[1]
Heyderman, E.; Steele, K.; Ormerod, M.G. A new antigen on the epithelial membrane: Its immunoperoxidase localisation in normal and neoplastic tissue. J. Clin. Pathol., 1979, 32(1), 35-39.
[2]
Shimizu, M.; Yamauchi, K. Isolation and characterization of mucin-like glycoprotein in human milk fat globule membrane. J. Biochem., 1982, 91(2), 515-524.
[3]
Hilkens, J.; Buijs, F.; Hilgers, J.; Hageman, P.; Calafat, J.; Sonnenberg, A.; van der Valk, M. Monoclonal antibodies against human milk-fat globule membranes detecting differentiation antigens of the mammary gland and its tumors. Int. J. Cancer, 1984, 34(2), 197-206.
[4]
Stacker, S.A.; Thompson, C.H.; Sacks, N.P.; Tjandra, J.; Lowe, M.G.; Bishop, J.; McKenzie, I.F. Detection of mammary serum antigen in sera from breast cancer patients using monoclonal antibody 3E1.2. Cancer Res., 1988, 48(24 Pt 1), 7060-7066.
[5]
Swallow, D.M.; Griffiths, B.; Bramwell, M.; Wiseman, G.; Burchell, J. Detection of the urinary ‘PUM’ polymorphism by the tumour-binding monoclonal antibodies Ca1, Ca2, Ca3, HMFG1, and HMFG2. Dis. Markers, 1986, 4(4), 247-254.
[6]
Ligtenberg, M.J.; Vos, H.L.; Gennissen, A.M.; Hilkens, J. Episialin, a carcinoma-associated mucin, is generated by a polymorphic gene encoding splice variants with alternative amino termini. J. Biol. Chem., 1990, 265(10), 5573-5578.
[7]
Siddiqui, J.; Abe, M.; Hayes, D.; Shani, E.; Yunis, E.; Kufe, D. Isolation and sequencing of a cDNA coding for the human DF3 breast carcinoma-associated antigen. Proc. Natl. Acad. Sci. USA, 1988, 85(7), 2320-2323.
[8]
Abe, M.; Siddiqui, J.; Kufe, D. Sequence analysis of the 5′ region of the human DF3 breast carcinoma-associated antigen gene. Biochem. Biophys. Res. Commun., 1989, 165(2), 644-649.
[9]
Wreschner, D.H.; Hareuveni, M.; Tsarfaty, I.; Smorodinsky, N.; Horev, J.; Zaretsky, J.; Kotkes, P.; Weiss, M.; Lathe, R.; Dion, A.; Keydar, I. Human epithelial tumor antigen cDNA sequences. Differential splicing may generate multiple protein forms. Eur. J. Biochem., 1990, 189(3), 463-473.
[10]
Bramwell, M.E.; Bhavanandan, V.P.; Wiseman, G.; Harris, H. Structure and function of the Ca antigen. Br. J. Cancer, 1983, 48(2), 177-183.
[11]
Ceriani, R.L.; Peterson, J.A.; Lee, J.Y.; Moncada, R.; Blank, E.W. Characterization of cell surface antigens of human mammary epithelial cells with monoclonal antibodies prepared against human milk fat globule. Somatic Cell Genet., 1983, 9(4), 415-427.
[12]
Price, M.R.; Edwards, S.; Owainati, A.; Bullock, J.E.; Ferry, B.; Robins, R.A.; Baldwin, R.W. Multiple epitopes on a human breast-carcinoma-associated antigen. Int. J. Cancer, 1985, 36(5), 567-574.
[13]
Gendler, S.; Taylor-Papadimitriou, J.; Duhig, T.; Rothbard, J.; Burchell, J. A highly immunogenic region of a human polymorphic epithelial mucin expressed by carcinomas is made up of tandem repeats. J. Biol. Chem., 1988, 263(26), 12820-12823.
[14]
Gum, J.R.; Hicks, J.W.; Swallow, D.M.; Lagace, R.L.; Byrd, J.C.; Lamport, D.T.; Siddiki, B.; Kim, Y.S. Molecular cloning of cDNAs derived from a novel human intestinal mucin gene. Biochem. Biophys. Res. Commun., 1990, 171(1), 407-415.
[15]
Ceriani, R.L.; Thompson, K.; Peterson, J.A.; Abraham, S. Surface differentiation antigens of human mammary epithelial cells carried on the human milk fat globule. Proc. Natl. Acad. Sci. USA, 1977, 74(2), 582-586.
[16]
Wilkinson, M.J.; Howell, A.; Harris, M.; Taylor-Papadimitriou, J.; Swindell, R.; Sellwood, R.A. The prognostic significance of two epithelial membrane antigens expressed by human mammary carcinomas. Int. J. Cancer, 1984, 33(3), 299-304.
[17]
Burchell, J.; Gendler, S.; Taylor-Papadimitriou, J.; Girling, A.; Lewis, A.; Millis, R.; Lamport, D. Development and characterization of breast cancer reactive monoclonal antibodies directed to the core protein of the human milk mucin. Cancer Res., 1987, 47(20), 5476-5482.
[18]
Hilkens, J.; Kroezen, V.; Bonfrer, J.M.; De Jong-Bakker, M.; Bruning, P.F. MAM-6 antigen, a new serum marker for breast cancer monitoring. Cancer Res., 1986, 46(5), 2582-2587.
[19]
Gendler, S.J.; Lancaster, C.A.; Taylor-Papadimitriou, J.; Duhig, T.; Peat, N.; Burchell, J.; Pemberton, L.; Lalani, E.N.; Wilson, D. Molecular cloning and expression of human tumor-associated polymorphic epithelial mucin. J. Biol. Chem., 1990, 265(25), 15286-15293.
[20]
Zaretsky, J.Z.; Weiss, M.; Tsarfaty, I.; Hareuveni, M.; Wreschner, D.H.; Keydar, I. Expression of genes coding for pS2, c-erbB2, estrogen receptor and the H23 breast tumor-associated antigen. A comparative analysis in breast cancer. FEBS Lett., 1990, 265(1-2), 46-50.
[21]
Brockhausen, I.; Yang, J-M.; Burchell, J.; Whitehouse, C.; Taylor-Papadimitriou, J. Mechanisms underlying aberrant glycosylation of MUC1 mucin in breast cancer cells. Eur. J. Biochem., 1995, 233(2), 607-617.
[22]
Lloyd, K.O.; Burchell, J.; Kudryashov, V.; Yin, B.W.T.; Taylor-Papadimitriou, J. Comparison of O-linked carbohydrate chains in MUC-1 mucin from normal breast epithelial cell lines and breast carcinoma cell lines. J. Biol. Chem., 1996, 271, 33325-33334.
[23]
Burdick, M.D.; Harris, A.; Reid, C.J.; Iwamura, T.; Hollingsworth, M.A. Oligosaccharides expressed on MUC1 produced by pancreatic and colon tumor cell lines. J. Biol. Chem., 1997, 272(39), 24198-24202.
[24]
Epenetos, A.A.; Britton, K.E.; Mather, S.; Shepherd, J.; Granowska, M.; Taylor-Papadimitriou, J.; Nimmon, C.C.; Durbin, H.; Hawkins, L.R.; Malpas, J.S.; Bodmer, W.F. Targeting of iodine-123-labelled tumour-associated monoclonal antibodies to ovarian, breast, and gastrointestinal tumours. Lancet, 1982, 2(8306), 999-1005.
[25]
Ding, L.; Lalani, E.N.; Reddish, M.; Koganty, R.; Wong, T.; Samuel, J.; Yacyshyn, M.B.; Meikle, A.; Fung, P.Y.; Tay-lor-Papadimitriou, J.; Longenecker, B.M. Immunogenicity of synthetic peptides related to the core peptide sequence encod-ed by the human MUC1 mucin gene: effect of immunization on the growth of murine mammary adenocarcinoma cells transfected with the human MUC1 gene; , 1993.
[26]
Zhang, S.; Graeber, L.A.; Helling, F.; Ragupathi, G.; Adluri, S.; Lloyd, K.O.; Livingston, P.O. Augmenting the immunogenicity of synthetic MUC1 peptide vaccines in mice. Cancer Res., 1996, 56(14), 3315-3319.
[27]
Apostolopoulos, V.; Pietersz, G.A.; McKenzie, I.F. Cell-mediated immune responses to MUC1 fusion protein coupled to mannan. Vaccine, 1996, 14(9), 930-938.
[28]
Hareuveni, M.; Gautier, C.; Kieny, M.P.; Wreschner, D.; Chambon, P.; Lathe, R. Vaccination against tumor cells expressing breast cancer epithelial tumor antigen. Proc. Natl. Acad. Sci. USA, 1990, 87(23), 9498-9502.
[29]
Acres, R.B.; Hareuveni, M.; Balloul, J.M.; Kieny, M.P. Vaccinia virus MUC1 immunization of mice: immune response and protection against the growth of murine tumors bearing the MUC1 antigen. J. Immunother. Emphasis Tumor Immunol., 1993, 14(2), 136-143.
[30]
Magarian-Blander, J.; Hughey, R.P.; Kinlough, C.; Poland, P.A.; Finn, O.J. Differential expression of MUC1 on transfected cell lines influences its recognition by MUC1 specific T cells. Glycoconj. J., 1996, 13(5), 749-756.
[31]
Kalofonos, H.P.; Rusckowski, M.; Siebecker, D.A.; Sivolapenko, G.B.; Snook, D.; Lavender, J.P.; Epenetos, A.A.; Hnatowich, D.J. Imaging of tumor in patients with indium-111-labeled biotin and streptavidin-conjugated antibodies: preliminary communication. J. Nucl. Med., 1990, 31(11), 1791-1796.
[32]
Granowska, M.; Mather, S.J.; Britten, K.E. Monoclonal Antibodies in Clinical Oncology; Chapman & Hall, 1993, pp. 375-383.
[33]
Rughetti, A.; Turchi, V.; Ghetti, C.A.; Scambia, G.; Panici, P.B.; Roncucci, G.; Mancuso, S.; Frati, L.; Nuti, M. Human B-cell immune response to the polymorphic epithelial mucin. Cancer Res., 1993, 53(11), 2457-2459.
[34]
Lalani, E.N.; Berdichevsky, F.; Boshell, M.; Shearer, M.; Wilson, D.; Stauss, H.; Gendler, S.J.; Taylor-Papadimitriou, J. Expression of the gene coding for a human mucin in mouse mammary tumor cells can affect their tumorigenicity. J. Biol. Chem., 1991, 266(23), 15420-15426.
[35]
Taylorpapadimitriou, J.; Gendler, S. Structure, biology and possible clinical-applications of carcinoma-associated mucins. Int. J. Oncol., 1992, 1(1), 9-16.
[36]
Peat, N.; Gendler, S.J.; Lalani, N.; Duhig, T.; Taylor-Papadimitriou, J. Tissue-specific expression of a human polymorphic epithelial mucin (MUC1) in transgenic mice. Cancer Res., 1992, 52(7), 1954-1960.
[37]
Hiratsuka, H.; Imamura, M.; Ishii, Y.; Kohama, G.; Kikuchi, K. Immunohistologic detection of lymphocyte subpopulations infiltrating in human oral cancer with special reference to its clinical significance. Cancer, 1984, 53(11), 2456-2466.
[38]
Black, M.M.; Barclay, T.H.C.; Hankey, B.F. Prognosis in breast cancer utilizing histologic characteristics of the primary tumor. Cancer, 1975, 36(6), 2048-2055.
[39]
Lauder, I.; Aherne, W.; Stewart, J.; Sainsbury, R. Macrophage infiltration of breast tumours: A prospective study. J. Clin. Pathol., 1977, 30(6), 563-568.
[40]
Agrawal, B.; Gendler, S.J.; Longenecker, B.M. The biological role of mucins in cellular interactions and immune regulation: prospects for cancer immunotherapy. Mol. Med. Today, 1998, 4(9), 397-403.
[41]
Toes, R.; Blom, R.; Offringa, R.; Kast, W.; Melief, C. Func-tional deletion of tumor-specific CTLs induced by peptide vaccination can lead to the inability to reject tumours. J. Immunol., 1996, 156, 3911-3918.
[42]
Takeda, K.; Kaisho, T.; Akira, S. Toll-like receptors. Annu. Rev. Immunol., 2003, 21, 335-376.
[43]
Waldmann, T.A.; Dubois, S.; Tagaya, Y. Contrasting roles of IL-2 and IL-15 in the life and death of lymphocytes: implications for immunotherapy. Immunity, 2001, 14(2), 105-110.
[44]
Hodge, J.W.; Grosenbach, D.W.; Rad, A.N.; Giuliano, M.; Sabzevari, H.; Schlom, J. Enhancing the potency of peptide-pulsed antigen presenting cells by vector-driven hyperexpression of a triad of costimulatory molecules. Vaccine, 2001, 19(25-26), 3552-3567.
[45]
Phan, G.Q.; Yang, J.C.; Sherry, R.M.; Hwu, P.; Topalian, S.L.; Schwartzentruber, D.J.; Restifo, N.P.; Haworth, L.R.; Seipp, C.A.; Freezer, L.J.; Morton, K.E.; Mavroukakis, S.A.; Duray, P.H.; Steinberg, S.M.; Allison, J.P.; Davis, T.A.; Rosenberg, S.A. Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc. Natl. Acad. Sci. USA, 2003, 100(14), 8372-8377.
[46]
Finn, O.J.; Jerome, K.R.; Henderson, R.A.; Pecher, G.; Domenech, N.; Magarian-Blander, J.; Barratt-Boyes, S.M. MUC-1 epithelial tumor mucin-based immunity and cancer vaccines. Immunol. Rev., 1995, 145, 61-89.
[47]
Xing, P.; Michael, M.; Apostolopoulos, V.; Prenzoska, J.; Marshall, C.; Bishop, J.; McKenzie, I. Phase-I study of synthetic muc1 peptides in breast-cancer. Int. J. Oncol., 1995, 6(6), 1283-1289.
[48]
Goydos, J.S.; Elder, E.; Whiteside, T.L.; Finn, O.J.; Lotze, M.T. A phase I trial of a synthetic mucin peptide vaccine. Induction of specific immune reactivity in patients with adenocarcinoma. J. Surg. Res., 1996, 63(1), 298-304.
[49]
Gilewski, T.; Adluri, S.; Ragupathi, G.; Zhang, S.; Yao, T.J.; Panageas, K.; Moynahan, M.; Houghton, A.; Norton, L.; Livingston, P.O. Vaccination of high-risk breast cancer patients with mucin-1 (MUC1) keyhole limpet hemocyanin conjugate plus QS-21. Clin. Cancer Res., 2000, 6(5), 1693-1701.
[50]
Ramanathan, R.K.; Lee, K.M.; McKolanis, J.; Hitbold, E.; Schraut, W.; Moser, A.J.; Warnick, E.; Whiteside, T.; Osborne, J.; Kim, H.; Day, R.; Troetschel, M.; Finn, O.J. Phase I study of a MUC1 vaccine composed of different doses of MUC1 peptide with SB-AS2 adjuvant in resected and locally advanced pancreatic cancer. Cancer Immunol. Immunother., 2005, 54(3), 254-264.
[51]
Karsten, U.; Diotel, C.; Klich, G.; Paulsen, H.; Goletz, S.; Müller, S.; Hanisch, F.G. Enhanced binding of antibodies to the DTR motif of MUC1 tandem repeat peptide is mediated by site-specific glycosylation. Cancer Res., 1998, 58(12), 2541-2549.
[52]
Brossart, P.; Heinrich, K.S.; Stuhler, G.; Behnke, L.; Reichardt, V.L.; Stevanovic, S.; Muhm, A.; Rammensee, H.G.; Kanz, L.; Brugger, W. Identification of HLA-A2-restricted T-cell epitopes derived from the MUC1 tumor antigen for broadly applicable vaccine therapies. Blood, 1999, 93(12), 4309-4317.
[53]
Pietersz, G.A.; Li, W.; Osinski, C.; Apostolopoulos, V.; McKenzie, I.F. Definition of MHC-restricted CTL epitopes from non-variable number of tandem repeat sequence of MUC1. Vaccine, 2000, 18(19), 2059-2071.
[54]
Carmon, L.; El-Shami, K.M.; Paz, A.; Pascolo, S.; Tzehoval, E.; Tirosh, B.; Koren, R.; Feldman, M.; Fridkin, M.; Lemonnier, F.A.; Eisenbach, L. Novel breast-tumor-associated MUC1-derived peptides: characterization in Db-/- x β2 microglobulin (β2m) null mice transgenic for a chimeric HLA-A2.1/Db-β2 microglobulin single chain. Int. J. Cancer, 2000, 85(3), 391-397.
[55]
Heukamp, L.C.; van der Burg, S.H.; Drijfhout, J.W.; Melief, C.J.M.; Taylor-Papadimitriou, J.; Offringa, R. Identification of three non-VNTR MUC1-derived HLA-A*0201-restricted T-cell epitopes that induce protective anti-tumor immunity in HLA-A2/K(b)-transgenic mice. Int. J. Cancer, 2001, 91(3), 385-392.
[56]
Karsten, U.; von Mensdorff-Pouilly, S.; Goletz, S. What makes MUC1 a tumor antigen? Tumour Biol., 2005, 26(4), 217-220.
[57]
Ligtenberg, M.J.L.; Buijs, F.; Vos, H.L.; Hilkens, J. Suppression of cellular aggregation by high levels of episialin. Cancer Res., 1992, 52(8), 2318-2324.
[58]
Wesseling, J.; van der Vaik, S.W.; Vos, H.L.; Ligtenberg, M.J.L.; Sounenberg, A.; Hilkens, J. Episialin (MUCI) over-expression inhibits cell adhesion to extracellular matrix com-ponents. J. Cell Biol., 1995, 129(1), 255-265.
[59]
Hilkens, J.; Vos, H.L.; Wesseling, J.; Boer, M.; Storm, J.; van der Valk, S.; Calafat, J.; Patriarca, C. Is episialin/MUC1 involved in breast cancer progression? Cancer Lett., 1995, 90(1), 27-33.
[60]
Bouillez, A.; Gnemmi, V.; Gaudelot, K.; Hémon, B.; Ringot, B.; Pottier, N.; Glowacki, F.; Butruille, C.; Cauffiez, C.; Hamdane, M.; Sergeant, N.; Van Seuningen, I.; Leroy, X.; Aubert, S.; Perrais, M. MUC1-C nuclear localization drives invasiveness of renal cancer cells through a sheddase/gamma secretase dependent pathway. Oncotarget, 2014, 5(3), 754-763.
[61]
Singh, P.K.; Behrens, M.E.; Eggers, J.P.; Cerny, R.L.; Bailey, J.M.; Shanmugam, K.; Gendler, S.J.; Bennett, E.P.; Hollingsworth, M.A. Phosphorylation of MUC1 by Met modulates interaction with p53 and MMP1 expression. J. Biol. Chem., 2008, 283(40), 26985-26995.
[62]
Giatromanolaki, A.; Koukourakis, M.I.; Sivridis, E.; O’Byrne, K.; Cox, G.; Thorpe, P.E.; Gatter, K.C.; Harris, A.L. Coexpression of MUC1 glycoprotein with multiple angiogenic factors in non-small cell lung cancer suggests coactivation of angiogenic and migration pathways. Clin. Cancer Res., 2000, 6(5), 1917-1921.
[63]
Papadopoulos, I.; Sivridis, E.; Giatromanolaki, A.; Koukourakis, M.I. Tumor angiogenesis is associated with MUC1 overexpression and loss of prostate-specific antigen expression in prostate cancer. Clin. Cancer Res., 2001, 7(6), 1533-1538.
[64]
Kitamoto, S.; Yokoyama, S.; Higashi, M.; Yamada, N.; Takao, S.; Yonezawa, S. MUC1 enhances hypoxia-driven angiogenesis through the regulation of multiple proangiogenic factors. Oncogene, 2013, 32(39), 4614-4621.
[65]
Wreschner, D.H.; Zrihan-Licht, S.; Baruch, A.; Sagiv, D.; Hartman, M.L.; Smorodinsky, N.; Keydar, I. Does a novel form of the breast cancer marker protein, MUC1, act as a receptor molecule that modulates signal transduction? Adv. Exp. Med. Biol., 1994, 353, 17-26.
[66]
Carraway, K.L.; Ramsauer, V.P.; Haq, B.; Carothers Carraway, C.A. Cell signaling through membrane mucins. BioEssays, 2003, 25(1), 66-71.
[67]
Singh, P.K.; Wen, Y.; Swanson, B.J.; Shanmugam, K.; Kazlauskas, A.; Cerny, R.L.; Gendler, S.J.; Hollingsworth, M.A. Platelet-derived growth factor receptor beta-mediated phosphorylation of MUC1 enhances invasiveness in pancreatic adenocarcinoma cells. Cancer Res., 2007, 67(11), 5201-5210.
[68]
Carson, D.D. The cytoplasmic tail of MUC1: a very busy place. Sci. Signal., 2008, 1(27), pe35.
[69]
Singh, P.K.; Hollingsworth, M.A. Cell surface-associated mucins in signal transduction. Trends Cell Biol., 2006, 16(9), 467-476.
[70]
Ren, J.; Raina, D.; Chen, W.; Li, G.; Huang, L.; Kufe, D. MUC1 oncoprotein functions in activation of fibroblast growth factor receptor signaling. Mol. Cancer Res., 2006, 4(11), 873-883.
[71]
Wei, X.; Xu, H.; Kufe, D. Human MUC1 oncoprotein regulates p53-responsive gene transcription in the genotoxic stress response. Cancer Cell, 2005, 7(2), 167-178.
[72]
Mehla, K.; Singh, P.K. MUC1: A novel metabolic master regulator. Biochim. Biophys. Acta, 2014, 1845(2), 126-135.
[73]
Chaika, N.V.; Gebregiworgis, T.; Lewallen, M.E.; Purohit, V.; Radhakrishnan, P.; Liu, X.; Zhang, B.; Mehla, K.; Brown, R.B.; Caffrey, T.; Yu, F.; Johnson, K.R.; Powers, R.; Hollingsworth, M.A.; Singh, P.K. MUC1 mucin stabilizes and activates hypoxia-inducible factor 1 alpha to regulate metabolism in pancreatic cancer. Proc. Natl. Acad. Sci. USA, 2012, 109(34), 13787-13792.
[74]
Yin, L.; Li, Y.; Ren, J.; Kuwahara, H.; Kufe, D. Human MUC1 carcinoma antigen regulates intracellular oxidant levels and the apoptotic response to oxidative stress. J. Biol. Chem., 2003, 278(37), 35458-35464.
[75]
Schroeder, J.A.; Thompson, M.C.; Gardner, M.M.; Gendler, S.J. Transgenic MUC1 interacts with epidermal growth factor receptor and correlates with mitogen-activated protein kinase activation in the mouse mammary gland. J. Biol. Chem., 2001, 276(16), 13057-13064.
[76]
Zhao, Q.; Guo, X.; Nash, G.B.; Stone, P.C.; Hilkens, J.; Rhodes, J.M.; Yu, L.G. Circulating galectin-3 promotes metastasis by modifying MUC1 localization on cancer cell surface. Cancer Res., 2009, 69(17), 6799-6806.
[77]
Nakamori, S.; Kameyama, M.; Imaoka, S.; Furukawa, H.; Ishikawa, O.; Sasaki, Y.; Izumi, Y.; Irimura, T. Involvement of carbohydrate antigen sialyl Lewis(x) in colorectal cancer metastasis. Dis. Colon Rectum, 1997, 40(4), 420-431.
[78]
Fessler, S.P.; Wotkowicz, M.T.; Mahanta, S.K.; Bamdad, C. MUC1* is a determinant of trastuzumab (Herceptin) resistance in breast cancer cells. Breast Cancer Res. Treat., 2009, 118(1), 113-124.
[79]
Kidiyoor, A.; Schettini, J.; Besmer, D.M.; Rego, S.L.; Nath, S.; Curry, J.M.; Roy, L.D.; Dréau, D.; Mukherjee, P. Pancreatic cancer cells isolated from muc1-null tumors favor the generation of a mature less suppressive MDSC population. Front. Immunol., 2014, 5, 67.
[80]
Fiedler, W.; DeDosso, S.; Cresta, S.; Weidmann, J.; Tessari, A.; Salzberg, M.; Dietrich, B.; Baumeister, H.; Goletz, S.; Gianni, L.; Sessa, C. A phase I study of PankoMab-GEX, a humanised glyco-optimised monoclonal antibody to a novel tumour-specific MUC1 glycopeptide epitope in patients with advanced carcinomas. Eur. J. Cancer, 2016, 63, 55-63.
[81]
Wang, J.; Ni, W.H.; Hu, K.B.; Zhai, X.Y.; Xie, F.; Jie, J.; Zhang, N.N.; Jiang, L.N.; Yuan, H.Y.; Tai, G.X. Targeting MUC1 and JNK by RNA interference and inhibitor inhibit the development of hepatocellular carcinoma. Cancer Sci., 2017, 108(3), 504-511.
[82]
Pollard, J.; Bell, S.D.; Ellington, A.D. Design, synthesis, and amplification of DNA pools for in vitro selection., 2001.
[83]
Ferreira, C.S.; Matthews, C.S.; Missailidis, S. DNA aptamers that bind to MUC1 tumour marker: design and characterization of MUC1-binding single-stranded DNA aptamers. Tumour Biol., 2006, 27(6), 289-301.
[84]
Santos do Carmo, F.; Ricci-Junior, E.; Cerqueira-Coutinho, C.; Albernaz, M.S.; Bernardes, E.S.; Missailidis, S.; Santos-Oliveira, R. Anti-MUC1 nano-aptamers for triple-negative breast cancer imaging by single-photon emission computed tomography in inducted animals: initial considerations. Int. J. Nanomedicine, 2016, 12, 53-60.
[85]
Dai, B.; Hu, Y.; Duan, J.; Yang, X.D. Aptamer-guided DNA tetrahedron as a novel targeted drug delivery system for MUC1-expressing breast cancer cells in vitro. Oncotarget, 2016, 7(25), 38257-38269.
[86]
Piña, M.J.; Girotti, A.; Santos, M.; Rodríguez-Cabello, J.C.; Arias, F.J. Biocompatible ELR-based polyplexes coated with MUC1 specific aptamers and targeted for breast cancer gene therapy. Mol. Pharm., 2016, 13(3), 795-808.
[87]
Guo, F.; Hu, Y.; Yu, L.; Deng, X.; Meng, J.; Wang, C.; Yang, X.D. Enhancement of thermal damage to adenocarcinoma cells by iron nanoparticles modified with MUC1 aptamer. J. Nanosci. Nanotechnol., 2016, 16(3), 2246-2253.
[88]
Singh, S.; Jha, P.; Singh, V.; Sinha, K.; Hussain, S.; Singh, M.K.; Das, P. A quantum dot-MUC1 aptamer conjugate for targeted delivery of protoporphyrin IX and specific photokilling of cancer cells through ROS generation. Integr. Biol., 2016, 8(10), 1040-1048.
[89]
Perepelyuk, M.; Maher, C.; Lakshmikuttyamma, A.; Shoyele, S.A. Aptamer-hybrid nanoparticle bioconjugate efficiently delivers miRNA-29b to non-small-cell lung cancer cells and inhibits growth by downregulating essential oncoproteins. Int. J. Nanomedicine, 2016, 11, 3533-3544.
[90]
Schaedler, E.; Remy-Ziller, C.; Hortelano, J.; Kehrer, N.; Claudepierre, M.C.; Gatard, T.; Jakobs, C.; Préville, X.; Carpentier, A.F.; Rittner, K. Sequential administration of a MVA-based MUC1 cancer vaccine and the TLR9 ligand litenimod (Li28) improves local immune defense against tumors. Vaccine, 2017, 35(4), 577-585.
[91]
Campo, V.L.; Riul, T.; Bortot, L.; Martins-Teixeira, M.; Marchiori, M.; Iaccarino, E.; Ruvo, M.; Dias-Baruffi, M.; Carvalho, I. Synthetic MUC1 glycopeptide bearing βGal-NAc-Thr as Tn antigen isomer induces antibodies production against tumor cells. ChemBioChem, 2017, 18(6), 527-538.
[92]
Fernández, E.M.; Navo, C.D.; Martínez-Sáez, N.; Gonçalves-Pereira, R.; Somovilla, V.J.; Avenoza, A.; Busto, J.H.; Bernardes, G.J.; Jiménez-Osés, G.; Corzana, F.; Fernández, J.M.; Mellet, C.O.; Peregrina, J.M. Tn antigen mimics based on sp(2)-iminosugars with affinity for an anti-MUC1 antibody. Org. Lett., 2016, 18(15), 3890-3893.
[93]
Karsai, A.; Slack, T.J.; Malekan, H.; Khoury, F.; Lin, W.F.; Tran, V.; Cox, D.; Toney, M.; Chen, X.; Liu, G.Y. Local mechanical perturbation provides an effective means to regulate the growth and assembly of functional peptide fibrils. Small, 2016, 12(46), 6407-6415.
[94]
Liu, Y.; Zhang, W.; He, Q.; Yu, F.; Song, T.; Liu, T.; Zhang, Z.; Zhou, J.; Wang, P.G.; Zhao, W. Fully synthetic self-adjuvanting MUC1-fibroblast stimulating lipopeptide 1 conjugates as potential cancer vaccines. Chem. Commun. (Camb.), 2016, 52(72), 10886-10889.
[95]
Pathangey, L.B.; McCurry, D.B.; Gendler, S.J.; Dominguez, A.L.; Gorman, J.E.; Pathangey, G.; Mihalik, L.A.; Dang, Y.; Disis, M.L.; Cohen, P.A. Surrogate in vitro activation of innate immunity synergizes with interleukin-7 to unleash rapid antigen-driven outgrowth of CD4+ and CD8+ human peripheral blood T-cells naturally recognizing MUC1, HER2/neu and other tumor-associated antigens. Oncotarget, 2017, 8(7), 10785-10808.
[96]
Scheid, E.; Major, P.; Bergeron, A.; Finn, O.J.; Salter, R.D.; Eady, R.; Yassine-Diab, B.; Favre, D.; Peretz, Y.; Landry, C.; Hotte, S.; Mukherjee, S.D.; Dekaban, G.A.; Fink, C.; Foster, P.J.; Gaudet, J. 7.; Gariepy, J.; Sekaly, R.P.; Lacombe, L.; Fradet, Y.; Foley, R. Tn-MUC1 DC vaccination of rhesus macaques and a phase I/II trial in patients with nonmetastatic castrate-resistant prostate cancer. Cancer Immunol. Res., 2016, 4(10), 881-892.
[97]
Sadelain, M.; Rivière, I.; Brentjens, R. Targeting tumours with genetically enhanced T lymphocytes. Nat. Rev. Cancer, 2003, 3(1), 35-45.
[98]
Posey, A.D., Jr; Schwab, R.D.; Boesteanu, A.C.; Steentoft, C.; Mandel, U.; Engels, B.; Stone, J.D.; Madsen, T.D.; Schreiber, K.; Haines, K.M.; Cogdill, A.P.; Chen, T.J.; Song, D.; Scholler, J.; Kranz, D.M.; Feldman, M.D.; Young, R.; Keith, B.; Schreiber, H.; Clausen, H.; Johnson, L.A.; June, C.H. Engineered CAR T Cells targeting the cancer-associated Tn-glycoform of the membrane mucin MUC1 control adenocarcinoma. Immunity, 2016, 44(6), 1444-1454.
[99]
Maher, J.; Brentjens, R.J.; Gunset, G.; Rivière, I.; Sadelain, M. Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCRzeta /CD28 receptor. Nat. Biotechnol., 2002, 20(1), 70-75.
[100]
Miles, D.W.; Taylor-Papadimitriou, J. Mucin based breast cancer vaccines. Expert Opin. Investig. Drugs, 1998, 7(11), 1865-1877.
[101]
Whiteside, T.L. The tumor microenvironment and its role in promoting tumor growth. Oncogene, 2008, 27(45), 5904-5912.
[102]
Man, Y.G.; Stojadinovic, A.; Mason, J.; Avital, I.; Bilchik, A.; Bruecher, B.; Protic, M.; Nissan, A.; Izadjoo, M.; Zhang, X.; Jewett, A. Tumor-infiltrating immune cells promoting tumor invasion and metastasis: existing theories. J. Cancer, 2013, 4(1), 84-95.
[103]
Kitamura, T.; Qian, B.Z.; Pollard, J.W. Immune cell promotion of metastasis. Nat. Rev. Immunol., 2015, 15(2), 73-86.