Generic placeholder image

Current Alzheimer Research

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Review Article

miRNAs in Alzheimer Disease – A Therapeutic Perspective

Author(s): Priya Gupta, Surajit Bhattacharjee, Ashish Ranjan Sharma, Garima Sharma, Sang-Soo Lee* and Chiranjib Chakraborty*

Volume 14, Issue 11, 2017

Page: [1198 - 1206] Pages: 9

DOI: 10.2174/1567205014666170829101016

Price: $65

Abstract

Background: Alzheimer's disease is a neurodegenerative disorder which generally affects people who are more than 60 years of age. The disease is clinically characterised by dementia, loss of cognitive functions and massive neurodegeneration. The presence of neurofibrilary tangles and amyloid plaques in the hippocampal region of the brain are the hallmarks of the disease. Current therapeutic approaches for the treatment of Alzheimer's disease are symptomatic and disease modifying, none of which provide any permanent solution or cure for the disease. Dysregulation of miRNAs is one of the major causes of neurodegeneration.

Conclusion: In the present review, the roles of different miRNAs such as miR-9, miR-107, miR-29, miR-34, miR-181, miR-106, miR-146a, miR132, miR124a, miR153 has been discussed in detail in the pathogenesis of various neurodegenerative diseases with special focus on AD. The probability of miRNAs as an alternative and more sensitive approach for detection and management of the AD has also been discussed.

Keywords: Alzheimer's disease, neurodegeneration, miRNAs, therapeutics, dementia, neural plaques.

[1]
Cogswell JP, Ward J, Taylor IA, Waters M, Shi Y, Cannon B, et al. Identification of miRNA changes in Alzheimer’s disease brain and CSF yields putative biomarkers and insights into disease pathways. J Alzheimers Dis 14(1): 27-41. (2008).
[2]
Tana S. Alzheimer’s disease – opportunities to address pharmaceutical gaps. In: Kaplan W, Laing R, editors. Priority medi-cines for Europe and the world – A public health approach to innovation. Geneva (Switzerland): World Health Organization: 3–6 (2004).
[3]
Klafki HW, Staufenbiel M, Kornhuber J, Wiltfang J. Therapeutic approaches to Alzheimer’s disease. Brain 129(Pt 11): 2840-55. (2006).
[4]
Glenner GG, Wong CW. Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 120(3): 885-90. (1984).
[5]
Provost P. Interpretation and applicability of microRNA data to the context of Alzheimer’s and age-related diseases. Aging (Albany NY) 2(3): 166-9. (2010).
[6]
Allen JS, Dawbarn D. Pathophysiology of Alzheimer’s disease. Oxford Medicine DOI:10.1093/med/9780199569854.003.0004 (2009).
[7]
Bullock R. Future directions in the treatment of Alzheimer’s disease. Expert Opin Investig Drugs 13(4): 303-14. (2004).
[8]
Cummings JL. Alzheimer’s disease. N Engl J Med 351(1): 56-67. (2004).
[9]
He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5(7): 522-31. Review. Erratum in: Nat Rev Genet 5(8):631(2004)
[10]
Maciotta S, Meregalli M, Torrente Y. The involvement of microRNAs in neurodegenerative diseases. Front Cell Neurosci 7: 265. (2013).
[11]
Jakob-Roetne R, Jacobsen H. Alzheimer’s disease: from pathology to therapeutic approaches. Angew Chem Int Ed Engl 48(17): 3030-59. (2009).
[12]
Alzheimer A, Stelzmann RA, Schnitzlein HN, Murtagh FR. An English translation of Alzheimer’s 1907 paper, “Uber eine eigenartige Erkankung der Hirnrinde. Clin Anat 8(6): 429-31. (1995).
[13]
Shaffer JL, Petrella JR, Sheldon FC, Choudhury KR, Calhoun VD, Coleman RE, et al. Alzheimer’s Disease Neuroimaging Initiative. Predicting cognitive decline in subjects at risk for Alzheimer disease by using combined cerebrospinal fluid, MR imaging, and PET biomarkers. Radiology 266(2): 583-91. (2013).
[14]
Jackson-Siegal J. Our current understanding of the pathophysiology of Alzheimers Disease. Adv Stud Pharm 2(4): 126-35. (2005).
[15]
Goedert M, Klug A, Crowther RA. Tau protein, the paired helical filament and Alzheimer’s disease. J Alzheimers Dis 9(3)(Suppl.): 195-07. (2006).
[16]
Femminella GD, Ferrara N, Rengo G. The emerging role of microRNAs in Alzheimer’s disease. Front Physiol 6: 40. (2015).
[17]
Goodall EF, Heath PR, Bandmann O, Kirby J, Shaw PJ. Neuronal dark matter: the emerging role of microRNAs in neurodegeneration. Front Cell Neurosci 7: 178. (2013).
[18]
Sempere LF, Freemantle S, Pitha-Rowe I, Moss E, Dmitrovsky E, Ambros V. Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol 5(3): R13. (2004).
[19]
Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A, et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129(7): 1401-14. (2007).
[20]
Shtilbans A, Henchcliffe C. Biomarkers in Parkinson’s disease: an update. Curr Opin Neurol 25(4): 460-5. (2012).
[21]
Junn E, Lee KW, Jeong BS, Chan TW, Im JY, Mouradian MM. Repression of alpha-synuclein expression and toxicity by microRNA-7. Proc Natl Acad Sci USA 106(31): 13052-7. (2009).
[22]
Cho HJ, Liu G, Jin SM, Parisiadou L, Xie C, Yu J, et al. MicroRNA-205 regulates the expression of Parkinson’s disease-related leucine-rich repeat kinase 2 protein. Hum Mol Genet 22(3): 608-20. (2013).
[23]
Wang G, van der Walt JM, Mayhew G, Li YJ, Züchner S, Scott WK, et al. Variation in the miRNA-433 binding site of FGF20 confers risk for Parkinson disease by overexpression of alpha-synuclein. Am J Hum Genet 82(2): 283-9. (2008).
[24]
Williams AH, Valdez G, Moresi V, Qi X, McAnally J, Elliott JL, et al. MicroRNA-206 delays ALS progression and promotes regeneration of neuromuscular synapses in mice. Science 326(5959): 1549-54. (2009).
[25]
Rao PK, Kumar RM, Farkhondeh M, Baskerville S, Lodish HF. Myogenic factors that regulate expression of muscle-specific microRNAs. Proc Natl Acad Sci USA 103(23): 8721-6. (2006).
[26]
Chen JF, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM, et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet 38(2): 228-33. (2006).
[27]
Fox MA, Sanes JR, Borza DB, Eswarakumar VP, Fässler R, Hudson BG, et al. Distinct target-derived signals organize formation, maturation, and maintenance of motor nerve terminals. Cell 129(1): 179-93. (2007).
[28]
Li Z, Lu Y, Xu XL, Gao FB. The FTD/ALS-associated RNA-binding protein TDP-43 regulates the robustness of neuronal specification through microRNA-9a in Drosophila. Hum Mol Genet 22(2): 218-25. (2013).
[29]
Campos-Melo D, Droppelmann CA, He Z, Volkening K, Strong MJ. Altered microRNA expression profile in Amyotrophic Lateral Sclerosis: a role in the regulation of NFL mRNA levels. Mol Brain 6: 26. (2013).
[30]
Koval ED, Shaner C, Zhang P, du Maine X, Fischer K, Tay J, et al. Method for widespread microRNA-155 inhibition prolongs survival in ALS-model mice. Hum Mol Genet 22(20): 4127-35. (2013).
[31]
Johnson R, Zuccato C, Belyaev ND, Guest DJ, Cattaneo E, Buckley NJ. A microRNA-based gene dysregulation pathway in Huntington’s disease. Neurobiol Dis 29(3): 438-45. (2008).
[32]
Packer AN, Xing Y, Harper SQ, Jones L, Davidson BL. The bifunctional microRNA miR-9/miR-9* regulates REST and CoREST and is downregulated in Huntington’s disease. J Neurosci 28(53): 14341-6. (2008).
[33]
Barbash S, Soreq H. Threshold-independent meta-analysis of Alzheimer’s disease transcriptomes shows progressive changes in hippocampal functions, epigenetics and microRNA regulation. Curr Alzheimer Res 9(4): 425-35. (2012).
[34]
Kong Y, Wu J, Yuan L. MicroRNA expression analysis of adult-onset Drosophila Alzheimer’s disease model. Curr Alzheimer Res 11(9): 882-91. (2014).
[35]
Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, et al. Characterization of microRNAs in a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 18(10): 997-1006. (2008).
[36]
Etheridge A, Lee I, Hood L, Galas D, Wang K. Extracellular microRNA: a new source of biomarkers. Mutat Res 717(1-2): 85-90. (2011).
[37]
Wang WX, Huang Q, Hu Y, Stromberg AJ, Nelson PT. Patterns of microRNA expression in normal and early Alzheimer’s disease human temporal cortex: white matter versus gray matter. Acta Neuropathol 121(2): 193-205. (2011).
[38]
Geekiyanage H, Jicha GA, Nelson PT, Chan C. Blood serum miRNA: non-invasive biomarkers for Alzheimer’s disease. Exp Neurol 235(2): 491-6. (2012).
[39]
Nelson PT, Wang WX. MiR-107 is reduced in Alzheimer’s disease brain neocortex: validation study. J Alzheimers Dis 21(1): 75-9. (2010).
[40]
Hébert SS, Horré K, Nicolaï L, Papadopoulou AS, Mandemakers W, Silahtaroglu AN, et al. Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer’s disease correlates with increased BACE1/beta-secretase expression. Proc Natl Acad Sci USA 105(17): 6415-20. (2008).
[41]
Villa C, Ridolfi E, Fenoglio C, Ghezzi L, Vimercati R, Clerici F, et al. Expression of the transcription factor Sp1 and its regulatory hsa-miR-29b in peripheral blood mononuclear cells from patients with Alzheimer’s disease. J Alzheimers Dis 35(3): 487-94. (2013).
[42]
Zovoilis A, Agbemenyah HY, Agis-Balboa RC, Stilling RM, Edbauer D, Rao P, et al. microRNA-34c is a novel target to treat dementias. EMBO J 30(20): 4299-308. (2011).
[43]
Schonrock N, Matamales M, Ittner LM, Götz J. MicroRNA networks surrounding APP and amyloid-β metabolism--implications for Alzheimer’s disease. Exp Neurol 235(2): 447-54. (2012).
[44]
Sethi P, Lukiw WJ. Micro-RNA abundance and stability in human brain: specific alterations in Alzheimer’s disease temporal lobe neocortex. Neurosci Lett 459(2): 100-4. (2009).
[45]
Smith P, Al Hashimi A, Girard J, Delay C, Hébert SS. In vivo regulation of amyloid precursor protein neuronal splicing by microRNAs. J Neurochem 116(2): 240-7. (2011).
[46]
Long JM, Ray B, Lahiri DK. MicroRNA-153 physiologically inhibits expression of amyloid-β precursor protein in cultured human fetal brain cells and is dysregulated in a subset of Alzheimer disease patients. J Biol Chem 287(37): 31298-310. (2012).
[47]
Dickson JR, Kruse C, Montagna DR, Finsen B, Wolfe MS. Alternative polyadenylation and miR-34 family members regulate tau expression. J Neurochem 127(6): 739-49. (2013).
[48]
Absalon S, Kochanek DM, Raghavan V, Krichevsky AM. MiR-26b, upregulated in Alzheimer’s disease, activates cell cycle entry, tau-phosphorylation, and apoptosis in postmitotic neurons. J Neurosci 33(37): 14645-59. (2013).
[49]
Fang M, Wang J, Zhang X, Geng Y, Hu Z, Rudd JA, et al. The miR-124 regulates the expression of BACE1/β-secretase correlated with cell death in Alzheimer’s disease. Toxicol Lett 209(1): 94-105. (2012).
[50]
Rosario PW. Normal values of serum IGF-1 in adults: results from a Brazilian population. Arq Bras Endocrinol Metabol 54(5): 477-81. (2010).
[51]
Hu YK, Wang X, Li L, Du YH, Ye HT, Li CY. MicroRNA-98 induces an Alzheimer’s disease-like disturbance by targeting insulin-like growth factor 1. Neurosci Bull 29(6): 745-51. (2013).
[52]
Jayadev S, Case A, Alajajian B, Eastman AJ, Möller T, Garden GA. Presenilin 2 influences miR146 level and activity in microglia. J Neurochem 127(5): 592-9. (2013).
[53]
Gonzalez-Alegre P. Therapeutic RNA interference for neurodegenerative diseases: from promise to progress. Pharmacol Ther 114(1): 34-55. (2007).
[54]
Ling S, Zhou J, Rudd JA, Hu Z, Fang M. The recent updates of therapeutic approaches against aβ for the treatment of Alzheimer’s disease. Anat Rec (Hoboken) 294(8): 1307-18. (2011).
[55]
Nana-Sinkam SP, Croce CM. Clinical applications for microRNAs in cancer. Clin Pharmacol Ther 93(1): 98-104. (2013).
[56]
Whitehead KA, Langer R, Anderson DG. Knocking down barriers: advances in siRNA delivery. Nat Rev Drug Discov 8(2): 129-38. (2009).
[57]
Uyechi LS, Gagné L, Thurston G, Szoka FC Jr. Mechanism of lipoplex gene delivery in mouse lung: binding and internalization of fluorescent lipid and DNA components. Gene Ther 8(11): 828-36. (2001).
[58]
Balyasnikova IV, Yeomans DC, McDonald TB, Danilov SM. Antibody-mediated lung endothelium targeting: in vivo model on primates. Gene Ther 9(4): 282-90. (2002).
[59]
Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 29(4): 341-5. (2011).
[60]
Krützfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, et al. Silencing of microRNAs in vivo with ‘antagomirs’. Nature 438(7068): 685-9. (2005).
[61]
Kluiver J, Slezak-Prochazka I, Smigielska-Czepiel K, Halsema N, Kroesen BJ, van den Berg A. Generation of miRNA sponge constructs. Methods 58(2): 113-7. (2012).
[62]
Ebert MS, Sharp PA. MicroRNA sponges: progress and possibilities. RNA 16(11): 2043-50. (2010).
[63]
Danborg PB, Simonsen AH, Waldemar G, Heegaard NH. The potential of microRNAs as biofluid markers of neurodegenerative diseases--a systematic review. Biomarkers 19(4): 259-68. (2014).
[64]
Lukiw WJ, Alexandrov PN, Zhao Y, Hill JM, Bhattacharjee S. Spreading of Alzheimer’s disease inflammatory signaling through soluble micro-RNA. Neuroreport 23(10): 621-6. (2012).

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy