[1]
Shokat, K.; Velleca, M. Novel chemical genetic approaches to the discovery of signal transduction inhibitors. Drug Discov. Today, 2002, 7(16), 872-879. [http://dx.doi.org/10.1016/S1359-6446(02)02391-7]. [PMID: 12546954].
[2]
Johnson, L.N.; Lewis, R.J. Structural basis for control by phosphorylation. Chem. Rev., 2001, 101(8), 2209-2242. [http://dx.doi.org/10.1021/cr000225s]. [PMID: 11749371].
[3]
Lapenna, S.; Giordano, A. Cell cycle kinases as therapeutic targets for cancer. Nat. Rev. Drug Discov., 2009, 8(7), 547-566. [http://dx.doi.org/10.1038/nrd2907]. [PMID: 19568282].
[4]
Keen, N.; Taylor, S. Aurora-kinase inhibitors as anticancer agents. Nat. Rev. Cancer, 2004, 4(12), 927-936. [http://dx.doi.org/10.1038/nrc1502]. [PMID: 15573114].
[5]
Bavetsias, V.; Linardopoulos, S. Aurora kinase inhibitors: Current status and outlook. Front. Oncol., 2015, 5, 278. [http://dx.doi.org/10.3389/fonc.2015.00278]. [PMID: 26734566].
[6]
Coghlan, M.P.; Smith, D.M. Introduction to the kinases in diabetes biochemical society focused meeting: Are protein kinases good targets for antidiabetic drugs? Biochem. Soc. Trans., 2005, 33(Pt 2), 339-342. [http://dx.doi.org/10.1042/BST0330339]. [PMID: 15787601].
[7]
Nandipati, K.C.; Subramanian, S.; Agrawal, D.K. Protein kinases: Mechanisms and downstream targets in inflammation-mediated obesity and insulin resistance. Mol. Cell. Biochem., 2017, 426(1-2), 27-45. [http://dx.doi.org/10.1007/s11010-016-2878-8]. [PMID: 27868170].
[8]
Williams, N.K.; Bamert, R.S.; Patel, O.; Wang, C.; Walden, P.M.; Wilks, A.F.; Fantino, E.; Rossjohn, J.; Lucet, I.S. Dissecting specificity in the Janus kinases: the structures of JAK-specific inhibitors complexed to the JAK1 and JAK2 protein tyrosine kinase domains. J. Mol. Biol., 2009, 387(1), 219-232. [http://dx.doi.org/10.1016/j.jmb.2009.01.041]. [PMID: 19361440].
[9]
Semerano, L.; Decker, P.; Clavel, G.; Boissier, M.C. Developments with investigational Janus kinase inhibitors for rheumatoid arthritis. Expert Opin. Investig. Drugs, 2016, 25(12), 1355-1359. [http://dx.doi.org/10.1080/13543784.2016.1249565]. [PMID: 27748152].
[10]
Kutluk Cenik, B.; Ostapoff, K.T.; Gerber, D.E.; Brekken, R.A. BIBF 1120 (nintedanib), a triple angiokinase inhibitor, induces hypoxia but not EMT and blocks progression of preclinical models of lung and pancreatic cancer. Mol. Cancer Ther., 2013, 12(6), 992-1001. [http://dx.doi.org/10.1158/1535-7163.MCT-12-0995]. [PMID: 23729403].
[11]
Chico, L.K.; Van Eldik, L.J.; Watterson, D.M. Targeting protein kinases in central nervous system disorders. Nat. Rev. Drug Discov., 2009, 8(11), 892-909. [http://dx.doi.org/10.1038/nrd2999]. [PMID: 19876042].
[12]
Zhuo, Z.H.; Sun, Y.Z.; Jin, P.N.; Li, F.Y.; Zhang, Y.L.; Wang, H.L. Selective targeting of MAPK family kinases JNK over p38 by rationally designed peptides as potential therapeutics for neurological disorders and epilepsy. Mol. Biosyst., 2016, 12(8), 2532-2540. [http://dx.doi.org/10.1039/C6MB00297H]. [PMID: 27263470].
[13]
Altman, A.; Kong, K.F. Protein kinase C inhibitors for immune disorders. Drug Discov. Today, 2014, 19(8), 1217-1221. [http://dx.doi.org/10.1016/j.drudis.2014.05.008]. [PMID: 24892801].
[14]
Rask-Andersen, M.; Zhang, J.; Fabbro, D.; Schiöth, H.B. Advances in kinase targeting: Current clinical use and clinical trials. Trends Pharmacol. Sci., 2014, 35(11), 604-620. [http://dx.doi.org/10.1016/j.tips.2014.09.007]. [PMID: 25312588].
[16]
Wu, P.; Clausen, M.H.; Nielsen, T.E. Allosteric small-molecule kinase inhibitors. Pharmacol. Ther., 2015, 156, 59-68. [http://dx.doi.org/10.1016/j.pharmthera.2015.10.002]. [PMID: 26478442].
[17]
Wu, P.; Nielsen, T.E.; Clausen, M.H. FDA-approved small-molecule kinase inhibitors. Trends Pharmacol. Sci., 2015, 36(7), 422-439. [http://dx.doi.org/10.1016/j.tips.2015.04.005]. [PMID: 25975227].
[18]
Wu, P.; Nielsen, T.E.; Clausen, M.H. Small-molecule kinase inhibitors: An analysis of FDA-approved drugs. Drug Discov. Today, 2016, 21(1), 5-10. [http://dx.doi.org/10.1016/j.drudis.2015.07.008]. [PMID: 26210956].
[19]
Gibbons, D.L.; Pricl, S.; Kantarjian, H.; Cortes, J.; Quintás-Cardama, A. The rise and fall of gatekeeper mutations? The BCR-ABL1 T315I paradigm. Cancer, 2012, 118(2), 293-299. [http://dx.doi.org/10.1002/cncr.26225]. [PMID: 21732333].
[20]
Weisberg, E.; Manley, P.W.; Cowan-Jacob, S.W.; Hochhaus, A.; Griffin, J.D. Second generation inhibitors of BCR-ABL for the treatment of imatinib-resistant chronic myeloid leukaemia. Nat. Rev. Cancer, 2007, 7(5), 345-356. [http://dx.doi.org/10.1038/nrc2126]. [PMID: 17457302].
[21]
Zhang, J.; Adrian, F.J.; Jahnke, W.; Cowan-Jacob, S.W.; Li, A.G.; Iacob, R.E.; Sim, T.; Powers, J.; Dierks, C.; Sun, F.; Guo, G.R.; Ding, Q.; Okram, B.; Choi, Y.; Wojciechowski, A.; Deng, X.; Liu, G.; Fendrich, G.; Strauss, A.; Vajpai, N.; Grzesiek, S.; Tuntland, T.; Liu, Y.; Bursulaya, B.; Azam, M.; Manley, P.W.; Engen, J.R.; Daley, G.Q.; Warmuth, M.; Gray, N.S. Targeting Bcr-Abl by combining allosteric with ATP-binding-site inhibitors. Nature, 2010. 28,463(7280),
501-506.
[22]
Cox, K.J.; Shomin, C.D.; Ghosh, I. Tinkering outside the kinase ATP box: Allosteric (type IV) and bivalent (type V) inhibitors of protein kinases. Future Med. Chem., 2011, 3(1), 29-43. [http://dx.doi.org/10.4155/fmc.10.272]. [PMID: 21428824].
[23]
Wells, J.A.; McClendon, C.L. Reaching for high-hanging fruit in drug discovery at protein-protein interfaces. Nature, 2007, 450(7172), 1001-1009. [http://dx.doi.org/10.1038/nature06526]. [PMID: 18075579].
[24]
Liu, F.; Wang, J.; Yang, L.; Liu, L.; Ding, S.; Fu, M.; Deng, L.; Gao, L.Q. Developing a fluorescence-coupled capillary electrophoresis based method to probe interactions between QDs and colorectal cancer targeting peptides. Electrophoresis, 2016, 37(15-16), 2170-2174. [http://dx.doi.org/10.1002/elps.201600165]. [PMID: 27159348].
[25]
Wang, J.; Zhang, C.; Liu, L.; Kalesh, K.A.; Qiu, L.; Ding, S.; Fu, M.; Gao, L.Q.; Jiang, P. A capillary electrophoresis method to explore the self-assembly of a novel polypeptide ligand with quantum dots. Electrophoresis, 2016, 37(15-16), 2156-2162. [http://dx.doi.org/10.1002/elps.201600164]. [PMID: 27334251].
[26]
Fischer, G.; Rossmann, M.; Hyvönen, M. Alternative modulation of protein-protein interactions by small molecules. Curr. Opin. Biotechnol., 2015, 35, 78-85. [http://dx.doi.org/10.1016/j.copbio.2015.04.006]. [PMID: 25935873].
[27]
Srinivasan, R.; Li, J.; Ng, S.L.; Kalesh, K.A.; Yao, S.Q. Methods of using click chemistry in the discovery of enzyme inhibitors. Nat. Protoc., 2007, 2(11), 2655-2664. [http://dx.doi.org/10.1038/nprot.2007.323]. [PMID: 18007601].
[28]
Srinivasan, R.; Uttamchandani, M.; Yao, S.Q. Rapid assembly and in situ screening of bidentate inhibitors of protein tyrosine phosphatases. Org. Lett., 2006, 8(4), 713-716. [http://dx.doi.org/10.1021/ol052895w]. [PMID: 16468749].
[29]
Zhao, Y.; Adjei, A.A. The clinical development of MEK inhibitors. Nat. Rev. Clin. Oncol., 2014, 11(7), 385-400. [http://dx.doi.org/10.1038/nrclinonc.2014.83]. [PMID: 24840079].
[30]
Abe, H.; Kikuchi, S.; Hayakawa, K.; Iida, T.; Nagahashi, N.; Maeda, K.; Sakamoto, J.; Matsumoto, N.; Miura, T.; Matsumura, K.; Seki, N.; Inaba, T.; Kawasaki, H.; Yamaguchi, T.; Kakefuda, R.; Nanayama, T.; Kurachi, H.; Hori, Y.; Yoshida, T.; Kakegawa, J.; Watanabe, Y.; Gilmartin, A.G.; Richter, M.C.; Moss, K.G.; Laquerre, S.G. Discovery of a highly potent and selective MEK inhibitor: GSK1120212 (JTP-74057 DMSO solvate). ACS Med. Chem. Lett., 2011, 2(4), 320-324. [http://dx.doi.org/10.1021/ml200004g]. [PMID: 24900312].
[31]
Ludlow, R.F.; Verdonk, M.L.; Saini, H.K.; Tickle, I.J.; Jhoti, H. Detection of secondary binding sites in proteins using fragment screening. Proc. Natl. Acad. Sci. USA, 2015, 112(52), 15910-15915. [http://dx.doi.org/10.1073/pnas.1518946112]. [PMID: 26655740].
[32]
Sadowsky, J.D.; Burlingame, M.A.; Wolan, D.W.; McClendon, C.L.; Jacobson, M.P.; Wells, J.A. Turning a protein kinase on or off from a single allosteric site via disulfide trapping. Proc. Natl. Acad. Sci. USA, 2011, 108(15), 6056-6061. [http://dx.doi.org/10.1073/pnas.1102376108]. [PMID: 21430264].
[33]
Kroon, E.; Schulze, J.O.; Süß, E.; Camacho, C.J.; Biondi, R.M.; Dömling, A. Discovery of a potent allosteric kinase modulator by combining computational and synthetic methods. Angew. Chem. Int. Ed. Engl., 2015, 54(47), 13933-13936. [http://dx.doi.org/10.1002/anie.201506310]. [PMID: 26385475].
[34]
Shomin, C.D.; Restituyo, E.; Cox, K.J.; Ghosh, I. Selection of cyclic-peptide inhibitors targeting aurora kinase A: Problems and solutions. Bioorg. Med. Chem., 2011, 19(22), 6743-6749. [http://dx.doi.org/10.1016/j.bmc.2011.09.049]. [PMID: 22004849].
[35]
Carmena, M.; Earnshaw, W.C. The cellular geography of aurora kinases. Nat. Rev. Mol. Cell Biol., 2003, 4(11), 842-854. [http://dx.doi.org/10.1038/nrm1245]. [PMID: 14625535].
[36]
Goldenson, B.; Crispino, J.D. The aurora kinases in cell cycle and leukemia. Oncogene, 2015, 34(5), 537-545. [http://dx.doi.org/10.1038/onc.2014.14]. [PMID: 24632603].
[37]
Barr, A.R.; Gergely, F. Aurora-A: The maker and breaker of spindle poles. J. Cell Sci., 2007, 120(Pt 17), 2987-2996. [http://dx.doi.org/10.1242/jcs.013136]. [PMID: 17715155].
[38]
Berdnik, D.; Knoblich, J.A. Drosophila Aurora-A is required for centrosome maturation and actin-dependent asymmetric protein localization during mitosis. Curr. Biol., 2002, 12(8), 640-647. [http://dx.doi.org/10.1016/S0960-9822(02)00766-2]. [PMID: 11967150].
[39]
Hannak, E.; Kirkham, M.; Hyman, A.A.; Oegema, K. Aurora-A kinase is required for centrosome maturation in Caenorhabditis elegans. J. Cell Biol., 2001, 155(7), 1109-1116. [http://dx.doi.org/10.1083/jcb.200108051]. [PMID: 11748251].
[40]
Giet, R.; McLean, D.; Descamps, S.; Lee, M.J.; Raff, J.W.; Prigent, C.; Glover, D.M. Drosophila aurora A kinase is required to localize D-TACC to centrosomes and to regulate astral microtubules. J. Cell Biol., 2002, 156(3), 437-451. [http://dx.doi.org/10.1083/jcb.200108135]. [PMID: 11827981].
[41]
Cowley, D.O.; Rivera-Pérez, J.A.; Schliekelman, M.; He, Y.J.; Oliver, T.G.; Lu, L.; O’Quinn, R.; Salmon, E.D.; Magnuson, T.; Van Dyke, T. Aurora-A kinase is essential for bipolar spindle formation and early development. Mol. Cell. Biol., 2009, 29(4), 1059-1071. [http://dx.doi.org/10.1128/MCB.01062-08]. [PMID: 19075002].
[42]
Bird, A.W.; Hyman, A.A. Building a spindle of the correct length in human cells requires the interaction between TPX2 and Aurora A. J. Cell Biol., 2008, 182(2), 289-300. [http://dx.doi.org/10.1083/jcb.200802005]. [PMID: 18663142].
[43]
Gautschi, O.; Heighway, J.; Mack, P.C.; Purnell, P.R.; Lara, P.N., Jr; Gandara, D.R. Aurora kinases as anticancer drug targets. Clin. Cancer Res., 2008, 14(6), 1639-1648. [http://dx.doi.org/10.1158/1078-0432.CCR-07-2179]. [PMID: 18347165].
[44]
Liu, Q.; Kaneko, S.; Yang, L.; Feldman, R.I.; Nicosia, S.V.; Chen, J.; Cheng, J.Q. Aurora-A abrogation of p53 DNA binding and transactivation activity by phosphorylation of serine 215. J. Biol. Chem., 2004, 279(50), 52175-52182. [http://dx.doi.org/10.1074/jbc.M406802200]. [PMID: 15469940].
[45]
Anand, S.; Penrhyn-Lowe, S.; Venkitaraman, A.R. AURORA-A amplification overrides the mitotic spindle assembly checkpoint, inducing resistance to Taxol. Cancer Cell, 2003, 3(1), 51-62. [http://dx.doi.org/10.1016/S1535-6108(02)00235-0]. [PMID: 12559175].
[46]
Willems, E.; Lombard, A.; Dedobbeleer, M.; Goffart, N.; Rogister, B. The unexpected roles of Aurora A kinase in gliobastoma recurrences. Target. Oncol., 2017, 12(1), 11-18. [http://dx.doi.org/10.1007/s11523-016-0457-2].
[47]
Boss, D.S.; Beijnen, J.H.; Schellens, J.H. Clinical experience with aurora kinase inhibitors: A review. Oncologist, 2009, 14(8), 780-793. [http://dx.doi.org/10.1634/theoncologist.2009-0019]. [PMID: 19684075].
[48]
Burgess, S.G.; Oleksy, A.; Cavazza, T.; Richards, M.W.; Vernos, I.; Matthews, D.; Bayliss, R. Allosteric inhibition of Aurora-A kinase by a synthetic vNAR domain. Open Biol., 2016, 6(7)160089 [http://dx.doi.org/10.1098/rsob.160089]. [PMID: 27411893].
[49]
Bayliss, R.; Sardon, T.; Vernos, I.; Conti, E. Structural basis of Aurora-A activation by TPX2 at the mitotic spindle. Mol. Cell, 2003, 12(4), 851-862. [http://dx.doi.org/10.1016/S1097-2765(03)00392-7]. [PMID: 14580337].
[50]
Rennie, Y.K.; McIntyre, P.J.; Akindele, T.; Bayliss, R.; Jamieson, A.G.A. TPX2 proteomimetic has enhanced affinity for Aurora-A due to hydrocarbon stapling of a helix. ACS Chem. Biol., 2016, 11(12), 3383-3390. [http://dx.doi.org/10.1021/acschembio.6b00727]. [PMID: 27775325].
[51]
Kufer, T.A.; Silljé, H.H.; Körner, R.; Gruss, O.J.; Meraldi, P.; Nigg, E.A. Human TPX2 is required for targeting Aurora-A kinase to the spindle. J. Cell Biol., 2002, 158(4), 617-623. [http://dx.doi.org/10.1083/jcb.200204155]. [PMID: 12177045].
[52]
Anderson, K.; Yang, J.; Koretke, K.; Nurse, K.; Calamari, A.; Kirkpatrick, R.B.; Patrick, D.; Silva, D.; Tummino, P.J.; Copeland, R.A.; Lai, Z. Binding of TPX2 to Aurora A alters substrate and inhibitor interactions. Biochemistry, 2007, 46(36), 10287-10295. [http://dx.doi.org/10.1021/bi7011355]. [PMID: 17705509].
[53]
Lewis, J. Aurora Kinase Inhibitors. WO2007115805 2007.
[54]
Garuti, L.; Roberti, M.; Bottegoni, G. Small molecule aurora kinases inhibitors. Curr. Med. Chem., 2009, 16(16), 1949-1963. [http://dx.doi.org/10.2174/092986709788682227]. [PMID: 19519375].
[55]
Conti, E.; Bayliss, R.; Schultz, C.; Vernos, I.; Sardon, T. Crystals of an aurora-A TPX2 complex, TPX2 binding site
of aurora-A, aurora-A ligands and their use.
WO2005040368 2005.
[56]
Janeček, M.; Rossmann, M.; Sharma, P.; Emery, A.; Huggins, D.J.; Stockwell, S.R.; Stokes, J.E.; Tan, Y.S.; Almeida, E.G.; Hardwick, B.; Narvaez, A.J.; Hyvönen, M.; Spring, D.R.; McKenzie, G.J.; Venkitaraman, A.R. Allosteric modulation of AURKA kinase activity by a small-molecule inhibitor of its protein-protein interaction with TPX2. Sci. Rep., 2016, 6, 28528. [http://dx.doi.org/10.1038/srep28528]. [PMID: 27339427].
[57]
Huggins, D.J.; Venkitaraman, A.R.; Spring, D.R. Rational methods for the selection of diverse screening compounds. ACS Chem. Biol., 2011, 6(3), 208-217. [http://dx.doi.org/10.1021/cb100420r]. [PMID: 21261294].
[58]
Emanuel, S.; Rugg, C.A.; Gruninger, R.H.; Lin, R.; Fuentes-Pesquera, A.; Connolly, P.J.; Wetter, S.K.; Hollister, B.; Kruger, W.W.; Napier, C.; Jolliffe, L.; Middleton, S.A. The in vitro and in vivo effects of JNJ-7706621: a dual inhibitor of cyclin-dependent kinases and aurora kinases. Cancer Res., 2005, 65(19), 9038-9046. [http://dx.doi.org/10.1158/0008-5472.CAN-05-0882]. [PMID: 16204078].
[59]
Hirota, T.; Kunitoku, N.; Sasayama, T.; Marumoto, T.; Zhang, D.; Nitta, M.; Hatakeyama, K.; Saya, H. Aurora-A and an interacting activator, the LIM protein Ajuba, are required for mitotic commitment in human cells. Cell, 2003, 114(5), 585-598. [http://dx.doi.org/10.1016/S0092-8674(03)00642-1]. [PMID: 13678582].
[60]
Hutterer, A.; Berdnik, D.; Wirtz-Peitz, F.; Zigman, M.; Schleiffer, A.; Knoblich, J.A. Mitotic activation of the kinase Aurora-A requires its binding partner Bora. Dev. Cell, 2006, 11(2), 147-157. [http://dx.doi.org/10.1016/j.devcel.2006.06.002]. [PMID: 16890155].
[61]
Dauch, D.; Rudalska, R.; Cossa, G.; Nault, J.C.; Kang, T.W.; Wuestefeld, T.; Hohmeyer, A.; Imbeaud, S.; Yevsa, T.; Hoenicke, L.; Pantsar, T.; Bozko, P.; Malek, N.P.; Longerich, T.; Laufer, S.; Poso, A.; Zucman-Rossi, J.; Eilers, M.; Zender, L. A MYC-aurora kinase A protein complex represents an actionable drug target in p53-altered liver cancer. Nat. Med., 2016, 22(7), 744-753. [http://dx.doi.org/10.1038/nm.4107]. [PMID: 27213815].
[62]
Richards, M.W.; Burgess, S.G.; Poon, E.; Carstensen, A.; Eilers, M.; Chesler, L.; Bayliss, R. Structural basis of N-Myc binding by Aurora-A and its destabilization by kinase inhibitors. Proc. Natl. Acad. Sci. USA, 2016, 113(48), 13726-13731. [http://dx.doi.org/10.1073/pnas.1610626113]. [PMID: 27837025].
[63]
Kishore, A.H.; Vedamurthy, B.M.; Mantelingu, K.; Agrawal, S.; Reddy, B.A.; Roy, S.; Rangappa, K.S.; Kundu, T.K. Specific small-molecule activator of Aurora kinase A induces autophosphorylation in a cell-free system. J. Med. Chem., 2008, 51(4), 792-797. [http://dx.doi.org/10.1021/jm700954w]. [PMID: 18215015].
[64]
Sullivan, J.T.; Richards, C.S.; Lloyd, H.A.; Krishna, G. Anacardic acid: molluscicide in cashew nut shell liquid. Planta Med., 1982, 44(3), 175-177. [http://dx.doi.org/10.1055/s-2007-971434]. [PMID: 17402106].
[65]
Karthigeyan, D.; Siddhanta, S.; Kishore, A.H.; Perumal, S.S.R.R.; Ågren, H.; Sudevan, S.; Bhat, A.V.; Balasubramanyam, K.; Subbegowda, R.K.; Kundu, T.K.; Narayana, C. SERS and MD simulation studies of a kinase inhibitor demonstrate the emergence of a potential drug discovery tool. Proc. Natl. Acad. Sci. USA, 2014, 111(29), 10416-10421. [http://dx.doi.org/10.1073/pnas.1402695111]. [PMID: 24972791].
[66]
Kumari, G.; Kandula, J.; Narayana, C. How far can we probe by SERS? J. Phys. Chem. C, 2015, 119(23), 20057-20064. [http://dx.doi.org/10.1021/acs.jpcc.5b07556].
[67]
Pérez-Pineiro, R.; Correa-Duarte, M.A.; Salgueirino, V.; Alvarez-Puebla, R.A. SERS assisted ultra-fast peptidic screening: A new tool for drug discovery. Nanoscale, 2012, 4(1), 113-116. [http://dx.doi.org/10.1039/C1NR11293G]. [PMID: 22071599].
[68]
Costas, C.; López-Puente, V.; Bodelón, G.; González-Bello, C.; Pérez-Juste, J.; Pastoriza-Santos, I.; Liz-Marzán, L.M. Using surface enhanced Raman scattering to analyze the interactions of protein receptors with bacterial quorum sensing modulators. ACS Nano, 2015, 9(5), 5567-5576. [http://dx.doi.org/10.1021/acsnano.5b01800]. [PMID: 25927541].
[69]
Siddhanta, S.; Wróbel, M.S.; Barman, I. Integration of protein tethering in a rapid and label-free SERS screening platform for drugs of abuse. Chem. Commun. (Camb.), 2016, 52(58), 9016-9019. [http://dx.doi.org/10.1039/ C6CC00518G]. [PMID: 27002230].