[1]
Kastin, A.J.; Pan, W. Concepts for biologically active peptides. Curr. Pharm. Des., 2010, 16(30), 3390-3400.
[2]
Scott, R.D. Glucagon-like peptide-1 receptor agonists for type 2 diabetes: A clinical update of safety and efficacy. Curr. Diabetes Rev., 2016, 12(4), 403-413.
[3]
Patel, K.V.; Aspesi, A.V.; Evoy, K.E. Suvorexant. Ann. Pharmacother., 2015, 49(4), 477-483.
[4]
Schwartz, M.W.; Woods, S.C.; Porte, D., Jr; Seeley, R.J.; Baskin, D.G. Central nervous system control of food intake. Nature, 2000, 404(6778), 661-671.
[5]
Cone, R.D. Studies on the physiological functions of the melanocortin system. Endocr. Rev., 2006, 27(7), 736-749.
[6]
Anderson, E.J.P.; Çakir, I.; Carrington, S.J.; Cone, R.D.; Ghamari-Langroudi, M.; Gillyard, T.; Gimenez, L.E.; Litt, M.J. 60 years of POMC: Regulation of feeding and energy homeostasis by α-MSH. J. Mol. Endocrinol., 2016, 56(4), T157-T174.
[7]
Yaswen, L.; Diehl, N.; Brennan, M.B.; Hochgeschwender, U. Obesity in the mouse model of pro-opiomelanocortin deficiency responds to peripheral melanocortin. Nat. Med., 1999, 5(9), 1066-1070.
[8]
Krude, H.; Biebermann, H.; Luck, W.; Horn, R.; Brabant, G.; Gruters, A. Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans. Nat. Genet., 1998, 19(2), 155-157.
[9]
Huszar, D.; Lynch, C.A.; Fairchild-Huntress, V.; Dunmore, J.H.; Fang, Q.; Berkemeier, L.R.; Gu, W.; Kesterson, R.A.; Boston, B.A.; Cone, R.D.; Smith, F.J.; Campfield, L.A.; Burn, P.; Lee, F. Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell, 1997, 88(1), 131-141.
[10]
Farooqi, I.S.; Keogh, J.M.; Yeo, G.S.H.; Lank, E.J.; Cheetham, T.; O’Rahilly, S. Clinical spectrum of obesity and mutations in the melanocortin 4 receptor gene. N. Engl. J. Med., 2003, 348(12), 1085-1095.
[11]
Chen, K.Y.; Muniyappa, R.; Abel, B.S.; Mullins, K.P.; Staker, P.; Brychta, R.J.; Zhao, X.; Ring, M.; Psota, T.L.; Cone, R.D.; Panaro, B.L.; Gottesdiener, K.M.; Van der Ploeg, L.H.; Reitman, M.L.; Skarulis, M.C. RM-493, a melanocortin-4 receptor (MC4R) agonist, increases resting energy expenditure in obese individuals. J. Clin. Endocrinol. Metab., 2015, 100(4), 1639-1645.
[12]
Kühnen, P.; Clément, K.; Wiegand, S.; Blankenstein, O.; Gottesdiener, K.; Martini, L.L.; Mai, K.; Blume-Peytavi, U.; Grüters, A.; Krude, H. Proopiomelanocortin deficiency treated with a melanocortin-4 receptor agonist. N. Engl. J. Med., 2016, 375(3), 240-246.
[13]
Samuelsson, A-M.S.; Mullier, A.; Maicas, N.; Oosterhuis, N.R.; Eun Bae, S.; Novoselova, T.V.; Chan, L.F.; Pombo, J.M.; Taylor, P.D.; Joles, J.A.; Coen, C.W.; Balthasar, N.; Poston, L. Central role for melanocortin-4 receptors in off-spring hypertension arising from maternal obesity. Proc. Natl. Acad. Sci. USA, 2016, 113(43), 12298-12303.
[14]
Berglund, E.D.; Liu, T.; Kong, X.; Sohn, J-W.; Vong, L.; Deng, Z.; Lee, C.E.; Lee, S.; Williams, K.W.; Olson, D.P.; Scherer, P.E.; Lowell, B.B.; Elmquist, J.K. Melanocortin 4 receptors in autonomic neurons regulate thermogenesis and glycemia. Nat. Neurosci., 2014, 17(7), 911-913.
[15]
Panaro, Brandon.L.; Tough, Iain.R.; Engelstoft, Maja.S.; Matthews, Robert.T.; Digby, Gregory.J.; Møller, Cathrine.L. Svendsen, B.; Gribble, F.; Reimann, F.; Holst, Jens J.; Holst, B.; Schwartz, Thue W.; Cox, Helen M.; Cone, Roger D. The melanocortin-4 receptor is expressed in enter-oendocrine L cells and regulates the release of peptide YY and glucagon-like peptide 1 in vivo. Cell Metab., 2014, 20(6), 1018-1029.
[16]
Fetissov, S.O.; Hallman, J.; Oreland, L.; Af Klinteberg, B.; Grenbäck, E.; Hulting, A.L.; Hökfelt, T. Autoantibodies against alpha-MSH, ACTH, and LHRH in anorexia and bulimia nervosa patients. Proc. Natl. Acad. Sci. USA, 2002, 99(26), 17155-17160.
[17]
Fetissov, S.O.; Hamze Sinno, M.; Coëffier, M.; Bole-Feysot, C.; Ducrotté, P.; Hökfelt, T.; Déchelotte, P. Autoantibodies against appetite-regulating peptide hormones and neuropeptides: Putative modulation by gut microflora. Nutrition, 2008, 24(4), 348-359.
[18]
Fetissov, S.O.; Harro, J.; Jaanisk, M.; Järv, A.; Podar, I.; Allik, J.; Nilsson, I.; Sakthivel, P.; Lefvert, A.K.; Hökfelt, T. Autoantibodies against neuropeptides are associated with psychological traits in eating disorders. Proc. Natl. Acad. Sci. USA, 2005, 102(41), 14865-14870.
[19]
Oldstone, M.B. Molecular mimicry and immune-mediated diseases. FASEB J., 1998, 12(13), 1255-1265.
[20]
Fetissov, S.O. Autoimmune component in anorexia and bulimia nervosa. In: Neuropsychiatric Disorders and Infection; Fatemi, S.H., Ed.; Taylor & Francis Books Ltd: London, 2004; pp. 253-262.
[21]
Winter, S.E.; Winter, M.G.; Xavier, M.N.; Thiennimitr, P.; Poon, V.; Keestra, A.M.; Laughlin, R.C.; Gomez, G.; Wu, J.; Lawhon, S.D.; Popova, I.E.; Parikh, S.J.; Adams, L.G.; Tsolis, R.M.; Stewart, V.J.; Bäumler, A.J. Host-derived nitrate boosts growth of E. coli in the inflamed gut. Science, 2013, 339(6120), 708-711.
[22]
Sassone-Corsi, M.; Nuccio, S-P.; Liu, H.; Hernandez, D.; Vu, C.T.; Takahashi, A.A.; Edwards, R.A.; Raffatellu, M. Microcins mediate competition among Enterobacteriaceae in the inflamed gut. Nature, 2016, 540(7632), 280-283.
[23]
Tennoune, N.; Chan, P.; Breton, J.; Legrand, R.; Chabane, Y.N.; Akkermann, K.; Jarv, A.; Ouelaa, W.; Takagi, K.; Ghouzali, I.; François, M.; Lucas, N.; Bole-Feysot, C.; Pestel-Caron, M.; do Rego, J.C.; Vaudry, D.; Harro, J.; Dé, E.; Déchelotte, P.; Fetissov, S.O. Bacterial ClpB heat-shock protein, an antigen-mimetic of the anorexigenic peptide [alpha]-MSH, at the origin of eating disorders. Transl. Psychiatry, 2014, 4, e458.
[24]
Hamze Sinno, M.; Do Rego, J.C.; Coëffier, M.; Bole-Feysot, C.; Ducrotte, P.; Gilbert, D.; Tron, F.; Costentin, J.; Hökfelt, T.; Déchelotte, P.; Fetissov, S.O. Regulation of feeding and anxiety by α-MSH reactive autoantibodies. Psychoneuroendocrinology, 2009, 34(1), 140-149.
[25]
Karaiskos, D.; Mavragani, C.P.; Sinno, M.H.; Déchelotte, P.; Zintzaras, E.; Skopouli, F.N.; Fetissov, S.O.; Moutsopoulos, H.M. Psychopathological and personality features in primary Sjogren’s syndrome--associations with autoantibodies to neuropeptides. Rheumatology, 2010, 49(9), 1762-1769.
[26]
Takagi, K.; Legrand, R.; Asakawa, A.; Amitani, H.; François, M.; Tennoune, N.; Coëffier, M.; Claeyssens, S.; do Rego, J-C.; Déchelotte, P.; Inui, A.; Fetissov, S.O. Anti-ghrelin immunoglobulins modulate ghrelin stability and its orexigenic effect in obese mice and humans. Nat. Commun., 2013, 4, 2685.
[27]
Lucas, N.; Legrand, R.; Ouelaa, W.; Breton, J.; Tennoune, N.; Bole-Feysot, C.; Déchelotte, P.; Fetissov, S.O. Effects of rabbit anti-α-melanocyte-stimulating hormone (α -MSH) immunoglobulins on α-MSH signaling related to food intake control. Neuropeptides, 2014, 48, 21-27.
[28]
Lucas, N.; Legrand, R.; Bôle-Feysot, C.; Breton, J.; Coëffier, M.; Akkermann, K.; Järv, A.; Harro, J.; Déchelotte, P.; Fetissov, S.O. Immunoglobulin G modulation of the melanocortin 4 receptor signaling in obesity and eating disorders. Transl. Psychiatry, 2019, 9(1), 87.
[29]
Harris, J.I.; Lerner, A.B. Amino-acid sequence of the alpha-melanocyte-stimulating hormone. Nature, 1957, 179(4574), 1346-1347.
[30]
Hruby, V.J.; Cai, M.; Cain, J.; Nyberg, J.; Trivedi, D. Design of novel melanocortin receptor ligands: Multiple receptors, complex pharmacology, the challenge. Eur. J. Pharmacol., 2011, 660(1), 88-93.
[31]
Holder, J.R.; Haskell-Luevano, C. Melanocortin ligands: 30 years of structure-activity relationship (SAR) studies. Med. Res. Rev., 2004, 24(3), 325-356.
[32]
Haskell-Luevano, C.; Holder, J.R.; Monck, E.K.; Bauzo, R.M. Characterization of melanocortin NDP-MSH agonist peptide fragments at the mouse central and peripheral melanocortin receptors. J. Med. Chem., 2001, 44(13), 2247-2252.
[33]
Schiöth, H.B.; Mutulis, F.; Muceniece, R.; Prusis, P.; Wik-berg, J.E.S. Selective properties of C- and N-terminals and core residues of the melanocyte-stimulating hormone on binding to the human melanocortin receptor subtypes. Eur. J. Pharmacol., 1998, 349(2-3), 359-366.
[34]
Hruby, V.J.; Wilkes, B.C.; Hadley, M.E.; Al-Obeidi, F.; Sawyer, T.K.; Staples, D.J.; DeVaux, A.; Dym, O.; Ca-strucci, A.M.; Hintz, M.F.; Riehm, J.P.; Rao, K.R. α-Melanotropin: The minimal active sequence in the frog skin bioassay. J. Med. Chem., 1987, 30, 2126-2130.
[35]
Todorovic, A.; Ericson, M.D.; Palusak, R.D.; Sorensen, N.B.; Wood, M.S.; Xiang, Z.; Haskell-Luevano, C. Compara-tive functional alanine positional scanning of the α-melanocyte stimulating hormone and NDP-melanocyte stimulating hormone demonstrates differential structure-activity relationships at the mouse melanocortin receptors. ACS Chem. Neurosci., 2016, (7), 984-994.
[36]
Prabhu, N.V.; Perkyns, J.S.; Pettitt, B.M.; Hruby, V.J. Structure and dynamics of α-MSH using DRISM integral equation theory and stochastic dynamics. Biopolymers, 1999, 50(3), 255-272.
[37]
Donald, J.E.; Kulp, D.W.; DeGrado, W.F. Salt bridges: Geometrically specific, designable interactions. Proteins, 2011, 79(3), 898-915.
[38]
Li, S-Z.; Lee, J-H.; Lee, W.; Yoon, C-J.; Baik, J-H.; Lim, S-K. Type I β-turn conformation is important for biological activity of the melanocyte-stimulating hormone analogues. Eur. J. Biochem., 1999, 265(1), 430-440.
[39]
Sawyer, T.K.; Sanfilippo, P.J.; Hruby, V.J.; Engel, M.H.; Heward, C.B.; Burnett, J.B.; Hadley, M.E. 4-Norleucine, 7-D-phenylalanine-alpha-melanocyte-stimulating hormone: A highly potent alpha-melanotropin with ultralong biological activity. Proc. Natl. Acad. Sci. USA, 1980, 77(10), 5754-5758.
[40]
Liang , Zeng Y.; Hansen, M. H.; Mark, L. H.; Robert, A. G.; Paul, J. E.; JeAnne, H.; David, F.; Patrick, E.; Dave, S.; Lianshan, Z.; Saba, H.; Steven, D. K.; Richard, D. D.; John, P. M., Structure-activity relationships of beta-MSH derived melanocortin-4 receptor peptide agonists. Curr. Top. Med. Chem., 2007, 7(11), 1052-1067.
[41]
Cai, M.; Hruby, V.J. Design of cyclized selective melanotropins. Peptide Sci, 2016, 106(6), 876-883.
[42]
Mayorov, A.V.; Cai, M.; Palmer, E.S.; Tanaka, D.K.; Cain, J.P.; Dedek, M.M.; Tan, B.; Trivedi, D.; Hruby, V.J. Cyclic lactam hybrid α-MSH/Agouti-related protein (AGRP) analogues with nanomolar range binding affinities at the human melanocortin receptors. Bioorg. Chem. Lett, 2011, 21(10), 3099-3102.
[43]
Wilczynski, A.M.; Joseph, C.G.; Haskell-Luevano, C. Current trends in the structure-activity relationship studies of the endogenous agouti-related protein (AGRP) melanocortin receptor antagonist. Med. Res. Rev., 2005, 25(5), 545-556.
[44]
Ericson, M.D.; Schnell, S.M.; Freeman, K.T.; Haskell-Luevano, C. A fragment of the Escherichia coli ClpB heat-shock protein is a micromolar melanocortin 1 receptor agonist. Bioorg. Chem. Lett, 2015, 25(22), 5306-5308.
[45]
Mogk, A.; Schlieker, C.; Strub, C.; Rist, W.; Weibezahn, J.; Bukau, B. Roles of individual domains and conserved motifs of the AAA+ chaperone CLPB in oligomerization, ATP hydrolysis, and chaperone activity. J. Biol. Chem., 2003, 278(20), 17615-17624.
[46]
Lee, S.; Sowa, M.E.; Watanabe, Y.H.; Sigler, P.B.; Chiu, W.; Yoshida, M.; Tsai, F.T. The structure of ClpB: A molecular chaperone that rescues proteins from an aggregated state. Cell, 2003, 115(2), 229-240.
[47]
Kupper, M.; Gupta, S.K.; Feldhaar, H.; Gross, R. Versatile roles of the chaperonin GroEL in microorganism-insect interactions. FEMS Microbiol. Lett., 2014, 353(1), 1-10.
[48]
Dalmasso, G.; Charrier-Hisamuddin, L.; Thu Nguyen, H.T.; Yan, Y.; Sitaraman, S.; Merlin, D. PepT1-mediated tripeptide kpv uptake reduces intestinal inflammation. Gastroenterology, 2008, 134(1), 166-178.
[49]
Valnet, J. Traitement des maladies par les legumes, les frouits et les cereales, 9th ed; Maloine SA: Paris, 1985, p. 509.
[50]
Aiso, I.; Inoue, H.; Seiyama, Y.; Kuwano, T. Compared with the intake of commercial vegetable juice, the intake of fresh fruit and komatsuna (Brassica rapa L. var. perviridis) juice mixture reduces serum cholesterol in middle-aged men: A randomized controlled pilot study. Lipids Health Dis., 2014, 13(1), 102.
[51]
Azhar, S. Lucas, N.; Breton, J.; do Rego, J. C.; Déchelotte, P.; Fetissov, S. O.; Lambert, G.; Legrand, R. In Influence d'une protéine mimétique de l'alpha-melanocyte stimulating hormone (α-MSH), la caseinolytic peptidase B (ClpB) sur le comportement alimentaire et la croissance des souris obèses, Journées Francophones de Nutrition, Montpellier, France, 30 Nov - 2 Dec; Montpellier, France, 2016.
[52]
Chen, A.S.; Metzger, J.M.; Trumbauer, M.E.; Guan, X.M.; Yu, H.; Frazier, E.G.; Marsh, D.J.; Forrest, M.J. Go-pal-Truter, S.; Fisher, J.; Camacho, R. E.; Strack, A. M.; Mellin, T. N.; MacIntyre, D. E.; Chen, H. Y.; Van der Ploeg, L. H. Role of the melanocortin-4 receptor in metabolic rate and food intake in mice. Transgenic Res., 2000, 9(2), 145-154.
[53]
Trivedi, P.; Jiang, M.; Tamvakopoulos, C.C.; Shen, X.; Yu, H.; Mock, S.; Fenyk-Melody, J.; Van der Ploeg, L.H.T.; Guan, X-M. Exploring the site of anorectic action of peripherally administered synthetic melanocortin peptide MT-II in rats. Brain Res., 2003, 977(2), 221-230.
[54]
Kievit, P.; Halem, H.; Marks, D.L.; Dong, J.Z.; Glavas, M.M.; Sinnayah, P.; Pranger, L.; Cowley, M.A.; Grove, K.L.; Culler, M.D. Chronic treatment with a melanocortin-4 receptor agonist causes weight loss, reduces insulin resistance, and improves cardiovascular function in diet-induced obese rhesus macaques. Diabetes, 2013, 62(2), 490-497.
[55]
Fetissov, S.O. Role of the gut microbiota in host appetite control: Bacterial growth to animal feeding behaviour. Nat. Rev. Endocrinol., 2017, 13, 11-25.
[56]
Breton, J.; Tennoune, N.; Lucas, N.; François, M.; Legrand, R.; Jacquemot, J.; Goichon, A.; Guérin, C.; Peltier, J.; Pestel-Caron, M.; Chan, P.; Vaudry, D.; do Rego, J.C.; Liénard, F.; Pénicaud, J.; Fioramonti, X.; Ebenezer, I.S.; Hökfelt, T.; Déchelotte, P.; Fetissov, S.O. Gut commensal E.coli proteins activate host satiety pathways following nutrient-induced bacterial growth. Cell Metab., 2016, 23, 1-11.
[57]
Breton, J.; Legrand, R.; Akkermann, K.; Järv, A.; Harro, J.; Déchelotte, P.; Fetissov, S.O. Elevated plasma concentrations of bacterial ClpB protein in patients with eating disorders. Int. J. Eat. Disord., 2016, 49(8), 805-808.
[59]
Sebriakova, M.; Little, J.A. A method for the determination of plasma insulin antibodies and its application in normal and diabetic subjects. Diabetes, 1973, 22(1), 30-40.
[60]
Bendtzen, K.; Hansen, M.B.; Ross, C.; Svenson, M. High-avidity autoantibodies to cytokines. Immunol. Today, 1998, 19(5), 209-211.
[61]
Deloumeau, A.; Bayard, S.; Coquerel, Q.; Déchelotte, P.; Bole-Feysot, C.; Carlander, B.; Cochen De Cock, V.; Fetiss-ov, S.O.; Dauvilliers, Y. Increased immune complexes of hypocretin autoantibodies in narcolepsy. PLoS One, 2010, 5(10), e13320.