-like cysteine protease: Optimal domain structure and expression conditions for wheat-derived enzyme triticain-α. Int. J. Mol. Sci., 2017, 18(7), E1395.
[65]
Kim, M.; Hamilton, S.E.; Guddat, L.W.; Overall, C.M. Plant collagenase: unique collagenolytic activity of cysteine proteases from ginger. Biochim. Biophys. Acta, 2007, 1770(12), 1627-1635.
[66]
Taga, Y.; Kusubata, M.; Ogawa-Goto, K.; Hattori, S. Efficient absorption of x-hydroxyproline (hyp)-gly after oral administration of a novel gelatin hydrolysate prepared using ginger protease. J. Agric. Food Chem., 2016, 64(14), 2962-2970.
[67]
Souchet, N.; Laplante, S. Recovery and characterization of a serine collagenolytic extract from snow crab (Chionoecetes opilio) by-products. Appl. Biochem. Biotechnol., 2011, 163(6), 765-779.
[68]
Papisova, A.I.; Javadov, A.; Rudenskaya, Y.A.; Balandina, G.N.; Zhantiev, R.D.; Korsunovskaia, O.S.; Dunaevsky, Y.E.; Rudenskaya, G.N. Novel cathepsin L-like protease from dermestid beetle Dermestes frischii maggot. Biochimie, 2011, 93(2), 141-148.
[69]
Kristjánsson, M.M.; Guthmundsdóttir, S.; Fox, J.W.; Bjarnason, J.B. Characterization of a collagenolytic serine proteinase from the Atlantic cod (Gadus morhua). Comp. Biochem. Physiol. B Biochem. Mol. Biol., 1995, 110(4), 707-717.
[70]
Lima, C.A.; Marques, D.A.; Barros Neto, B.; Lima Filho, J.L.; Carneiro-da-Cunha, M.G.; Porto, A.L. Fermentation medium for collagenase production by Penicillium aurantiogriseum URM4622. Biotechnol. Prog., 2011, 27(5), 1470-1477.
[71]
Bogacheva, A.M.; Rudenskaya, G.N.; Dunaevsky, Y.E.; Chestuhina, G.G.; Golovkin, B.N. New subtilisin-like collagenase from leaves of common plantain. Biochimie, 2001, 83(6), 481-486.
[72]
Bracho, G.E.; Haard, N.F. Identification of two matrix metal-loproteinases in the skeletal muscle of Pacific rockfish (Se-bastes sp.). J. Food Biochem., 1995, 19(4), 299-319.
[73]
Uesugi, Y.; Arima, J.; Usuki, H.; Iwabuchi, M.; Hatanaka, T. Two bacterial collagenolytic serine proteases have different topological specificities. Biochim. Biophys. Acta, 2008, 1784(4), 716-726.
[74]
Luan, X.; Chen, J.; Zhang, X.H.; Li, Y.; Hu, G. Expression and characterization of a metalloprotease from a Vibrio parahaemolyticus isolate. Can. J. Microbiol., 2007, 53(10), 1168-1173.
[75]
Miyoshi, S.; Nakazawa, H.; Kawata, K.; Tomochika, K.; Tobe, K.; Shinoda, S. Characterization of the hemorrhagic reaction caused by Vibrio vulnificus metalloprotease, a member of the thermolysin family. Infect. Immun., 1998, 66(10), 4851-4855.
[76]
Olutiola, P.O.N.; Growth, R.I. sporulation and production of maltase and proteolytic enzymes in Aspergillus aculeatus. Trans. Br. Mycol. Soc., 1982, 78(1), 105-113.
[77]
Zhu, W.S.; Wojdyla, K.; Donlon, K.; Thomas, P.A.; Eberle, H.I. Extracellular proteases of Aspergillus flavus. Fungal keratitis, proteases, and pathogenesis. Diagn. Microbiol. Infect. Dis., 1990, 13(6), 491-497.
[78]
Suphatharaprateep, W.; Cheirsilp, B.; Jongjareonrak, A. Production and properties of two collagenases from bacteria and their application for collagen extraction. N. Biotechnol., 2011, 28(6), 649-655.
[79]
Wu, Q.; Li, C.; Li, C.; Chen, H.; Shuliang, L. Purification and characterization of a novel collagenase from Bacillus pumilus Col-J. Appl. Biochem. Biotechnol., 2010, 160(1), 129-139.
[80]
Roy, P.; Colas, B.; Durand, P. Purification, kinetical and molecular characterizations of a serine collagenolytic protease from greenshore crag (Carcinus maenas) digestive gland. Comp. Biochem. Physiol. B Biochem. Mol. Biol., 1996, 115(1), 87-95.
[81]
Matsushita, O.; Yoshihara, K.; Katayama, S.; Minami, J.; Okabe, A. Purification and characterization of Clostridium perfringens 120-kilodalton collagenase and nucleotide sequence of the corresponding gene. J. Bacteriol., 1994, 176(1), 149-156.
[82]
Iida, Y.; Nakagawa, T.; Nagayama, F. Properties of collagenolytic proteinase in Japanese spiny lobster and horsehair crab hepatopancreas. Comp. Biochem. Physiol. B Biochem. Mol. Biol., 1991, 98(2-3), 403-410.
[83]
Takahashi, S.; Seifter, S. An Enzyme with collagenolytic activity from dog pancreatic juice. Isr. J. Chem., 1974, 12(1‐2), 557-571.
[84]
Lecroisey, A.; Boulard, C.; Keil, B. Chemical and enzymatic characterization of the collagenase from the insect Hypoderma lineatum. Eur. J. Biochem., 1979, 101(2), 385-393.
[85]
Lecroisey, A.; Keil, B. Specificity of the collagenase from the insect Hypoderma lineatum. Eur. J. Biochem., 1985, 152(1), 123-130.
[86]
Burgos-Hernández, A.; Farias, S.I.; Torres-Arreola, W.; Ezquerra-Brauer, J.M. In vitro studies of the effects of afla-toxin B 1 and fumonisin B 1 on trypsin-like and collagenase-like activity from the hepatopancreas of white shrimp (Litopenaeus vannamei). Aquaculture, 2005, 250(1), 399-410.
[87]
Kim, S-K.; Park, P-J.; Kim, J-B.; Shahidi, F. Purification and characterization of a collagenolytic protease from the filefish, Novoden modestrus. J. Biochem. Mol. Biol., 2002, 35(2), 165-171.
[88]
Aoki, H.; Ahsan, M.N.; Matsuo, K.; Hagiwara, T.; Watabe, S. Purification and characterization of collagenolytic proteases from the hepatopancreas of northern shrimp (Pandalus eous). J. Agric. Food Chem., 2003, 51(3), 777-783.
[89]
Yoshinaka, R.; Sato, M.; Yamashita, M.; Itoko, M.; Ikeda, S. Specificity of the collagenolytic serine proteinase from the pancreas of the catfish (Parasilurus asotus). Comp. Biochem. Physiol. B, 1987, 88(2), 557-561.
[90]
Tsai, I.H.; Lu, P.J.; Chuang, J.L. The midgut chymotrypsins of shrimps (Penaeus monodon, Penaeus japonicus and Penaeus penicillatus). Biochim. Biophys. Acta, 1991, 1080(1), 59-67.
[91]
Kato, T.; Takahashi, N.; Kuramitsu, H.K. Sequence analysis and characterization of the Porphyromonas gingivalis prtC gene, which expresses a novel collagenase activity. J. Bacteriol., 1992, 174(12), 3889-3895.
[92]
Teruel, S.; Simpson, B. Characterization of the collagenolytic enzyme fraction from winter flounder (Pseudopleuronectes americanus). Comp. Biochem. Physiol. B Biochem. Mol. Biol., 1995, 112(1), 131-136.
[93]
Alexander, M.E.; Dresden, M.H. Collagenolytic enzymes from the starfish, Pycnopodia helianthoides. Comp. Biochem. Physiol. B Biochem. Mol. Biol., 1980, 67(4), 505-509.
[94]
Jeffrey, J.J.; Gross, J. Collagenase from rat uterus. Isolation and partial characterization. Biochemistry, 1970, 9(2), 268-273.
[95]
Tokoro, Y.; Eisen, A.Z.; Jeffrey, J.J. Characterization of a collagenase from rat skin. Biochim. Biophys. Acta, 1972, 258(1), 289-302.
[96]
Park, P.J.; Lee, S.H.; Byun, H.G.; Kim, S.H.; Kim, S.K. Purification and characterization of a collagenase from the mackerel, Scomber japonicus. J. Biochem. Mol. Biol., 2002, 35(6), 576-582.
[97]
Sivakumar, P.; Sampath, P.; Chandrakasan, G. Collagenolyt-ic metalloprotease (gelatinase) from the hepatopancreas of the marine crab, Scylla serrata. Comp. Biochem. Physiol. B Biochem. Mol. Biol., 1999, 123(3), 273-279.
[98]
Yoshinaka, R.; Sato, M.; Ikeda, S. Studies on collagenase in fish, 2: Some properties of a collagenase from the pyloric caeca of Seriola quinqueradiata. Nippon Suisan Gakkaishi, 42(4), 455-463.
[99]
Yoshinaka, R.; Sato, M.; Ikeda, S. Studies on collagenase in fish, 3: Purification and properties of a collagenase from the pyloric caeca of yellow-tail. Nihon-suisan-gakkai-shi, 1977, 43(10), 1195-1201.
[100]
Juarez, Z.E.; Stinson, M.W. An extracellular protease of Streptococcus gordonii hydrolyzes type IV collagen and collagen analogues. Infect. Immun., 1999, 67(1), 271-278.
[101]
Jain, R.; Jain, P.C. Production and partial characterization of collagenase of Streptomyces exfoliatus CFS 1068 using poultry feather. Indian J. Exp. Biol., 2010, 48(2), 174-178.
[102]
Byun, H.G.; Park, P.J.; Sung, N.I.; Kim, S.K. Purification and characterization of a serine proteinase from the tuna pyloric caeca. J. Food Biochem., 2002, 26(6), 479-494.
[103]
Sorsa, T.; Ding, Y.L.; Ingman, T.; Salo, T.; Westerlund, U.; Haapasalo, M.; Tschesche, H.; Konttinen, Y.T. Cellular source, activation and inhibition of dental plaque collagenase. J. Clin. Periodontol., 1995, 22(9), 709-717.
[104]
Barrett, A.J.A. Aspartic and Metallo Peptidases.Handbook of Proteolytic Enzymes, 2nd ed; , 2004, p. 1.
[105]
Gross, J.; Nagai, Y. Specific degradation of the collagen molecule by tadpole collagenolytic enzyme. Proc. Natl. Acad. Sci. USA, 1965, 54(4), 1197-1204.
[106]
Ramundo, J.; Gray, M. Collagenase for enzymatic debridement: A systematic review. J. Wound Ostomy Continence Nurs., 2009, 36(6)(Suppl.), S4-S11.
[107]
Waycaster, C.; Milne, C.T. Clinical and economic benefit of enzymatic debridement of pressure ulcers compared to autolytic debridement with a hydrogel dressing. J. Med. Econ., 2013, 16(7), 976-986.
[108]
Motley, T.A.; Lange, D.L.; Dickerson, J.E., Jr; Slade, H.B. Clinical outcomes associated with serial sharp debridement of diabetic foot ulcers with and without clostridial collagenase ointment. Wounds, 2014, 26(3), 57-64.
[109]
Hoppe, I.C.; Granick, M.S. Debridement of chronic wounds: A qualitative systematic review of randomized controlled trials. Clin. Plast. Surg., 2012, 39(3), 221-228.
[110]
Duarte, A.S.; Correia, A.; Esteves, A.C. Bacterial collagenases - A review. Crit. Rev. Microbiol., 2016, 42(1), 106-126.
[111]
Tallis, A.; Motley, T.A.; Wunderlich, R.P.; Dickerson, J.E., Jr; Waycaster, C.; Slade, H.B. Collagenase Diabetic Foot Ulcer Study, G. Clinical and economic assessment of diabetic foot ulcer debridement with collagenase: results of a random-ized controlled study. Clin. Ther., 2013, 35(11), 1805-1820.
[112]
McCallon, S.K.; Weir, D.; Lantis, J.C., II Optimizing wound bed preparation with collagenase enzymatic debridement. J. Am. Coll. Clin. Wound Spec., 2015, 6(1-2), 14-23.
[113]
Sheets, A.R.; Demidova-Rice, T.N.; Shi, L.; Ronfard, V.; Grover, K.V.; Herman, I.M. Identification and characterization of novel matrix-derived bioactive peptides: A role for collagenase from santyl® ointment in post-debridement wound healing? PLoS One, 2016, 11(7), e0159598.
[114]
Rudenskaya, G.; Isaev, V.; Shmoylov, A.; Karabasova, M.; Shvets, S.; Miroshnikov, A.; Brusov, A. Preparation of pro-teolytic enzymes from Kamchatka crab Paralithodes camchat-ica hepatopancreas and their application. Appl. Biochem. Biotechnol., 2000, 88(1-3), 175-183.
[115]
Shmoilov, A.M.; Rudenskaya, G.N.; Isaev, V.A.; Baydakov, A.V.; Zhantiev, R.D.; Korsunovskaya, O.S.; Ageeva, L.V.; Starikova, N.V. A comparative study of collagenase complex and new homogeneous collagenase preparations for scar treatment. J. Drug Deliv. Sci. Technol., 2006, 16(4), 285-292.
[116]
Sandakhchiev, L.S.; Stavskii, E.A.; Zinov’ey, V.V.; Nazarov, V.P.; Renau, I.V.; Satrikhina, T.N.; Katkova, L.R.; Krinitsin, L.A.; Markovich, N.A.; Kolesnikova, L.V. Effect of ointment containing king crab collagenase on infected wound. Bull. Exp. Biol. Med., 1997, 124(4), 992-995.
[117]
Manosroi, A.; Chankhampan, C.; Pattamapun, K.; Manosroi, W.; Manosroi, J. Antioxidant and gelatinolytic activities of papain from papaya latex and bromelain from pineapple fruits. Chiang Mai J.Sci., 2014, 41(3), 635-648.
[118]
Guzman, A.V.; Stein De Guzman, M.G. The enzymatic debridement of suppurations, necrotic lesions and burns with papain. J. Int. Coll. Surg., 1953, 20(6), 695-702.
[119]
Langer, V.; Bhandari, P.S.; Rajagopalan, S.; Mukherjee, M.K. Enzymatic debridement of large burn wounds with papain-urea: Is it safe? Med. J. Armed Forces India, 2013, 69(2), 144-150.
[120]
Levine, N.; Seifter, E.; Connerton, C.; Levenson, S.M. Debridement of experimental skin burns of pigs with bromelain, a pineapple-stem enzyme. Plast. Reconstr. Surg., 1973, 52(4), 413-424.
[121]
Rosenberg, L.; Shoham, Y.; Krieger, Y.; Rubin, G.; Sander, F.; Koller, J.; David, K.; Egosi, D.; Ahuja, R.; Singer, A.J. Minimally invasive burn care: A review of seven clinical studies of rapid and selective debridement using a bromelain-based debriding enzyme (Nexobrid®). Ann. Burns Fire Disasters, 2015, 28(4), 264-274.
[122]
Klasen, H.J. A review on the nonoperative removal of necrotic tissue from burn wounds. Burns, 2000, 26(3), 207-222.
[123]
Rob, C.; Singer, A. “Debricin”: A new agent for wound debridement. BMJ, 1959, 2(5159), 1069-1071.
[124]
Kadioglu, A.; Boyuk, A.; Salabas, E. Re: Clinical Efficacy of Collagenase Clostridium histolyticum in the Treatment of Peyronie’s Disease by Subgroups: Results from Two Large, Double-blind, Randomized, Placebo-controlled, Phase III Studies. Eur. Urol., 2015, 68(5), 908-909.
[125]
Dhillon, S. Collagenase Clostridium Histolyticum: A Review in Peyronie’s Disease. Drugs, 2015, 75(12), 1405-1412.
[126]
Gelbard, M.K.; Chagan, L.; Tursi, J.P. Collagenase Clostridium histolyticum for the treatment of Peyronie’s Disease: The development of this novel pharmacologic approach. J. Sex. Med., 2015, 12(6), 1481-1489.
[127]
Alwaal, A.; Hussein, A.A.; Zaid, U.B.; Lue, T.F. Management of Peyronie’s disease after collagenase (Xiaflex:®). Curr. Drug Targets, 2015, 16(5), 484-494.
[128]
Watt, A.J.H.V.R. Collagenase clostridium histolyticum: A novel nonoperative treatment for Dupuytren’s disease. Int. J. Clin. Rheumatol., 2011, 6(2), 123-133.
[129]
Warwick, D.; Arandes-Renú, J.M.; Pajardi, G.; Witthaut, J.; Hurst, L.C. Collagenase Clostridium histolyticum: Emerging practice patterns and treatment advances. J. Plast. Surg. Hand Surg., 2016, 50(5), 251-261.
[130]
Rubin, G.; Rinott, M.; Wolovelsky, A.; Rosenberg, L.; Shoham, Y.; Rozen, N. A new bromelain-based enzyme for the release of Dupuytren’s contracture: Dupuytren’s enzymatic bromelain-based release. Bone Joint Res., 2016, 5(5), 175-177.
[131]
Sangkum, P.; Yafi, F.A.; Kim, H.; Bouljihad, M.; Ranjan, M.; Datta, A.; Mandava, S.H.; Sikka, S.C.; Abdel-Mageed, A.B.; Moparty, K.; Hellstrom, W.J. Collagenase Clostridium histolyticum (Xiaflex) for the treatment of urethral stricture disease in a rat model of urethral fibrosis. Urology, 2015, 86(3), e641-e646.
[132]
Kang, N.; Sivakumar, B.; Sanders, R.; Nduka, C.; Gault, D. Intra-lesional injections of collagenase are ineffective in the treatment of keloid and hypertrophic scars. J. Plast. Reconstr. Aesthet. Surg., 2006, 59(7), 693-699.
[133]
Bae-Harboe, Y.S.; Harboe-Schmidt, J.E.; Graber, E.; Gilchrest, B.A. Collagenase followed by compression for the treatment of earlobe keloids. Dermatol. Surg., 2014, 40(5), 519-524.
[134]
Paramonov, B.A. Turkovskii, II; Bondarev, S.V. [Application of enzymes for treatment of patients with hypertrophic cicatrices] Vestn. Khir. Im. I I Grek., 2007, 166(4), 84-85.
[135]
Lebedev, O.I. [Regulation of reparative processes in glaucoma surgery by collalysin]. Vestn. Oftalmol., 1989, 105(3), 4-6.
[136]
Cakir, M.; Tekin, A.; Kucukkartallar, T.; Yılmaz, H.; Belviranlı, M.; Kartal, A. Effectiveness of collagenase in preventing postoperative intra-abdominal adhesions. Int. J. Surg., 2013, 11(6), 487-491.
[137]
Aysan, E.; Bektas, H.; Ersoz, F.; Behzat, K. Role of single-dose clostridiopeptidase A collagenase in peritoneal adhesions. European surgical research. Eur. Surg. Res., 2011, 47(3), 130-134.
[138]
Zhang, D.; Zhang, Y.; Wang, Z.; Zhang, X.; Sheng, M. Target radiofrequency combined with collagenase chemonucleolysis in the treatment of lumbar intervertebral disc herniation. Int. J. Clin. Exp. Med., 2015, 8(1), 526-532.
[139]
Simmons, J.W.; Nordby, E.J.; Hadjipavlou, A.G. Chemonucleolysis: The state of the art. Eur. Spine J., 2001, 10(3), 192-202.
[140]
Johnson, K.; Zhu, S.; Tremblay, M.S.; Payette, J.N.; Wang, J.; Bouchez, L.C.; Meeusen, S.; Althage, A.; Cho, C.Y.; Wu, X.; Schultz, P.G. A stem cell-based approach to cartilage repair. Science, 2012, 336(6082), 717-721.
[141]
Bertassoni, L.E.; Marshall, G.W. Papain-gel degrades intact nonmineralized type I collagen fibrils. Scanning, 2009, 31(6), 253-258.
[142]
Dayem, R.N.; Tameesh, M.A. A new concept in hybridization: Bromelain enzyme for deproteinizing dentin before application of adhesive system. Contemp. Clin. Dent., 2013, 4(4), 421-426.
[143]
Chernyakov, A.R.S. Method for producing a combined preparation exhibiting collagenase activity., 2009.
[144]
Cazander, G.; Pritchard, D.I.; Nigam, Y.; Jung, W.; Nibbering, P.H. Multiple actions of Lucilia sericata larvae in hard-to-heal wounds: larval secretions contain molecules that accelerate wound healing, reduce chronic inflammation and inhibit bacterial infection. BioEssays, 2013, 35(12), 1083-1092.
[145]
Chambers, L.; Woodrow, S.; Brown, A.P.; Harris, P.D.; Phillips, D.; Hall, M.; Church, J.C.; Pritchard, D.I. Degradation of extracellular matrix components by defined proteinases from the greenbottle larva Lucilia sericata used for the clinical debridement of non-healing wounds. Br. J. Dermatol., 2003, 148(1), 14-23.
[146]
Li, Z.J.; Kim, S.M. The application of the starfish hatching enzyme for the improvement of scar and keloid based on the fibroblast-populated collagen lattice. Appl. Biochem. Biotechnol., 2014, 173(4), 989-1002.
[147]
Turkiewicz, M.; Galas, E.; Kalinowska, H. Collagenolytic serine proteinase from Euphausia superba Dana (Antarctic krill). Comp. Biochem. Physiol. B, 1991, 99(2), 359-371.
[148]
Mekkes, J.R.; Le Poole, I.C.; Das, P.K.; Bos, J.D.; Westerhof, W. Efficient debridement of necrotic wounds using proteolytic enzymes derived from Antarctic krill: a double-blind, placebo-controlled study in a standardized animal wound model. Wound Repair Regen., 1998, 6(1), 50-57.
[149]
Westerhof, W.; van Ginkel, C.J.; Cohen, E.B.; Mekkes, J.R. Prospective randomized study comparing the debriding effect of krill enzymes and a non-enzymatic treatment in venous leg ulcers. Dermatologica, 1990, 181(4), 293-297.
[150]
Lee, S-G.; Koh, H-Y.; Lee, H-K.; Yim, J-H. Possible roles of Antarctic krill proteases for skin regeneration. Ocean Polar Res., 2008, 30(4), 467-472.
[151]
Rajesh, R.; Shivaprasad, H.V.; Gowda, C.D.R.; Nataraju, A.; Dhananjaya, B.L.; Vishwanath, B.S. Comparative study on plant latex proteases and their involvement in hemostasis: A special emphasis on clot inducing and dissolving properties. Planta Med., 2007, 73(10), 1061-1067.
[152]
Yariswamy, M.; Shivaprasad, H.V.; Joshi, V.; Nanjaraj Urs, A.N.; Nataraju, A.; Vishwanath, B.S. Topical application of serine proteases from Wrightia tinctoria R. Br. (Apocyanaceae) latex augments healing of experimentally induced excision wound in mice. J. Ethnopharmacol., 2013, 149(1), 377-383.
[153]
Kemparaju, K.; Manasagangothri, M. Biochemical characterization of protease isoforms in cucumber sap extract. Int. J. Pharm. Phytopharmacol. Res, 2014, 4(2), 77-83.