[1]
National Institute on Aging, NIH. 2014-2015 Alzheimer's
Disease Progress Report: Advancing Research Toward a
Cure; National Institute on Aging: , 2015; pp. 1-59.
[2]
Mayeux, R.; Stern, Y. Epidemiology of Alzheimer disease. Cold Spring Harb. Perspect. Med., 2012, 2(8), a006239.
[3]
Zhang, C. Natural compounds that modulate BACE1-processing of amyloid-beta precursor protein in Alzheimer’s disease. Discov. Med., 2012, 14(76), 189-197.
[4]
Sisodia, S.S.; Tanzi, R.E., Eds.; Alzheimer’s disease: Advances in Genetics, Molecular and Cellular Biology; Springer: Boston, 2007.
[5]
Citron, M. Alzheimer’s disease: strategies for disease modification. Nat. Rev. Drug Discov., 2010, 9(5), 387-398.
[6]
Aguzzi, A.; O’Connor, T. Protein aggregation diseases: pathogenicity and therapeutic perspectives. Nat. Rev. Drug Discov., 2010, 9(3), 237-248.
[7]
Karran, E.; Mercken, M.; De Strooper, B. The amyloid cascade hypothesis for Alzheimer’s disease: an appraisal for the development of therapeutics. Nat. Rev. Drug Discov., 2011, 10(9), 698-712.
[8]
Ehrnhoefer, D.E.; Wong, B.K.; Hayden, M.R. Convergent pathogenic pathways in Alzheimer’s and Huntington’s diseases: shared targets for drug development. Nat. Rev. Drug Discov., 2011, 10(11), 853-867.
[9]
Noble, W.; Hanger, D.P.; Miller, C.C.; Lovestone, S. The importance of tau phosphorylation for neurodegenerative diseases. Front. Neurol., 2013, 4, 83.
[10]
Ittner, L.M.; Götz, J. Amyloid-β and tau--a toxic pas de deux in Alzheimer’s disease. Nat. Rev. Neurosci., 2011, 12(2), 65-72.
[11]
Rojo, L.E.; Fernández, J.A.; Maccioni, A.A.; Jimenez, J.M.; Maccioni, R.B. Neuroinflammation: implications for the pathogenesis and molecular diagnosis of Alzheimer’s disease. Arch. Med. Res., 2008, 39(1), 1-16.
[12]
Martin, L.; Latypova, X.; Wilson, C.M.; Magnaudeix, A.; Perrin, M.L.; Yardin, C.; Terro, F. Tau protein kinases: Involvement in Alzheimer’s disease. Ageing Res. Rev., 2013, 12(1), 289-309.
[13]
Kontaxi, C.; Piccardo, P.; Gill, A.C. Lysine-directed post-translational modifications of tau protein in Alzheimer’s disease and related tauopathies. Front. Mol. Biosci., 2017, 4, 56.
[14]
Asai, H.; Ikezu, S.; Woodbury, M.E.; Yonemoto, G.M.; Cui, L.; Ikezu, T. Accelerated neurodegeneration and neuroinflammation in transgenic mice expressing P301L tau mutant and tau-tubulin kinase 1. Am. J. Pathol., 2014, 184(3), 808-818.
[15]
Ikezu, S.; Ikezu, T. Tau-tubulin kinase. Front. Mol. Neurosci., 2014, 7, 33.
[16]
Liao, J.C.; Yang, T.T.; Weng, R.R.; Kuo, C.T.; Chang, C.W. TTBK2: a tau protein kinase beyond tau phosphorylation. BioMed Res. Int., 2015, 2015, 575170.
[17]
Sato, S.; Cerny, R.L.; Buescher, J.L.; Ikezu, T. Tau-tubulin kinase 1 (TTBK1), a neuron-specific tau kinase candidate, is involved in tau phosphorylation and aggregation. J. Neurochem., 2006, 98(5), 1573-1584.
[18]
Chen, C.; Gu, J.; Basurto-Islas, G.; Jin, N.; Wu, F.; Gong, C.X.; Iqbal, K.; Liu, F. Up-regulation of casein kinase 1ε is involved in tau pathogenesis in Alzheimer’s disease. Sci. Rep., 2017, 7(1), 13478.
[19]
Ando, K.; Maruko-Otake, A.; Ohtake, Y.; Hayashishita, M.; Sekiya, M.; Iijima, K.M. Stabilization of microtubule-unbound tau via tau phosphorylation at Ser262/356 by Par-1/MARK contributes to augmentation of AD-related phosphorylation and Aβ42-induced tau toxicity. PLoS Genet., 2016, 12(3), e1005917.
[20]
Fernius, J.; Starkenberg, A.; Pokrzywa, M.; Thor, S. Human TTBK1, TTBK2 and MARK1 kinase toxicity in Drosophila melanogaster is exacerbated by co-expression of human Tau. Biol. Open, 2017, 6(7), 1013-1023.
[21]
Wang, Y.; Yang, R.; Gu, J.; Yin, X.; Jin, N.; Xie, S.; Wang, Y.; Chang, H.; Qian, W.; Shi, J.; Iqbal, K.; Gong, C.X.; Cheng, C.; Liu, F. Cross talk between PI3K-AKT-GSK-3β and PP2A pathways determines tau hyperphosphorylation. Neurobiol. Aging, 2015, 36(1), 188-200.
[22]
Bemiller, S.M.; McCray, T.J.; Allan, K.; Formica, S.V.; Xu, G.; Wilson, G.; Kokiko-Cochran, O.N.; Crish, S.D.; Lasagna-Reeves, C.A.; Ransohoff, R.M.; Landreth, G.E.; Lamb, B.T. TREM2 deficiency exacerbates tau pathology through dysregulated kinase signaling in a mouse model of tauopathy. Mol. Neurodegener., 2017, 12(1), 74.
[23]
Planel, E.; Richter, K.E.; Nolan, C.E.; Finley, J.E.; Liu, L.; Wen, Y.; Krishnamurthy, P.; Herman, M.; Wang, L.; Schachter, J.B.; Nelson, R.B.; Lau, L.F.; Duff, K.E. Anesthesia leads to tau hyperphosphorylation through inhibition of phosphatase activity by hypothermia. J. Neurosci., 2007, 27(12), 3090-3097.
[24]
Tan, W.; Cao, X.; Wang, J.; Lv, H.; Wu, B.; Ma, H. Tau hyperphosphorylation is associated with memory impairment after exposure to 1.5% isoflurane without temperature maintenance in rats. Eur. J. Anaesthesiol., 2010, 27(9), 835-841.
[25]
Planel, E.; Tatebayashi, Y.; Miyasaka, T.; Liu, L.; Wang, L.; Herman, M.; Yu, W.H.; Luchsinger, J.A.; Wadzinski, B.; Duff, K.E.; Takashima, A. Insulin dysfunction induces in vivo tau hyperphosphorylation through distinct mechanisms. J. Neurosci., 2007, 27(50), 13635-13648.
[26]
Chen, Y.; Dai, C.L.; Wu, Z.; Iqbal, K.; Liu, F.; Zhang, B.; Gong, C.X. Intranasal insulin prevents anesthesia-induced cognitive Impairment and chronic neurobehavioral changes. Front. Aging Neurosci., 2017, 9, 136.
[27]
Wang, Z.H.; Liu, P.; Liu, X.; Manfredsson, F.P.; Sandoval, I.M.; Yu, S.P.; Wang, J.Z.; Ye, K. Delta-secretase phosphorylation by SRPK2 enhances its enzymatic activity, provoking pathogenesis in Alzheimer’s disease. Mol. Cell, 2017, 67(5), 812-825.e5.
[28]
Hugon, J.; Mouton-Liger, F.; Dumurgier, J.; Paquet, C. PKR involvement in Alzheimer’s disease. Alzheimers Res. Ther., 2017, 9(1), 83.
[29]
Deas, E.; Wood, N.W.; Plun-Favreau, H. Mitophagy and Parkinson’s disease: the PINK1-parkin link. Biochim. Biophys. Acta, 2011, 1813(4), 623-633.
[30]
Ding, W.X.; Yin, X.M. Mitophagy: mechanisms, pathophysiological roles, and analysis. Biol. Chem., 2012, 393(7), 547-564.
[31]
Fivenson, E.M.; Lautrup, S.; Sun, N.; Scheibye-Knudsen, M.; Stevnsner, T.; Nilsen, H.; Bohr, V.A.; Fang, E.F. Mitophagy in neurodegeneration and aging. Neurochem. Int., 2017, 109, 202-209.
[32]
Kerr, J.S.; Adriaanse, B.A.; Greig, N.H.; Mattson, M.P.; Cader, M.Z.; Bohr, V.A.; Fang, E.F. Mitophagy and Alzheimer’s disease: cellular and molecular mechanisms. Trends Neurosci., 2017, 40(3), 151-166.
[33]
Gallardo, G.; Holtzman, D.M. Antibody therapeutics targeting Aβ and tau. Cold Spring Harb. Perspect. Med., 2017, 7(10), a024331.
[34]
Misiak, M.; Vergara Greeno, R.; Baptiste, B.A.; Sykora, P.; Liu, D.; Cordonnier, S.; Fang, E.F.; Croteau, D.L.; Mattson, M.P.; Bohr, V.A. DNA polymerase β decrement triggers death of olfactory bulb cells and impairs olfaction in a mouse model of Alzheimer’s disease. Aging Cell, 2017, 16(1), 162-172.
[35]
Wisniewski, T.; Drummond, E. Developing therapeutic vaccines against Alzheimer’s disease. Expert Rev. Vaccines, 2016, 15(3), 401-415.
[36]
Hou, Y.; Song, H.; Croteau, D.L.; Akbari, M.; Bohr, V.A. Genome instability in Alzheimer disease. Mech. Ageing
Dev, 2017. 161(Pt A), 83-94.
[37]
Wolfe, M.S. Therapeutic strategies for Alzheimer’s disease. Nat. Rev. Drug Discov., 2002, 1(11), 859-866.
[38]
Bedford, L.; Lowe, J.; Dick, L.R.; Mayer, R.J.; Brownell, J.E. Ubiquitin-like protein conjugation and the ubiquitin-proteasome system as drug targets. Nat. Rev. Drug Discov., 2011, 10(1), 29-46.
[39]
Jameel, E.; Meena, P.; Maqbool, M.; Kumar, J.; Ahmed, W.; Mumtazuddin, S.; Tiwari, M.; Hoda, N.; Jayaram, B. Rational design, synthesis and biological screening of triazine-triazolopyrimidine hybrids as multitarget anti-Alzheimer agents. Eur. J. Med. Chem., 2017, 136, 36-51.
[40]
Ofengeim, D.; Shi, P.; Miao, B.; Fan, J.; Xia, X.; Fan, Y.; Lipinski, M.M.; Hashimoto, T.; Polydoro, M.; Yuan, J.; Wong, S.T.; Degterev, A. Identification of small molecule inhibitors of neurite loss induced by Aβ peptide using high content screening. J. Biol. Chem., 2012, 287(12), 8714-8723.
[41]
Ma, T.; Trinh, M.A.; Wexler, A.J.; Bourbon, C.; Gatti, E.; Pierre, P.; Cavener, D.R.; Klann, E. Suppression of eIF2α kinases alleviates Alzheimer’s disease-related plasticity and memory deficits. Nat. Neurosci., 2013, 16(9), 1299-1305.
[42]
Kornelius, E.; Lin, C.L.; Chang, H.H.; Li, H.H.; Huang, W.N.; Yang, Y.S.; Lu, Y.L.; Peng, C.H.; Huang, C.N. DPP-4 inhibitor linagliptin attenuates Aβ-induced cytotoxicity through activation of AMPK in neuronal cells. CNS Neurosci. Ther., 2015, 21(7), 549-557.
[43]
Ding, Y.; Dellisanti, C.D.; Ko, M.H.; Czajkowski, C.; Puglielli, L. The endoplasmic reticulum-based acetyltransferases, ATase1 and ATase2, associate with the oligosaccharyltransferase to acetylate correctly folded polypeptides. J. Biol. Chem., 2014, 289(46), 32044-32055.
[44]
Ding, Y.; Ko, M.H.; Pehar, M.; Kotch, F.; Peters, N.R.; Luo, Y.; Salamat, S.M.; Puglielli, L. Biochemical inhibition of the acetyltransferases ATase1 and ATase2 reduces β-secretase (BACE1) levels and Aβ generation. J. Biol. Chem., 2012, 287(11), 8424-8433.
[45]
May, P.C.; Dean, R.A.; Lowe, S.L.; Martenyi, F.; Sheehan, S.M.; Boggs, L.N.; Monk, S.A.; Mathes, B.M.; Mergott, D.J.; Watson, B.M.; Stout, S.L.; Timm, D.E.; Smith Labell, E.; Gonzales, C.R.; Nakano, M.; Jhee, S.S.; Yen, M.; Ereshefsky, L.; Lindstrom, T.D.; Calligaro, D.O.; Cocke, P.J.; Greg Hall, D.; Friedrich, S.; Citron, M.; Audia, J.E. Robust central reduction of amyloid-β in humans with an orally available, non-peptidic β-secretase inhibitor. J. Neurosci., 2011, 31(46), 16507-16516.
[46]
Di Paolo, G.; Kim, T.W. Linking lipids to Alzheimer’s disease: cholesterol and beyond. Nat. Rev. Neurosci., 2011, 12(5), 284-296.
[47]
Liu, L.; Martin, R.; Kohler, G.; Chan, C. Palmitate induces transcriptional regulation of BACE1 and presenilin by STAT3 in neurons mediated by astrocytes. Exp. Neurol., 2013, 248, 482-490.
[48]
Chang, W.H.; Chen, M.C.; Cheng, I.H. Antroquinonol lowers brain amyloid-β levels and improves spatial learning and memory in a transgenic mouse model of Alzheimer’s disease. Sci. Rep., 2015, 5, 15067.
[49]
Svedružić, Ž.M.; Popović, K.; Šendula-Jengić, V. Modulators of γ-secretase activity can facilitate the toxic side-effects and pathogenesis of Alzheimer’s disease. PLoS One, 2013, 8(1), e50759.
[50]
Benilova, I.; Karran, E.; De Strooper, B. The toxic Aβ oligomer and Alzheimer’s disease: an emperor in need of clothes. Nat. Neurosci., 2012, 15(3), 349-357.
[51]
Wang, H.Y.; Bakshi, K.; Frankfurt, M.; Stucky, A.; Goberdhan, M.; Shah, S.M.; Burns, L.H. Reducing amyloid-related Alzheimer’s disease pathogenesis by a small molecule targeting filamin A. J. Neurosci., 2012, 32(29), 9773-9784.
[52]
De Jager, P.L.; Srivastava, G.; Lunnon, K.; Burgess, J.; Schalkwyk, L.C.; Yu, L.; Eaton, M.L.; Keenan, B.T.; Ernst, J.; McCabe, C.; Tang, A.; Raj, T.; Replogle, J.; Brodeur, W.; Gabriel, S.; Chai, H.S.; Younkin, C.; Younkin, S.G.; Zou, F.; Szyf, M.; Epstein, C.B.; Schneider, J.A.; Bernstein, B.E.; Meissner, A.; Ertekin-Taner, N.; Chibnik, L.B.; Kellis, M.; Mill, J.; Bennett, D.A. Alzheimer’s disease: early alterations in brain DNA methylation at ANK1, BIN1, RHBDF2 and other loci. Nat. Neurosci., 2014, 17(9), 1156-1163.
[53]
Matousek, S.B.; Ghosh, S.; Shaftel, S.S.; Kyrkanides, S.; Olschowka, J.A.; O’Banion, M.K. Chronic IL-1β-mediated neuroinflammation mitigates amyloid pathology in a mouse model of Alzheimer’s disease without inducing overt neurodegeneration. J. Neuroimmune Pharmacol., 2012, 7(1), 156-164.
[54]
Vom Berg, J.; Prokop, S.; Miller, K.R.; Obst, J.; Kälin, R.E.; Lopategui-Cabezas, I.; Wegner, A.; Mair, F.; Schipke, C.G.; Peters, O.; Winter, Y.; Becher, B.; Heppner, F.L. Inhibition of IL-12/IL-23 signaling reduces Alzheimer’s disease-like pathology and cognitive decline. Nat. Med., 2012, 18(12), 1812-1819.
[55]
Liu, L.; Chan, C. IPAF inflammasome is involved in interleukin-1β production from astrocytes, induced by palmitate; implications for Alzheimer’s Disease. Neurobiol. Aging, 2014, 35(2), 309-321.
[56]
Bradshaw, E.M.; Chibnik, L.B.; Keenan, B.T.; Ottoboni, L.; Raj, T.; Tang, A.; Rosenkrantz, L.L.; Imboywa, S.; Lee, M.; Von Korff, A.; Morris, M.C.; Evans, D.A.; Johnson, K.; Sperling, R.A.; Schneider, J.A.; Bennett, D.A.; De Jager, P.L.; De-Jager, P.L. CD33 Alzheimer’s disease locus: altered monocyte function and amyloid biology. Nat. Neurosci., 2013, 16(7), 848-850.
[57]
Yanamandra, K.; Kfoury, N.; Jiang, H.; Mahan, T.E.; Ma, S.; Maloney, S.E.; Wozniak, D.F.; Diamond, M.I.; Holtzman, D.M. Anti-tau antibodies that block tau aggregate seeding in vitro markedly decrease pathology and improve cognition in vivo. Neuron, 2013, 80(2), 402-414.
[58]
Lim, S.; Haque, M.M.; Nam, G.; Ryoo, N.; Rhim, H.; Kim, Y.K. Monitoring of intracellular tau aggregation regulated by OGA/OGT inhibitors. Int. J. Mol. Sci., 2015, 16(9), 20212-20224.
[59]
Yang, Y.; Song, W. Molecular links between Alzheimer’s disease and diabetes mellitus. Neuroscience, 2013, 250, 140-150.
[60]
Correia, S.C.; Santos, R.X.; Carvalho, C.; Cardoso, S.; Candeias, E.; Santos, M.S.; Oliveira, C.R.; Moreira, P.I. Insulin signaling, glucose metabolism and mitochondria: Major players in Alzheimer’s disease and diabetes interrelation. Brain Res., 2012, 1441, 64-78.
[61]
Zhang, Z.; Zhao, R.; Qi, J.; Wen, S.; Tang, Y.; Wang, D. Inhibition of glycogen synthase kinase-3β by Angelica sinensis extract decreases β-amyloid-induced neurotoxicity and tau phosphorylation in cultured cortical neurons. J. Neurosci. Res., 2011, 89(3), 437-447.
[62]
Zhang, Y.; Yin, F.; Liu, J.; Liu, Z. Geniposide attenuates the phosphorylation of tau protein in cellular and insulin-deficient APP/PS1 transgenic mouse model of Alzheimer’s disease. Chem. Biol. Drug Des., 2016, 87(3), 409-418.
[63]
Knudsen, L.B. Liraglutide: the therapeutic promise from animal models. Int. J. Clin. Pract. Suppl., 2010, 167(167), 4-11.
[64]
Chen, S.; An, F.M.; Yin, L.; Liu, A.R.; Yin, D.K.; Yao, W.B.; Gao, X.D. Glucagon-like peptide-1 protects hippocampal neurons against advanced glycation end product-induced tau hyperphosphorylation. Neuroscience, 2014, 256, 137-146.
[65]
Ma, D.L.; Chen, F.Q.; Xu, W.J.; Yue, W.Z.; Yuan, G.; Yang, Y. Early intervention with glucagon-like peptide 1 analog liraglutide prevents tau hyperphosphorylation in diabetic db/db mice. J. Neurochem., 2015, 135(2), 301-308.
[66]
Wei, Y.; Han, C.; Wang, Y.; Wu, B.; Su, T.; Liu, Y.; He, R. Ribosylation triggering Alzheimer’s disease-like Tau hyperphosphorylation via activation of CaMKII. Aging Cell, 2015, 14(5), 754-763.
[67]
Li, X.H.; Xie, J.Z.; Jiang, X.; Lv, B.L.; Cheng, X.S.; Du, L.L.; Zhang, J.Y.; Wang, J.Z.; Zhou, X.W. Methylglyoxal induces tau hyperphosphorylation via promoting AGEs formation. Neuromolecular Med., 2012, 14(4), 338-348.
[68]
Xie, M.; Han, Y.; Yu, Q.; Wang, X.; Wang, S.; Liao, X. UCH-L1 inhibition decreases the microtubule-binding function of tau protein. J. Alzheimers Dis., 2016, 49(2), 353-363.
[69]
Kim, B.M.; You, M.H.; Chen, C.H.; Lee, S.; Hong, Y.; Hong, Y.; Kimchi, A.; Zhou, X.Z.; Lee, T.H. Death-associated protein kinase 1 has a critical role in aberrant tau protein regulation and function. Cell Death Dis., 2014, 5, e1237.
[70]
Li, W.; Jiang, M.; Xiao, Y.; Zhang, X.; Cui, S.; Huang, G. Folic acid inhibits tau phosphorylation through regulation of PP2A methylation in SH-SY5Y cells. J. Nutr. Health Aging, 2015, 19(2), 123-129.
[71]
Frost, B.; Hemberg, M.; Lewis, J.; Feany, M.B. Tau promotes neurodegeneration through global chromatin relaxation. Nat. Neurosci., 2014, 17(3), 357-366.
[72]
Tai, H.C.; Schuman, E.M. Ubiquitin, the proteasome and protein degradation in neuronal function and dysfunction. Nat. Rev. Neurosci., 2008, 9(11), 826-838.
[73]
Deardorff, W.J.; Grossberg, G.T. A fixed-dose combination of memantine extended-release and donepezil in the treatment of moderate-to-severe Alzheimer’s disease. Drug Des. Devel. Ther., 2016, 10, 3267-3279.
[74]
Amemori, T.; Jendelova, P.; Ruzicka, J.; Urdzikova, L.M.; Sykova, E. Alzheimer’s disease: Mechanism and approach to cell therapy. Int. J. Mol. Sci., 2015, 16(11), 26417-26451.
[75]
Kang, J.M.; Yeon, B.K.; Cho, S.J.; Suh, Y.H. Stem cell therapy for Alzheimer’s disease: a review of recent clinical trials. J. Alzheimers Dis., 2016, 54(3), 879-889.
[76]
Romanyuk, N.; Amemori, T.; Turnovcova, K.; Prochazka, P.; Onteniente, B.; Sykova, E.; Jendelova, P. Beneficial Effect of Beneficial effect of human induced pluripotent stem cell-derived neural precursors in spinal cord injury repair. Cell Transplant., 2015, 24(9), 1781-1797.
[77]
Cha, M.Y.; Kwon, Y.W.; Ahn, H.S.; Jeong, H.; Lee, Y.Y.; Moon, M.; Baik, S.H.; Kim, D.K.; Song, H.; Yi, E.C.; Hwang, D.; Kim, H.S.; Mook-Jung, I. Protein-induced pluripotent stem cells ameliorate cognitive dysfunction and reduce Aβ deposition in a mouse model of Alzheimer’s disease. Stem Cells Transl. Med., 2017, 6(1), 293-305.
[78]
Amemori, T.; Ruzicka, J.; Romanyuk, N.; Jhanwar-Uniyal, M.; Sykova, E.; Jendelova, P. Comparison of intraspinal and intrathecal implantation of induced pluripotent stem cell-derived neural precursors for the treatment of spinal cord injury in rats. Stem Cell Res. Ther., 2015, 6, 257.
[79]
Pires, C.; Schmid, B.; Petræus, C.; Poon, A.; Nimsanor, N.; Nielsen, T.T.; Waldemar, G.; Hjermind, L.E.; Nielsen, J.E.; Hyttel, P.; Freude, K.K. Generation of a gene-corrected isogenic control cell line from an Alzheimer’s disease patient iPSC line carrying a A79V mutation in PSEN1. Stem Cell Res. (Amst.), 2016, 17(2), 285-288.
[80]
Poon, A.; Schmid, B.; Pires, C.; Nielsen, T.T.; Hjermind, L.E.; Nielsen, J.E.; Holst, B.; Hyttel, P.; Freude, K.K. Generation of a gene-corrected isogenic control hiPSC line derived from a familial Alzheimer’s disease patient carrying a L150P mutation in presenilin 1. Stem Cell Res. (Amst.), 2016, 17(3), 466-469.
[81]
Yang, J.; Li, S.; He, X.B.; Cheng, C.; Le, W. Induced pluripotent stem cells in Alzheimer’s disease: applications for disease modeling and cell-replacement therapy. Mol. Neurodegener., 2016, 11(1), 39.
[82]
Liu, J.; Yang, B.; Ke, J.; Li, W.; Suen, W.C. Antibody-based drugs and approaches against amyloid-β species for Alzheimer’s disease immunotherapy. Drugs Aging, 2016, 33(10), 685-697.
[83]
Wisniewski, T.; Goñi, F. Immunotherapeutic approaches for Alzheimer’s disease. Neuron, 2015, 85(6), 1162-1176.
[84]
Xing, H.Y.; Li, B.; Peng, D.; Wang, C.Y.; Wang, G.Y.; Li, P.; Le, Y.Y.; Wang, J.M.; Ye, G.; Chen, J.H. A novel monoclonal antibody against the N-terminus of Aβ1-42 reduces plaques and improves cognition in a mouse model of Alzheimer’s disease. PLoS One, 2017, 12(6), e0180076.
[85]
Cuddy, L.K.; Seah, C.; Pasternak, S.H.; Rylett, R.J. Amino-terminal β-amyloid antibody blocks β-amyloid-mediated inhibition of the high-affinity choline transporter CHT. Front. Mol. Neurosci., 2017, 10, 361.
[86]
Schneider, A.R.; Sari, Y. Therapeutic perspectives of drugs targeting Toll-like receptors based on immune physiopathology theory of Alzheimer’s disease. CNS Neurol. Disord. Drug Targets, 2014, 13(5), 909-920.
[87]
Scholtzova, H.; Do, E.; Dhakal, S.; Sun, Y.; Liu, S.; Mehta, P.D.; Wisniewski, T. Innate immunity stimulation via toll-like receptor 9 ameliorates vascular amyloid pathology in Tg-SwDI mice with associated cognitive benefits. J. Neurosci., 2017, 37(4), 936-959.
[88]
Munke, A.; Persson, J.; Weiffert, T.; De Genst, E.; Meisl, G.; Arosio, P.; Carnerup, A.; Dobson, C.M.; Vendruscolo, M.; Knowles, T.P.J.; Linse, S. Phage display and kinetic selection of antibodies that specifically inhibit amyloid self-replication. Proc. Natl. Acad. Sci. USA, 2017, 114(25), 6444-6449.
[89]
Liu, W.; Zhao, L.; Blackman, B.; Parmar, M.; Wong, M.Y.; Woo, T.; Yu, F.; Chiuchiolo, M.J.; Sondhi, D.; Kaminsky, S.M.; Crystal, R.G.; Paul, S.M. Vectored intracerebral immunization with the anti-tau monoclonal antibody PHF1 markedly reduces tau pathology in mutant tau transgenic mice. J. Neurosci., 2016, 36(49), 12425-12435.
[90]
Novak, P.; Schmidt, R.; Kontsekova, E.; Zilka, N.; Kovacech, B.; Skrabana, R.; Vince-Kazmerova, Z.; Katina, S.; Fialova, L.; Prcina, M.; Parrak, V.; Dal-Bianco, P.; Brunner, M.; Staffen, W.; Rainer, M.; Ondrus, M.; Ropele, S.; Smisek, M.; Sivak, R.; Winblad, B.; Novak, M. Safety and immunogenicity of the tau vaccine AADvac1 in patients with Alzheimer’s disease: a randomised, double-blind, placebo-controlled, phase 1 trial. Lancet Neurol., 2017, 16(2), 123-134.
[91]
West, T.; Hu, Y.; Verghese, P.B.; Bateman, R.J.; Braunstein, J.B.; Fogelman, I.; Budur, K.; Florian, H.; Mendonca, N.; Holtzman, D.M. Preclinical and clinical development of ABBV-8E12, a humanized anti-tau antibody, for treatment of Alzheimer’s disease and other tauopathies. J. Prev. Alzheimers Dis., 2017, 4(4), 236-241.
[92]
Dai, C.L.; Tung, Y.C.; Liu, F.; Gong, C.X.; Iqbal, K. Tau passive immunization inhibits not only tau but also Aβ pathology. Alzheimers Res. Ther., 2017, 9(1), 1.
[93]
Amirrad, F.; Bousoik, E.; Shamloo, K.; Al-Shiyab, H.; Nguyen, V.V.; Montazeri Aliabadi, H. Alzheimer’s disease: Dawn of a new era? J. Pharm. Pharm. Sci., 2017, 20(0), 184-225.
[94]
Sevigny, J.; Chiao, P.; Bussière, T.; Weinreb, P.H.; Williams, L.; Maier, M.; Dunstan, R.; Salloway, S.; Chen, T.; Ling, Y.; O’Gorman, J.; Qian, F.; Arastu, M.; Li, M.; Chollate, S.; Brennan, M.S.; Quintero-Monzon, O.; Scannevin, R.H.; Arnold, H.M.; Engber, T.; Rhodes, K.; Ferrero, J.; Hang, Y.; Mikulskis, A.; Grimm, J.; Hock, C.; Nitsch, R.M.; Sandrock, A. The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature, 2016, 537(7618), 50-56.
[95]
Ruthirakuhan, M.; Herrmann, N.; Suridjan, I.; Abraham, E.H.; Farber, I.; Lanctôt, K.L. Beyond immunotherapy: new approaches for disease modifying treatments for early Alzheimer’s disease. Expert Opin. Pharmacother., 2016, 17(18), 2417-2429.
[96]
Deng, J.; Habib, A.; Obregon, D.F.; Barger, S.W.; Giunta, B.; Wang, Y.J.; Hou, H.; Sawmiller, D.; Tan, J. Soluble amyloid precursor protein alpha inhibits tau phosphorylation through modulation of GSK3β signaling pathway. J. Neurochem., 2015, 135(3), 630-637.
[97]
Liang, Z.; Zhang, B.; Su, W.W.; Williams, P.G.; Li, Q.X. C-Glycosylflavones alleviate tau phosphorylation and amyloid neurotoxicity through GSK3β inhibition. ACS Chem. Neurosci., 2016, 7(7), 912-923.
[98]
Xu, Z.P.; Gan, G.S.; Liu, Y.M.; Xiao, J.S.; Liu, H.X.; Mei, B.; Zhang, J.J. Adiponectin attenuates streptozotocin-induced tau hyperphosphorylation and cognitive deficits by rescuing PI3K/Akt/GSK-3β pathway. Neurochem. Res., 2018, 43(2), 316-323.
[99]
Li, W.; Jiang, M.; Xiao, Y.; Zhang, X.; Cui, S.; Huang, G. Folic acid inhibits tau phosphorylation through regulation of PP2A methylation in SH-SY5Y cells. J. Nutr. Health Aging, 2015, 19(2), 123-129.
[100]
Zheng, M.; Zou, C.; Li, M.; Huang, G.; Gao, Y.; Liu, H. Folic acid reduces tau phosphorylation by regulating PP2A methylation in streptozotocin-induced diabetic mice. Int. J. Mol. Sci., 2017, 18(4), E861.
[101]
Gorsky, M.K.; Burnouf, S.; Sofola-Adesakin, O.; Dols, J.; Augustin, H.; Weigelt, C.M.; Grönke, S.; Partridge, L. Pseudo-acetylation of multiple sites on human Tau proteins alters Tau phosphorylation and microtubule binding, and ameliorates amyloid beta toxicity. Sci. Rep., 2017, 7(1), 9984.
[102]
Annadurai, N.; Agrawal, K.; Džubák, P.; Hajdúch, M.; Das, V. Microtubule affinity-regulating kinases are potential druggable targets for Alzheimer’s disease. Cell. Mol. Life Sci., 2017, 74(22), 4159-4169.
[103]
Liu, W.; Zhao, J.; Lu, G. miR-106b inhibits tau phosphorylation at Tyr18 by targeting Fyn in a model of Alzheimer’s disease. Biochem. Biophys. Res. Commun., 2016, 478(2), 852-857.
[104]
Reddy, P.H.; Tonk, S.; Kumar, S.; Vijayan, M.; Kandimalla, R.; Kuruva, C.S.; Reddy, A.P. A critical evaluation of neuroprotective and neurodegenerative MicroRNAs in Alzheimer’s disease. Biochem. Biophys. Res. Commun., 2017, 483(4), 1156-1165.
[105]
Zhang, J.; An, S.; Hu, W.; Teng, M.; Wang, X.; Qu, Y.; Liu, Y.; Yuan, Y.; Wang, D. The neuroprotective properties of Hericium erinaceus in glutamate-damaged differentiated PC12 cells and an Alzheimer’s disease mouse model. Int. J. Mol. Sci., 2016, 17(11), E1810.
[106]
Liu, Q.F.; Jeong, H.; Lee, J.H.; Hong, Y.K.; Oh, Y.; Kim, Y.M.; Suh, Y.S.; Bang, S.; Yun, H.S.; Lee, K.; Cho, S.M.; Lee, S.B.; Jeon, S.; Chin, Y.W.; Koo, B.S.; Cho, K.S. Coriandrum sativum suppresses Aβ42-Induced ROS increases, glial cell proliferation, and ERK activation. Am. J. Chin. Med., 2016, 44(7), 1325-1347.
[107]
Devi, K.P.; Shanmuganathan, B.; Manayi, A.; Nabavi, S.F.; Nabavi, S.M. Molecular and therapeutic targets of genistein in Alzheimer’s disease. Mol. Neurobiol., 2017, 54(9), 7028-7041.
[108]
Wang, Y.; Cai, B.; Shao, J.; Wang, T.T.; Cai, R.Z.; Ma, C.J.; Han, T.; Du, J. Genistein suppresses the mitochondrial apoptotic pathway in hippocampal neurons in rats with Alzheimer’s disease. Neural Regen. Res., 2016, 11(7), 1153-1158.
[109]
Balez, R.; Steiner, N.; Engel, M.; Muñoz, S.S.; Lum, J.S.; Wu, Y.; Wang, D.; Vallotton, P.; Sachdev, P.; O’Connor, M.; Sidhu, K.; Münch, G.; Ooi, L. Neuroprotective effects of apigenin against inflammation, neuronal excitability and apoptosis in an induced pluripotent stem cell model of Alzheimer’s disease. Sci. Rep., 2016, 6, 31450.
[110]
Baek, H.; Ye, M.; Kang, G.H.; Lee, C.; Lee, G.; Choi, D.B.; Jung, J.; Kim, H.; Lee, S.; Kim, J.S.; Lee, H.J.; Shim, I.; Lee, J.H.; Bae, H. Neuroprotective effects of CD4+CD25+Foxp3+ regulatory T cells in a 3xTg-AD Alzheimer’s disease model. Oncotarget, 2016, 7(43), 69347-69357.
[111]
Liu, S.; Tang, S.Q.; Cui, H.J.; Yin, S.; Yin, M.; Zhao, H.; Meng, L.H.; Wang, Z.J.; Lu, Y. Dipotassium N-stearoyltyrosinate ameliorated pathological injuries in triple-transgenic mouse model of Alzheimer’s disease. J. Pharmacol. Sci., 2016, 132(1), 92-99.
[112]
Cheung, T.S.; Song, T.H.; Ng, T.B.; Wu, F.H.; Lao, L.X.; Tang, S.C.W.; Ho, J.C.M.; Zhang, K.Y.B.; Sze, S.C.W. Therapeutic effects of herbal chemicals in traditional Chinese medicine on Alzheimer’s disease. Curr. Med. Chem., 2015, 22(19), 2392-2403.
[113]
Sakono, M.; Zako, T. Amyloid oligomers: formation and toxicity of Abeta oligomers. FEBS J., 2010, 277(6), 1348-1358.
[114]
Veenstra, T.D. Neuroproteomic tools for battling Alzheimer’s disease. Proteomics, 2016, 16(22), 2847-2853.
[115]
Ochalek, A.; Nemes, C.; Varga, E.; Táncos, Z.; Kobolák, J.; Dinnyés, A. Establishment of induced pluripotent stem cell (iPSC) line from a 57-year old patient with sporadic Alzheimer’s disease. Stem Cell Res. (Amst.), 2016, 17(1), 72-74.
[116]
Chandrasekaran, A.; Varga, E.; Nemes, C.; Táncos, Z.; Kobolák, J.; Dinnyés, A. Establishment of induced pluripotent stem cell (iPSC) line from a 63-year old patient with late onset Alzheimer’s disease (LOAD). Stem Cell Res. (Amst.), 2016, 17(1), 78-80.
[117]
Táncos, Z.; Varga, E.; Kovács, E.; Dinnyés, A.; Kobolák, J. Establishment of induced pluripotent stem cell (iPSC) line from a 75-year old patient with late onset Alzheimer’s disease (LOAD). Stem Cell Res. (Amst.), 2016, 17(1), 81-83.
[118]
Lee, H.K.; Velazquez Sanchez, C.; Chen, M.; Morin, P.J.; Wells, J.M.; Hanlon, E.B.; Xia, W. Three dimensional human neuro-spheroid model of Alzheimer’s disease based on differentiated induced pluripotent stem cells. PLoS One, 2016, 11(9), e0163072.
[119]
Choi, S.H.; Kim, Y.H.; Quinti, L.; Tanzi, R.E.; Kim, D.Y. 3D culture models of Alzheimer’s disease: a road map to a “cure-in-a-dish”. Mol. Neurodegener., 2016, 11(1), 75.
[120]
El Hokayem, J.; Cukier, H.N.; Dykxhoorn, D.M. Blood derived induced pluripotent stem cells (iPSCs): benefits, challenges and the road ahead. J. Alzheimers Dis. Parkinsonism, 2016, 6(5), 275.
[121]
Wegrzyn, R.D.; Rudolph, A.S., Eds.; Alzheimer’s Disease: Targets for New Clinical Diagnostic and Therapeutic Strategies, 1st ed; CRC Press: Boston, 2012.
[122]
Kashiwaya, Y.; Bergman, C.; Lee, J.H.; Wan, R.; King, M.T.; Mughal, M.R.; Okun, E.; Clarke, K.; Mattson, M.P.; Veech, R.L. A ketone ester diet exhibits anxiolytic and cognition-sparing properties, and lessens amyloid and tau pathologies in a mouse model of Alzheimer’s disease. Neurobiol. Aging, 2013, 34(6), 1530-1539.
[123]
Rothman, S.M.; Herdener, N.; Frankola, K.A.; Mughal, M.R.; Mattson, M.P. Chronic mild sleep restriction accentuates contextual memory impairments, and accumulations of cortical Aβ and pTau in a mouse model of Alzheimer’s disease. Brain Res., 2013, 1529, 200-208.
[124]
Rothman, S.M.; Mattson, M.P. Sleep disturbances in Alzheimer’s and Parkinson’s diseases. Neuromolecular Med., 2012, 14(3), 194-204.
[125]
Mizuno, K.; Katoh, M.; Okumura, H.; Nakagawa, N.; Negishi, T.; Hashizume, T.; Nakajima, M.; Yokoi, T. Metabolic activation of benzodiazepines by CYP3A4. Drug Metab. Dispos., 2009, 37(2), 345-351.
[126]
Wen, B.; Chen, Y.; Fitch, W.L. Metabolic activation of nevirapine in human liver microsomes: Dehydrogenation and inactivation of cytochrome P450 3A4. Drug Metab. Dispos., 2009, 37(7), 1557-1562.
[127]
Cummings, J.; Aisen, P.S.; DuBois, B.; Frölich, L.; Jack, C.R., Jr; Jones, R.W.; Morris, J.C.; Raskin, J.; Dowsett, S.A.; Scheltens, P. Drug development in Alzheimer’s disease: the path to 2025. Alzheimers Res. Ther., 2016, 8(19), 39.
[128]
Diao, X.X.; Zhong, K.; Li, X.L.; Zhong, D.F.; Chen, X.Y. Isomer-selective distribution of 3-n-butylphthalide (NBP) hydroxylated metabolites, 3-hydroxy-NBP and 10-hydroxy-NBP, across the rat blood-brain barrier. Acta Pharmacol. Sin., 2015, 36(12), 1520-1527.
[129]
Wohlfart, S.; Gelperina, S.; Kreuter, J. Transport of drugs across the blood-brain barrier by nanoparticles. J. Control. Release, 2012, 161(2), 264-273.
[130]
Zlokovic, B.V. Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nat. Rev. Neurosci., 2011, 12(12), 723-738.