Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

MUC1 Story: Great Expectations, Disappointments and the Renaissance

Author(s): Marina S. Syrkina, Yegor S. Vassetzky* and Mikhail A. Rubtsov *

Volume 26, Issue 3, 2019

Page: [554 - 563] Pages: 10

DOI: 10.2174/0929867324666170817151954

Price: $65

Abstract

In the course of studying human mucin MUC1, the attitude towards this molecule has been changing time and again. Initially, the list of presumable functions of MUC1 was restricted to protecting and lubricating epithelium. To date, it is assumed to play an important role in cell signaling as well as in all stages of oncogenesis, from malignant cell transformation to tumor dissemination. The story of MUC1 is full of hopes and disappointments. However, the scientific interest to MUC1 has never waned, and the more profoundly it has been investigated, the clearer its hidden potential turned to be disclosed. The therapeutic potential of mucin MUC1 has already been noted by various scientific groups at the early stages of research. Over forty years ago, the first insights into MUC1 functions became a strong ground for considering this molecule as potential target for anticancer therapy. Therefore, this direction of research has always been of particular interest and practical importance. More than 200 papers on MUC1 were published in 2016; the majority of them are dedicated to MUC1-related anticancer diagnostics and therapeutics. Here we review the history of MUC1 studies from the very first attempts to reveal its functions to the ongoing renaissance.

Keywords: MUC1, PEM, anticancer therapy, metastasis, breast cancer, mucin glycoprotein.

[1]
Heyderman, E.; Steele, K.; Ormerod, M.G. A new antigen on the epithelial membrane: Its immunoperoxidase localisation in normal and neoplastic tissue. J. Clin. Pathol., 1979, 32(1), 35-39.
[2]
Shimizu, M.; Yamauchi, K. Isolation and characterization of mucin-like glycoprotein in human milk fat globule membrane. J. Biochem., 1982, 91(2), 515-524.
[3]
Hilkens, J.; Buijs, F.; Hilgers, J.; Hageman, P.; Calafat, J.; Sonnenberg, A.; van der Valk, M. Monoclonal antibodies against human milk-fat globule membranes detecting differentiation antigens of the mammary gland and its tumors. Int. J. Cancer, 1984, 34(2), 197-206.
[4]
Stacker, S.A.; Thompson, C.H.; Sacks, N.P.; Tjandra, J.; Lowe, M.G.; Bishop, J.; McKenzie, I.F. Detection of mammary serum antigen in sera from breast cancer patients using monoclonal antibody 3E1.2. Cancer Res., 1988, 48(24 Pt 1), 7060-7066.
[5]
Swallow, D.M.; Griffiths, B.; Bramwell, M.; Wiseman, G.; Burchell, J. Detection of the urinary ‘PUM’ polymorphism by the tumour-binding monoclonal antibodies Ca1, Ca2, Ca3, HMFG1, and HMFG2. Dis. Markers, 1986, 4(4), 247-254.
[6]
Ligtenberg, M.J.; Vos, H.L.; Gennissen, A.M.; Hilkens, J. Episialin, a carcinoma-associated mucin, is generated by a polymorphic gene encoding splice variants with alternative amino termini. J. Biol. Chem., 1990, 265(10), 5573-5578.
[7]
Siddiqui, J.; Abe, M.; Hayes, D.; Shani, E.; Yunis, E.; Kufe, D. Isolation and sequencing of a cDNA coding for the human DF3 breast carcinoma-associated antigen. Proc. Natl. Acad. Sci. USA, 1988, 85(7), 2320-2323.
[8]
Abe, M.; Siddiqui, J.; Kufe, D. Sequence analysis of the 5′ region of the human DF3 breast carcinoma-associated antigen gene. Biochem. Biophys. Res. Commun., 1989, 165(2), 644-649.
[9]
Wreschner, D.H.; Hareuveni, M.; Tsarfaty, I.; Smorodinsky, N.; Horev, J.; Zaretsky, J.; Kotkes, P.; Weiss, M.; Lathe, R.; Dion, A.; Keydar, I. Human epithelial tumor antigen cDNA sequences. Differential splicing may generate multiple protein forms. Eur. J. Biochem., 1990, 189(3), 463-473.
[10]
Bramwell, M.E.; Bhavanandan, V.P.; Wiseman, G.; Harris, H. Structure and function of the Ca antigen. Br. J. Cancer, 1983, 48(2), 177-183.
[11]
Ceriani, R.L.; Peterson, J.A.; Lee, J.Y.; Moncada, R.; Blank, E.W. Characterization of cell surface antigens of human mammary epithelial cells with monoclonal antibodies prepared against human milk fat globule. Somatic Cell Genet., 1983, 9(4), 415-427.
[12]
Price, M.R.; Edwards, S.; Owainati, A.; Bullock, J.E.; Ferry, B.; Robins, R.A.; Baldwin, R.W. Multiple epitopes on a human breast-carcinoma-associated antigen. Int. J. Cancer, 1985, 36(5), 567-574.
[13]
Gendler, S.; Taylor-Papadimitriou, J.; Duhig, T.; Rothbard, J.; Burchell, J. A highly immunogenic region of a human polymorphic epithelial mucin expressed by carcinomas is made up of tandem repeats. J. Biol. Chem., 1988, 263(26), 12820-12823.
[14]
Gum, J.R.; Hicks, J.W.; Swallow, D.M.; Lagace, R.L.; Byrd, J.C.; Lamport, D.T.; Siddiki, B.; Kim, Y.S. Molecular cloning of cDNAs derived from a novel human intestinal mucin gene. Biochem. Biophys. Res. Commun., 1990, 171(1), 407-415.
[15]
Ceriani, R.L.; Thompson, K.; Peterson, J.A.; Abraham, S. Surface differentiation antigens of human mammary epithelial cells carried on the human milk fat globule. Proc. Natl. Acad. Sci. USA, 1977, 74(2), 582-586.
[16]
Wilkinson, M.J.; Howell, A.; Harris, M.; Taylor-Papadimitriou, J.; Swindell, R.; Sellwood, R.A. The prognostic significance of two epithelial membrane antigens expressed by human mammary carcinomas. Int. J. Cancer, 1984, 33(3), 299-304.
[17]
Burchell, J.; Gendler, S.; Taylor-Papadimitriou, J.; Girling, A.; Lewis, A.; Millis, R.; Lamport, D. Development and characterization of breast cancer reactive monoclonal antibodies directed to the core protein of the human milk mucin. Cancer Res., 1987, 47(20), 5476-5482.
[18]
Hilkens, J.; Kroezen, V.; Bonfrer, J.M.; De Jong-Bakker, M.; Bruning, P.F. MAM-6 antigen, a new serum marker for breast cancer monitoring. Cancer Res., 1986, 46(5), 2582-2587.
[19]
Gendler, S.J.; Lancaster, C.A.; Taylor-Papadimitriou, J.; Duhig, T.; Peat, N.; Burchell, J.; Pemberton, L.; Lalani, E.N.; Wilson, D. Molecular cloning and expression of human tumor-associated polymorphic epithelial mucin. J. Biol. Chem., 1990, 265(25), 15286-15293.
[20]
Zaretsky, J.Z.; Weiss, M.; Tsarfaty, I.; Hareuveni, M.; Wreschner, D.H.; Keydar, I. Expression of genes coding for pS2, c-erbB2, estrogen receptor and the H23 breast tumor-associated antigen. A comparative analysis in breast cancer. FEBS Lett., 1990, 265(1-2), 46-50.
[21]
Brockhausen, I.; Yang, J-M.; Burchell, J.; Whitehouse, C.; Taylor-Papadimitriou, J. Mechanisms underlying aberrant glycosylation of MUC1 mucin in breast cancer cells. Eur. J. Biochem., 1995, 233(2), 607-617.
[22]
Lloyd, K.O.; Burchell, J.; Kudryashov, V.; Yin, B.W.T.; Taylor-Papadimitriou, J. Comparison of O-linked carbohydrate chains in MUC-1 mucin from normal breast epithelial cell lines and breast carcinoma cell lines. J. Biol. Chem., 1996, 271, 33325-33334.
[23]
Burdick, M.D.; Harris, A.; Reid, C.J.; Iwamura, T.; Hollingsworth, M.A. Oligosaccharides expressed on MUC1 produced by pancreatic and colon tumor cell lines. J. Biol. Chem., 1997, 272(39), 24198-24202.
[24]
Epenetos, A.A.; Britton, K.E.; Mather, S.; Shepherd, J.; Granowska, M.; Taylor-Papadimitriou, J.; Nimmon, C.C.; Durbin, H.; Hawkins, L.R.; Malpas, J.S.; Bodmer, W.F. Targeting of iodine-123-labelled tumour-associated monoclonal antibodies to ovarian, breast, and gastrointestinal tumours. Lancet, 1982, 2(8306), 999-1005.
[25]
Ding, L.; Lalani, E.N.; Reddish, M.; Koganty, R.; Wong, T.; Samuel, J.; Yacyshyn, M.B.; Meikle, A.; Fung, P.Y.; Tay-lor-Papadimitriou, J.; Longenecker, B.M. Immunogenicity of synthetic peptides related to the core peptide sequence encod-ed by the human MUC1 mucin gene: effect of immunization on the growth of murine mammary adenocarcinoma cells transfected with the human MUC1 gene; , 1993.
[26]
Zhang, S.; Graeber, L.A.; Helling, F.; Ragupathi, G.; Adluri, S.; Lloyd, K.O.; Livingston, P.O. Augmenting the immunogenicity of synthetic MUC1 peptide vaccines in mice. Cancer Res., 1996, 56(14), 3315-3319.
[27]
Apostolopoulos, V.; Pietersz, G.A.; McKenzie, I.F. Cell-mediated immune responses to MUC1 fusion protein coupled to mannan. Vaccine, 1996, 14(9), 930-938.
[28]
Hareuveni, M.; Gautier, C.; Kieny, M.P.; Wreschner, D.; Chambon, P.; Lathe, R. Vaccination against tumor cells expressing breast cancer epithelial tumor antigen. Proc. Natl. Acad. Sci. USA, 1990, 87(23), 9498-9502.
[29]
Acres, R.B.; Hareuveni, M.; Balloul, J.M.; Kieny, M.P. Vaccinia virus MUC1 immunization of mice: immune response and protection against the growth of murine tumors bearing the MUC1 antigen. J. Immunother. Emphasis Tumor Immunol., 1993, 14(2), 136-143.
[30]
Magarian-Blander, J.; Hughey, R.P.; Kinlough, C.; Poland, P.A.; Finn, O.J. Differential expression of MUC1 on transfected cell lines influences its recognition by MUC1 specific T cells. Glycoconj. J., 1996, 13(5), 749-756.
[31]
Kalofonos, H.P.; Rusckowski, M.; Siebecker, D.A.; Sivolapenko, G.B.; Snook, D.; Lavender, J.P.; Epenetos, A.A.; Hnatowich, D.J. Imaging of tumor in patients with indium-111-labeled biotin and streptavidin-conjugated antibodies: preliminary communication. J. Nucl. Med., 1990, 31(11), 1791-1796.
[32]
Granowska, M.; Mather, S.J.; Britten, K.E. Monoclonal Antibodies in Clinical Oncology; Chapman & Hall, 1993, pp. 375-383.
[33]
Rughetti, A.; Turchi, V.; Ghetti, C.A.; Scambia, G.; Panici, P.B.; Roncucci, G.; Mancuso, S.; Frati, L.; Nuti, M. Human B-cell immune response to the polymorphic epithelial mucin. Cancer Res., 1993, 53(11), 2457-2459.
[34]
Lalani, E.N.; Berdichevsky, F.; Boshell, M.; Shearer, M.; Wilson, D.; Stauss, H.; Gendler, S.J.; Taylor-Papadimitriou, J. Expression of the gene coding for a human mucin in mouse mammary tumor cells can affect their tumorigenicity. J. Biol. Chem., 1991, 266(23), 15420-15426.
[35]
Taylorpapadimitriou, J.; Gendler, S. Structure, biology and possible clinical-applications of carcinoma-associated mucins. Int. J. Oncol., 1992, 1(1), 9-16.
[36]
Peat, N.; Gendler, S.J.; Lalani, N.; Duhig, T.; Taylor-Papadimitriou, J. Tissue-specific expression of a human polymorphic epithelial mucin (MUC1) in transgenic mice. Cancer Res., 1992, 52(7), 1954-1960.
[37]
Hiratsuka, H.; Imamura, M.; Ishii, Y.; Kohama, G.; Kikuchi, K. Immunohistologic detection of lymphocyte subpopulations infiltrating in human oral cancer with special reference to its clinical significance. Cancer, 1984, 53(11), 2456-2466.
[38]
Black, M.M.; Barclay, T.H.C.; Hankey, B.F. Prognosis in breast cancer utilizing histologic characteristics of the primary tumor. Cancer, 1975, 36(6), 2048-2055.
[39]
Lauder, I.; Aherne, W.; Stewart, J.; Sainsbury, R. Macrophage infiltration of breast tumours: A prospective study. J. Clin. Pathol., 1977, 30(6), 563-568.
[40]
Agrawal, B.; Gendler, S.J.; Longenecker, B.M. The biological role of mucins in cellular interactions and immune regulation: prospects for cancer immunotherapy. Mol. Med. Today, 1998, 4(9), 397-403.
[41]
Toes, R.; Blom, R.; Offringa, R.; Kast, W.; Melief, C. Func-tional deletion of tumor-specific CTLs induced by peptide vaccination can lead to the inability to reject tumours. J. Immunol., 1996, 156, 3911-3918.
[42]
Takeda, K.; Kaisho, T.; Akira, S. Toll-like receptors. Annu. Rev. Immunol., 2003, 21, 335-376.
[43]
Waldmann, T.A.; Dubois, S.; Tagaya, Y. Contrasting roles of IL-2 and IL-15 in the life and death of lymphocytes: implications for immunotherapy. Immunity, 2001, 14(2), 105-110.
[44]
Hodge, J.W.; Grosenbach, D.W.; Rad, A.N.; Giuliano, M.; Sabzevari, H.; Schlom, J. Enhancing the potency of peptide-pulsed antigen presenting cells by vector-driven hyperexpression of a triad of costimulatory molecules. Vaccine, 2001, 19(25-26), 3552-3567.
[45]
Phan, G.Q.; Yang, J.C.; Sherry, R.M.; Hwu, P.; Topalian, S.L.; Schwartzentruber, D.J.; Restifo, N.P.; Haworth, L.R.; Seipp, C.A.; Freezer, L.J.; Morton, K.E.; Mavroukakis, S.A.; Duray, P.H.; Steinberg, S.M.; Allison, J.P.; Davis, T.A.; Rosenberg, S.A. Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc. Natl. Acad. Sci. USA, 2003, 100(14), 8372-8377.
[46]
Finn, O.J.; Jerome, K.R.; Henderson, R.A.; Pecher, G.; Domenech, N.; Magarian-Blander, J.; Barratt-Boyes, S.M. MUC-1 epithelial tumor mucin-based immunity and cancer vaccines. Immunol. Rev., 1995, 145, 61-89.
[47]
Xing, P.; Michael, M.; Apostolopoulos, V.; Prenzoska, J.; Marshall, C.; Bishop, J.; McKenzie, I. Phase-I study of synthetic muc1 peptides in breast-cancer. Int. J. Oncol., 1995, 6(6), 1283-1289.
[48]
Goydos, J.S.; Elder, E.; Whiteside, T.L.; Finn, O.J.; Lotze, M.T. A phase I trial of a synthetic mucin peptide vaccine. Induction of specific immune reactivity in patients with adenocarcinoma. J. Surg. Res., 1996, 63(1), 298-304.
[49]
Gilewski, T.; Adluri, S.; Ragupathi, G.; Zhang, S.; Yao, T.J.; Panageas, K.; Moynahan, M.; Houghton, A.; Norton, L.; Livingston, P.O. Vaccination of high-risk breast cancer patients with mucin-1 (MUC1) keyhole limpet hemocyanin conjugate plus QS-21. Clin. Cancer Res., 2000, 6(5), 1693-1701.
[50]
Ramanathan, R.K.; Lee, K.M.; McKolanis, J.; Hitbold, E.; Schraut, W.; Moser, A.J.; Warnick, E.; Whiteside, T.; Osborne, J.; Kim, H.; Day, R.; Troetschel, M.; Finn, O.J. Phase I study of a MUC1 vaccine composed of different doses of MUC1 peptide with SB-AS2 adjuvant in resected and locally advanced pancreatic cancer. Cancer Immunol. Immunother., 2005, 54(3), 254-264.
[51]
Karsten, U.; Diotel, C.; Klich, G.; Paulsen, H.; Goletz, S.; Müller, S.; Hanisch, F.G. Enhanced binding of antibodies to the DTR motif of MUC1 tandem repeat peptide is mediated by site-specific glycosylation. Cancer Res., 1998, 58(12), 2541-2549.
[52]
Brossart, P.; Heinrich, K.S.; Stuhler, G.; Behnke, L.; Reichardt, V.L.; Stevanovic, S.; Muhm, A.; Rammensee, H.G.; Kanz, L.; Brugger, W. Identification of HLA-A2-restricted T-cell epitopes derived from the MUC1 tumor antigen for broadly applicable vaccine therapies. Blood, 1999, 93(12), 4309-4317.
[53]
Pietersz, G.A.; Li, W.; Osinski, C.; Apostolopoulos, V.; McKenzie, I.F. Definition of MHC-restricted CTL epitopes from non-variable number of tandem repeat sequence of MUC1. Vaccine, 2000, 18(19), 2059-2071.
[54]
Carmon, L.; El-Shami, K.M.; Paz, A.; Pascolo, S.; Tzehoval, E.; Tirosh, B.; Koren, R.; Feldman, M.; Fridkin, M.; Lemonnier, F.A.; Eisenbach, L. Novel breast-tumor-associated MUC1-derived peptides: characterization in Db-/- x β2 microglobulin (β2m) null mice transgenic for a chimeric HLA-A2.1/Db-β2 microglobulin single chain. Int. J. Cancer, 2000, 85(3), 391-397.
[55]
Heukamp, L.C.; van der Burg, S.H.; Drijfhout, J.W.; Melief, C.J.M.; Taylor-Papadimitriou, J.; Offringa, R. Identification of three non-VNTR MUC1-derived HLA-A*0201-restricted T-cell epitopes that induce protective anti-tumor immunity in HLA-A2/K(b)-transgenic mice. Int. J. Cancer, 2001, 91(3), 385-392.
[56]
Karsten, U.; von Mensdorff-Pouilly, S.; Goletz, S. What makes MUC1 a tumor antigen? Tumour Biol., 2005, 26(4), 217-220.
[57]
Ligtenberg, M.J.L.; Buijs, F.; Vos, H.L.; Hilkens, J. Suppression of cellular aggregation by high levels of episialin. Cancer Res., 1992, 52(8), 2318-2324.
[58]
Wesseling, J.; van der Vaik, S.W.; Vos, H.L.; Ligtenberg, M.J.L.; Sounenberg, A.; Hilkens, J. Episialin (MUCI) over-expression inhibits cell adhesion to extracellular matrix com-ponents. J. Cell Biol., 1995, 129(1), 255-265.
[59]
Hilkens, J.; Vos, H.L.; Wesseling, J.; Boer, M.; Storm, J.; van der Valk, S.; Calafat, J.; Patriarca, C. Is episialin/MUC1 involved in breast cancer progression? Cancer Lett., 1995, 90(1), 27-33.
[60]
Bouillez, A.; Gnemmi, V.; Gaudelot, K.; Hémon, B.; Ringot, B.; Pottier, N.; Glowacki, F.; Butruille, C.; Cauffiez, C.; Hamdane, M.; Sergeant, N.; Van Seuningen, I.; Leroy, X.; Aubert, S.; Perrais, M. MUC1-C nuclear localization drives invasiveness of renal cancer cells through a sheddase/gamma secretase dependent pathway. Oncotarget, 2014, 5(3), 754-763.
[61]
Singh, P.K.; Behrens, M.E.; Eggers, J.P.; Cerny, R.L.; Bailey, J.M.; Shanmugam, K.; Gendler, S.J.; Bennett, E.P.; Hollingsworth, M.A. Phosphorylation of MUC1 by Met modulates interaction with p53 and MMP1 expression. J. Biol. Chem., 2008, 283(40), 26985-26995.
[62]
Giatromanolaki, A.; Koukourakis, M.I.; Sivridis, E.; O’Byrne, K.; Cox, G.; Thorpe, P.E.; Gatter, K.C.; Harris, A.L. Coexpression of MUC1 glycoprotein with multiple angiogenic factors in non-small cell lung cancer suggests coactivation of angiogenic and migration pathways. Clin. Cancer Res., 2000, 6(5), 1917-1921.
[63]
Papadopoulos, I.; Sivridis, E.; Giatromanolaki, A.; Koukourakis, M.I. Tumor angiogenesis is associated with MUC1 overexpression and loss of prostate-specific antigen expression in prostate cancer. Clin. Cancer Res., 2001, 7(6), 1533-1538.
[64]
Kitamoto, S.; Yokoyama, S.; Higashi, M.; Yamada, N.; Takao, S.; Yonezawa, S. MUC1 enhances hypoxia-driven angiogenesis through the regulation of multiple proangiogenic factors. Oncogene, 2013, 32(39), 4614-4621.
[65]
Wreschner, D.H.; Zrihan-Licht, S.; Baruch, A.; Sagiv, D.; Hartman, M.L.; Smorodinsky, N.; Keydar, I. Does a novel form of the breast cancer marker protein, MUC1, act as a receptor molecule that modulates signal transduction? Adv. Exp. Med. Biol., 1994, 353, 17-26.
[66]
Carraway, K.L.; Ramsauer, V.P.; Haq, B.; Carothers Carraway, C.A. Cell signaling through membrane mucins. BioEssays, 2003, 25(1), 66-71.
[67]
Singh, P.K.; Wen, Y.; Swanson, B.J.; Shanmugam, K.; Kazlauskas, A.; Cerny, R.L.; Gendler, S.J.; Hollingsworth, M.A. Platelet-derived growth factor receptor beta-mediated phosphorylation of MUC1 enhances invasiveness in pancreatic adenocarcinoma cells. Cancer Res., 2007, 67(11), 5201-5210.
[68]
Carson, D.D. The cytoplasmic tail of MUC1: a very busy place. Sci. Signal., 2008, 1(27), pe35.
[69]
Singh, P.K.; Hollingsworth, M.A. Cell surface-associated mucins in signal transduction. Trends Cell Biol., 2006, 16(9), 467-476.
[70]
Ren, J.; Raina, D.; Chen, W.; Li, G.; Huang, L.; Kufe, D. MUC1 oncoprotein functions in activation of fibroblast growth factor receptor signaling. Mol. Cancer Res., 2006, 4(11), 873-883.
[71]
Wei, X.; Xu, H.; Kufe, D. Human MUC1 oncoprotein regulates p53-responsive gene transcription in the genotoxic stress response. Cancer Cell, 2005, 7(2), 167-178.
[72]
Mehla, K.; Singh, P.K. MUC1: A novel metabolic master regulator. Biochim. Biophys. Acta, 2014, 1845(2), 126-135.
[73]
Chaika, N.V.; Gebregiworgis, T.; Lewallen, M.E.; Purohit, V.; Radhakrishnan, P.; Liu, X.; Zhang, B.; Mehla, K.; Brown, R.B.; Caffrey, T.; Yu, F.; Johnson, K.R.; Powers, R.; Hollingsworth, M.A.; Singh, P.K. MUC1 mucin stabilizes and activates hypoxia-inducible factor 1 alpha to regulate metabolism in pancreatic cancer. Proc. Natl. Acad. Sci. USA, 2012, 109(34), 13787-13792.
[74]
Yin, L.; Li, Y.; Ren, J.; Kuwahara, H.; Kufe, D. Human MUC1 carcinoma antigen regulates intracellular oxidant levels and the apoptotic response to oxidative stress. J. Biol. Chem., 2003, 278(37), 35458-35464.
[75]
Schroeder, J.A.; Thompson, M.C.; Gardner, M.M.; Gendler, S.J. Transgenic MUC1 interacts with epidermal growth factor receptor and correlates with mitogen-activated protein kinase activation in the mouse mammary gland. J. Biol. Chem., 2001, 276(16), 13057-13064.
[76]
Zhao, Q.; Guo, X.; Nash, G.B.; Stone, P.C.; Hilkens, J.; Rhodes, J.M.; Yu, L.G. Circulating galectin-3 promotes metastasis by modifying MUC1 localization on cancer cell surface. Cancer Res., 2009, 69(17), 6799-6806.
[77]
Nakamori, S.; Kameyama, M.; Imaoka, S.; Furukawa, H.; Ishikawa, O.; Sasaki, Y.; Izumi, Y.; Irimura, T. Involvement of carbohydrate antigen sialyl Lewis(x) in colorectal cancer metastasis. Dis. Colon Rectum, 1997, 40(4), 420-431.
[78]
Fessler, S.P.; Wotkowicz, M.T.; Mahanta, S.K.; Bamdad, C. MUC1* is a determinant of trastuzumab (Herceptin) resistance in breast cancer cells. Breast Cancer Res. Treat., 2009, 118(1), 113-124.
[79]
Kidiyoor, A.; Schettini, J.; Besmer, D.M.; Rego, S.L.; Nath, S.; Curry, J.M.; Roy, L.D.; Dréau, D.; Mukherjee, P. Pancreatic cancer cells isolated from muc1-null tumors favor the generation of a mature less suppressive MDSC population. Front. Immunol., 2014, 5, 67.
[80]
Fiedler, W.; DeDosso, S.; Cresta, S.; Weidmann, J.; Tessari, A.; Salzberg, M.; Dietrich, B.; Baumeister, H.; Goletz, S.; Gianni, L.; Sessa, C. A phase I study of PankoMab-GEX, a humanised glyco-optimised monoclonal antibody to a novel tumour-specific MUC1 glycopeptide epitope in patients with advanced carcinomas. Eur. J. Cancer, 2016, 63, 55-63.
[81]
Wang, J.; Ni, W.H.; Hu, K.B.; Zhai, X.Y.; Xie, F.; Jie, J.; Zhang, N.N.; Jiang, L.N.; Yuan, H.Y.; Tai, G.X. Targeting MUC1 and JNK by RNA interference and inhibitor inhibit the development of hepatocellular carcinoma. Cancer Sci., 2017, 108(3), 504-511.
[82]
Pollard, J.; Bell, S.D.; Ellington, A.D. Design, synthesis, and amplification of DNA pools for in vitro selection., 2001.
[83]
Ferreira, C.S.; Matthews, C.S.; Missailidis, S. DNA aptamers that bind to MUC1 tumour marker: design and characterization of MUC1-binding single-stranded DNA aptamers. Tumour Biol., 2006, 27(6), 289-301.
[84]
Santos do Carmo, F.; Ricci-Junior, E.; Cerqueira-Coutinho, C.; Albernaz, M.S.; Bernardes, E.S.; Missailidis, S.; Santos-Oliveira, R. Anti-MUC1 nano-aptamers for triple-negative breast cancer imaging by single-photon emission computed tomography in inducted animals: initial considerations. Int. J. Nanomedicine, 2016, 12, 53-60.
[85]
Dai, B.; Hu, Y.; Duan, J.; Yang, X.D. Aptamer-guided DNA tetrahedron as a novel targeted drug delivery system for MUC1-expressing breast cancer cells in vitro. Oncotarget, 2016, 7(25), 38257-38269.
[86]
Piña, M.J.; Girotti, A.; Santos, M.; Rodríguez-Cabello, J.C.; Arias, F.J. Biocompatible ELR-based polyplexes coated with MUC1 specific aptamers and targeted for breast cancer gene therapy. Mol. Pharm., 2016, 13(3), 795-808.
[87]
Guo, F.; Hu, Y.; Yu, L.; Deng, X.; Meng, J.; Wang, C.; Yang, X.D. Enhancement of thermal damage to adenocarcinoma cells by iron nanoparticles modified with MUC1 aptamer. J. Nanosci. Nanotechnol., 2016, 16(3), 2246-2253.
[88]
Singh, S.; Jha, P.; Singh, V.; Sinha, K.; Hussain, S.; Singh, M.K.; Das, P. A quantum dot-MUC1 aptamer conjugate for targeted delivery of protoporphyrin IX and specific photokilling of cancer cells through ROS generation. Integr. Biol., 2016, 8(10), 1040-1048.
[89]
Perepelyuk, M.; Maher, C.; Lakshmikuttyamma, A.; Shoyele, S.A. Aptamer-hybrid nanoparticle bioconjugate efficiently delivers miRNA-29b to non-small-cell lung cancer cells and inhibits growth by downregulating essential oncoproteins. Int. J. Nanomedicine, 2016, 11, 3533-3544.
[90]
Schaedler, E.; Remy-Ziller, C.; Hortelano, J.; Kehrer, N.; Claudepierre, M.C.; Gatard, T.; Jakobs, C.; Préville, X.; Carpentier, A.F.; Rittner, K. Sequential administration of a MVA-based MUC1 cancer vaccine and the TLR9 ligand litenimod (Li28) improves local immune defense against tumors. Vaccine, 2017, 35(4), 577-585.
[91]
Campo, V.L.; Riul, T.; Bortot, L.; Martins-Teixeira, M.; Marchiori, M.; Iaccarino, E.; Ruvo, M.; Dias-Baruffi, M.; Carvalho, I. Synthetic MUC1 glycopeptide bearing βGal-NAc-Thr as Tn antigen isomer induces antibodies production against tumor cells. ChemBioChem, 2017, 18(6), 527-538.
[92]
Fernández, E.M.; Navo, C.D.; Martínez-Sáez, N.; Gonçalves-Pereira, R.; Somovilla, V.J.; Avenoza, A.; Busto, J.H.; Bernardes, G.J.; Jiménez-Osés, G.; Corzana, F.; Fernández, J.M.; Mellet, C.O.; Peregrina, J.M. Tn antigen mimics based on sp(2)-iminosugars with affinity for an anti-MUC1 antibody. Org. Lett., 2016, 18(15), 3890-3893.
[93]
Karsai, A.; Slack, T.J.; Malekan, H.; Khoury, F.; Lin, W.F.; Tran, V.; Cox, D.; Toney, M.; Chen, X.; Liu, G.Y. Local mechanical perturbation provides an effective means to regulate the growth and assembly of functional peptide fibrils. Small, 2016, 12(46), 6407-6415.
[94]
Liu, Y.; Zhang, W.; He, Q.; Yu, F.; Song, T.; Liu, T.; Zhang, Z.; Zhou, J.; Wang, P.G.; Zhao, W. Fully synthetic self-adjuvanting MUC1-fibroblast stimulating lipopeptide 1 conjugates as potential cancer vaccines. Chem. Commun. (Camb.), 2016, 52(72), 10886-10889.
[95]
Pathangey, L.B.; McCurry, D.B.; Gendler, S.J.; Dominguez, A.L.; Gorman, J.E.; Pathangey, G.; Mihalik, L.A.; Dang, Y.; Disis, M.L.; Cohen, P.A. Surrogate in vitro activation of innate immunity synergizes with interleukin-7 to unleash rapid antigen-driven outgrowth of CD4+ and CD8+ human peripheral blood T-cells naturally recognizing MUC1, HER2/neu and other tumor-associated antigens. Oncotarget, 2017, 8(7), 10785-10808.
[96]
Scheid, E.; Major, P.; Bergeron, A.; Finn, O.J.; Salter, R.D.; Eady, R.; Yassine-Diab, B.; Favre, D.; Peretz, Y.; Landry, C.; Hotte, S.; Mukherjee, S.D.; Dekaban, G.A.; Fink, C.; Foster, P.J.; Gaudet, J. 7.; Gariepy, J.; Sekaly, R.P.; Lacombe, L.; Fradet, Y.; Foley, R. Tn-MUC1 DC vaccination of rhesus macaques and a phase I/II trial in patients with nonmetastatic castrate-resistant prostate cancer. Cancer Immunol. Res., 2016, 4(10), 881-892.
[97]
Sadelain, M.; Rivière, I.; Brentjens, R. Targeting tumours with genetically enhanced T lymphocytes. Nat. Rev. Cancer, 2003, 3(1), 35-45.
[98]
Posey, A.D., Jr; Schwab, R.D.; Boesteanu, A.C.; Steentoft, C.; Mandel, U.; Engels, B.; Stone, J.D.; Madsen, T.D.; Schreiber, K.; Haines, K.M.; Cogdill, A.P.; Chen, T.J.; Song, D.; Scholler, J.; Kranz, D.M.; Feldman, M.D.; Young, R.; Keith, B.; Schreiber, H.; Clausen, H.; Johnson, L.A.; June, C.H. Engineered CAR T Cells targeting the cancer-associated Tn-glycoform of the membrane mucin MUC1 control adenocarcinoma. Immunity, 2016, 44(6), 1444-1454.
[99]
Maher, J.; Brentjens, R.J.; Gunset, G.; Rivière, I.; Sadelain, M. Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCRzeta /CD28 receptor. Nat. Biotechnol., 2002, 20(1), 70-75.
[100]
Miles, D.W.; Taylor-Papadimitriou, J. Mucin based breast cancer vaccines. Expert Opin. Investig. Drugs, 1998, 7(11), 1865-1877.
[101]
Whiteside, T.L. The tumor microenvironment and its role in promoting tumor growth. Oncogene, 2008, 27(45), 5904-5912.
[102]
Man, Y.G.; Stojadinovic, A.; Mason, J.; Avital, I.; Bilchik, A.; Bruecher, B.; Protic, M.; Nissan, A.; Izadjoo, M.; Zhang, X.; Jewett, A. Tumor-infiltrating immune cells promoting tumor invasion and metastasis: existing theories. J. Cancer, 2013, 4(1), 84-95.
[103]
Kitamura, T.; Qian, B.Z.; Pollard, J.W. Immune cell promotion of metastasis. Nat. Rev. Immunol., 2015, 15(2), 73-86.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy