Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Allosteric Targeting of Aurora A Kinase Using Small Molecules: A Step Forward Towards Next Generation Medicines?

Author(s): Resmi C. Panicker, Anthony G. Coyne and Rajavel Srinivasan*

Volume 26, Issue 13, 2019

Page: [2234 - 2242] Pages: 9

DOI: 10.2174/0929867324666170727120315

Price: $65

Abstract

Background: Aurora A (AurA) kinase is a key mitotic protein implicated in cancer. Several small molecule inhibitors targeting the ATP binding site of this enzyme are in various stages of clinical development. However, these inhibitors can result in selectivity and drug resistance problems. Allosteric inhibition of kinases using small molecules is an alternative strategy to target these enzymes selectively and these could serve as the seeds for next generation medicines. This review discusses the developments in the non-ATP site binding small molecule inhibitors of AurA and their prospect as future therapeutics.

Discussion: Allosteric targeting of AurA kinase using small molecules is relatively a new strategy, and only a handful of research work has been reported. Two patents and three papers pertaining to allosteric targeting of AurA kinase using small molecules were covered in this review. Topics discussed include, identification of small molecule inhibitors targeting AurA- Targeting Protein for Xenopus kinesin-like protein 2 (TPX2) interaction, anacardic acid - a natural product ligand that selectively modulates AurA activity in the presence of Aurora B kinase, and identification of felodipine as an uncompetitive inhibitor of AurA using Surface Enhanced Raman Spectroscopy (SERS) technique.

Conclusion: Allosteric targeting of therapeutically relevant enzymes using small molecules is a burgeoning research area. New techniques such as fragment-based ligand discovery, SERS methods, etc., are expanding to identify the allosteric site binding ligands. Research in this area is expected to deliver fruitful outcome in terms of novel therapeutics against AurA kinase as well as other therapeutically relevant enzymes.

Keywords: Aurora A, AURKA, TPX2, AurA-TPX2 inhibition, kinase inhibitors, allosteric inhibition, proteinprotein interaction, type IV inhibitors.

[1]
Shokat, K.; Velleca, M. Novel chemical genetic approaches to the discovery of signal transduction inhibitors. Drug Discov. Today, 2002, 7(16), 872-879. [http://dx.doi.org/10.1016/S1359-6446(02)02391-7]. [PMID: 12546954].
[2]
Johnson, L.N.; Lewis, R.J. Structural basis for control by phosphorylation. Chem. Rev., 2001, 101(8), 2209-2242. [http://dx.doi.org/10.1021/cr000225s]. [PMID: 11749371].
[3]
Lapenna, S.; Giordano, A. Cell cycle kinases as therapeutic targets for cancer. Nat. Rev. Drug Discov., 2009, 8(7), 547-566. [http://dx.doi.org/10.1038/nrd2907]. [PMID: 19568282].
[4]
Keen, N.; Taylor, S. Aurora-kinase inhibitors as anticancer agents. Nat. Rev. Cancer, 2004, 4(12), 927-936. [http://dx.doi.org/10.1038/nrc1502]. [PMID: 15573114].
[5]
Bavetsias, V.; Linardopoulos, S. Aurora kinase inhibitors: Current status and outlook. Front. Oncol., 2015, 5, 278. [http://dx.doi.org/10.3389/fonc.2015.00278]. [PMID: 26734566].
[6]
Coghlan, M.P.; Smith, D.M. Introduction to the kinases in diabetes biochemical society focused meeting: Are protein kinases good targets for antidiabetic drugs? Biochem. Soc. Trans., 2005, 33(Pt 2), 339-342. [http://dx.doi.org/10.1042/BST0330339]. [PMID: 15787601].
[7]
Nandipati, K.C.; Subramanian, S.; Agrawal, D.K. Protein kinases: Mechanisms and downstream targets in inflammation-mediated obesity and insulin resistance. Mol. Cell. Biochem., 2017, 426(1-2), 27-45. [http://dx.doi.org/10.1007/s11010-016-2878-8]. [PMID: 27868170].
[8]
Williams, N.K.; Bamert, R.S.; Patel, O.; Wang, C.; Walden, P.M.; Wilks, A.F.; Fantino, E.; Rossjohn, J.; Lucet, I.S. Dissecting specificity in the Janus kinases: the structures of JAK-specific inhibitors complexed to the JAK1 and JAK2 protein tyrosine kinase domains. J. Mol. Biol., 2009, 387(1), 219-232. [http://dx.doi.org/10.1016/j.jmb.2009.01.041]. [PMID: 19361440].
[9]
Semerano, L.; Decker, P.; Clavel, G.; Boissier, M.C. Developments with investigational Janus kinase inhibitors for rheumatoid arthritis. Expert Opin. Investig. Drugs, 2016, 25(12), 1355-1359. [http://dx.doi.org/10.1080/13543784.2016.1249565]. [PMID: 27748152].
[10]
Kutluk Cenik, B.; Ostapoff, K.T.; Gerber, D.E.; Brekken, R.A. BIBF 1120 (nintedanib), a triple angiokinase inhibitor, induces hypoxia but not EMT and blocks progression of preclinical models of lung and pancreatic cancer. Mol. Cancer Ther., 2013, 12(6), 992-1001. [http://dx.doi.org/10.1158/1535-7163.MCT-12-0995]. [PMID: 23729403].
[11]
Chico, L.K.; Van Eldik, L.J.; Watterson, D.M. Targeting protein kinases in central nervous system disorders. Nat. Rev. Drug Discov., 2009, 8(11), 892-909. [http://dx.doi.org/10.1038/nrd2999]. [PMID: 19876042].
[12]
Zhuo, Z.H.; Sun, Y.Z.; Jin, P.N.; Li, F.Y.; Zhang, Y.L.; Wang, H.L. Selective targeting of MAPK family kinases JNK over p38 by rationally designed peptides as potential therapeutics for neurological disorders and epilepsy. Mol. Biosyst., 2016, 12(8), 2532-2540. [http://dx.doi.org/10.1039/C6MB00297H]. [PMID: 27263470].
[13]
Altman, A.; Kong, K.F. Protein kinase C inhibitors for immune disorders. Drug Discov. Today, 2014, 19(8), 1217-1221. [http://dx.doi.org/10.1016/j.drudis.2014.05.008]. [PMID: 24892801].
[14]
Rask-Andersen, M.; Zhang, J.; Fabbro, D.; Schiöth, H.B. Advances in kinase targeting: Current clinical use and clinical trials. Trends Pharmacol. Sci., 2014, 35(11), 604-620. [http://dx.doi.org/10.1016/j.tips.2014.09.007]. [PMID: 25312588].
[15]
U.S. Food and Drug Administration Resources for Information on Approved Drugs., Available at:. http://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrug/ [Accessed: December 03, 2016].
[16]
Wu, P.; Clausen, M.H.; Nielsen, T.E. Allosteric small-molecule kinase inhibitors. Pharmacol. Ther., 2015, 156, 59-68. [http://dx.doi.org/10.1016/j.pharmthera.2015.10.002]. [PMID: 26478442].
[17]
Wu, P.; Nielsen, T.E.; Clausen, M.H. FDA-approved small-molecule kinase inhibitors. Trends Pharmacol. Sci., 2015, 36(7), 422-439. [http://dx.doi.org/10.1016/j.tips.2015.04.005]. [PMID: 25975227].
[18]
Wu, P.; Nielsen, T.E.; Clausen, M.H. Small-molecule kinase inhibitors: An analysis of FDA-approved drugs. Drug Discov. Today, 2016, 21(1), 5-10. [http://dx.doi.org/10.1016/j.drudis.2015.07.008]. [PMID: 26210956].
[19]
Gibbons, D.L.; Pricl, S.; Kantarjian, H.; Cortes, J.; Quintás-Cardama, A. The rise and fall of gatekeeper mutations? The BCR-ABL1 T315I paradigm. Cancer, 2012, 118(2), 293-299. [http://dx.doi.org/10.1002/cncr.26225]. [PMID: 21732333].
[20]
Weisberg, E.; Manley, P.W.; Cowan-Jacob, S.W.; Hochhaus, A.; Griffin, J.D. Second generation inhibitors of BCR-ABL for the treatment of imatinib-resistant chronic myeloid leukaemia. Nat. Rev. Cancer, 2007, 7(5), 345-356. [http://dx.doi.org/10.1038/nrc2126]. [PMID: 17457302].
[21]
Zhang, J.; Adrian, F.J.; Jahnke, W.; Cowan-Jacob, S.W.; Li, A.G.; Iacob, R.E.; Sim, T.; Powers, J.; Dierks, C.; Sun, F.; Guo, G.R.; Ding, Q.; Okram, B.; Choi, Y.; Wojciechowski, A.; Deng, X.; Liu, G.; Fendrich, G.; Strauss, A.; Vajpai, N.; Grzesiek, S.; Tuntland, T.; Liu, Y.; Bursulaya, B.; Azam, M.; Manley, P.W.; Engen, J.R.; Daley, G.Q.; Warmuth, M.; Gray, N.S. Targeting Bcr-Abl by combining allosteric with ATP-binding-site inhibitors. Nature, 2010. 28,463(7280), 501-506.
[22]
Cox, K.J.; Shomin, C.D.; Ghosh, I. Tinkering outside the kinase ATP box: Allosteric (type IV) and bivalent (type V) inhibitors of protein kinases. Future Med. Chem., 2011, 3(1), 29-43. [http://dx.doi.org/10.4155/fmc.10.272]. [PMID: 21428824].
[23]
Wells, J.A.; McClendon, C.L. Reaching for high-hanging fruit in drug discovery at protein-protein interfaces. Nature, 2007, 450(7172), 1001-1009. [http://dx.doi.org/10.1038/nature06526]. [PMID: 18075579].
[24]
Liu, F.; Wang, J.; Yang, L.; Liu, L.; Ding, S.; Fu, M.; Deng, L.; Gao, L.Q. Developing a fluorescence-coupled capillary electrophoresis based method to probe interactions between QDs and colorectal cancer targeting peptides. Electrophoresis, 2016, 37(15-16), 2170-2174. [http://dx.doi.org/10.1002/elps.201600165]. [PMID: 27159348].
[25]
Wang, J.; Zhang, C.; Liu, L.; Kalesh, K.A.; Qiu, L.; Ding, S.; Fu, M.; Gao, L.Q.; Jiang, P. A capillary electrophoresis method to explore the self-assembly of a novel polypeptide ligand with quantum dots. Electrophoresis, 2016, 37(15-16), 2156-2162. [http://dx.doi.org/10.1002/elps.201600164]. [PMID: 27334251].
[26]
Fischer, G.; Rossmann, M.; Hyvönen, M. Alternative modulation of protein-protein interactions by small molecules. Curr. Opin. Biotechnol., 2015, 35, 78-85. [http://dx.doi.org/10.1016/j.copbio.2015.04.006]. [PMID: 25935873].
[27]
Srinivasan, R.; Li, J.; Ng, S.L.; Kalesh, K.A.; Yao, S.Q. Methods of using click chemistry in the discovery of enzyme inhibitors. Nat. Protoc., 2007, 2(11), 2655-2664. [http://dx.doi.org/10.1038/nprot.2007.323]. [PMID: 18007601].
[28]
Srinivasan, R.; Uttamchandani, M.; Yao, S.Q. Rapid assembly and in situ screening of bidentate inhibitors of protein tyrosine phosphatases. Org. Lett., 2006, 8(4), 713-716. [http://dx.doi.org/10.1021/ol052895w]. [PMID: 16468749].
[29]
Zhao, Y.; Adjei, A.A. The clinical development of MEK inhibitors. Nat. Rev. Clin. Oncol., 2014, 11(7), 385-400. [http://dx.doi.org/10.1038/nrclinonc.2014.83]. [PMID: 24840079].
[30]
Abe, H.; Kikuchi, S.; Hayakawa, K.; Iida, T.; Nagahashi, N.; Maeda, K.; Sakamoto, J.; Matsumoto, N.; Miura, T.; Matsumura, K.; Seki, N.; Inaba, T.; Kawasaki, H.; Yamaguchi, T.; Kakefuda, R.; Nanayama, T.; Kurachi, H.; Hori, Y.; Yoshida, T.; Kakegawa, J.; Watanabe, Y.; Gilmartin, A.G.; Richter, M.C.; Moss, K.G.; Laquerre, S.G. Discovery of a highly potent and selective MEK inhibitor: GSK1120212 (JTP-74057 DMSO solvate). ACS Med. Chem. Lett., 2011, 2(4), 320-324. [http://dx.doi.org/10.1021/ml200004g]. [PMID: 24900312].
[31]
Ludlow, R.F.; Verdonk, M.L.; Saini, H.K.; Tickle, I.J.; Jhoti, H. Detection of secondary binding sites in proteins using fragment screening. Proc. Natl. Acad. Sci. USA, 2015, 112(52), 15910-15915. [http://dx.doi.org/10.1073/pnas.1518946112]. [PMID: 26655740].
[32]
Sadowsky, J.D.; Burlingame, M.A.; Wolan, D.W.; McClendon, C.L.; Jacobson, M.P.; Wells, J.A. Turning a protein kinase on or off from a single allosteric site via disulfide trapping. Proc. Natl. Acad. Sci. USA, 2011, 108(15), 6056-6061. [http://dx.doi.org/10.1073/pnas.1102376108]. [PMID: 21430264].
[33]
Kroon, E.; Schulze, J.O.; Süß, E.; Camacho, C.J.; Biondi, R.M.; Dömling, A. Discovery of a potent allosteric kinase modulator by combining computational and synthetic methods. Angew. Chem. Int. Ed. Engl., 2015, 54(47), 13933-13936. [http://dx.doi.org/10.1002/anie.201506310]. [PMID: 26385475].
[34]
Shomin, C.D.; Restituyo, E.; Cox, K.J.; Ghosh, I. Selection of cyclic-peptide inhibitors targeting aurora kinase A: Problems and solutions. Bioorg. Med. Chem., 2011, 19(22), 6743-6749. [http://dx.doi.org/10.1016/j.bmc.2011.09.049]. [PMID: 22004849].
[35]
Carmena, M.; Earnshaw, W.C. The cellular geography of aurora kinases. Nat. Rev. Mol. Cell Biol., 2003, 4(11), 842-854. [http://dx.doi.org/10.1038/nrm1245]. [PMID: 14625535].
[36]
Goldenson, B.; Crispino, J.D. The aurora kinases in cell cycle and leukemia. Oncogene, 2015, 34(5), 537-545. [http://dx.doi.org/10.1038/onc.2014.14]. [PMID: 24632603].
[37]
Barr, A.R.; Gergely, F. Aurora-A: The maker and breaker of spindle poles. J. Cell Sci., 2007, 120(Pt 17), 2987-2996. [http://dx.doi.org/10.1242/jcs.013136]. [PMID: 17715155].
[38]
Berdnik, D.; Knoblich, J.A. Drosophila Aurora-A is required for centrosome maturation and actin-dependent asymmetric protein localization during mitosis. Curr. Biol., 2002, 12(8), 640-647. [http://dx.doi.org/10.1016/S0960-9822(02)00766-2]. [PMID: 11967150].
[39]
Hannak, E.; Kirkham, M.; Hyman, A.A.; Oegema, K. Aurora-A kinase is required for centrosome maturation in Caenorhabditis elegans. J. Cell Biol., 2001, 155(7), 1109-1116. [http://dx.doi.org/10.1083/jcb.200108051]. [PMID: 11748251].
[40]
Giet, R.; McLean, D.; Descamps, S.; Lee, M.J.; Raff, J.W.; Prigent, C.; Glover, D.M. Drosophila aurora A kinase is required to localize D-TACC to centrosomes and to regulate astral microtubules. J. Cell Biol., 2002, 156(3), 437-451. [http://dx.doi.org/10.1083/jcb.200108135]. [PMID: 11827981].
[41]
Cowley, D.O.; Rivera-Pérez, J.A.; Schliekelman, M.; He, Y.J.; Oliver, T.G.; Lu, L.; O’Quinn, R.; Salmon, E.D.; Magnuson, T.; Van Dyke, T. Aurora-A kinase is essential for bipolar spindle formation and early development. Mol. Cell. Biol., 2009, 29(4), 1059-1071. [http://dx.doi.org/10.1128/MCB.01062-08]. [PMID: 19075002].
[42]
Bird, A.W.; Hyman, A.A. Building a spindle of the correct length in human cells requires the interaction between TPX2 and Aurora A. J. Cell Biol., 2008, 182(2), 289-300. [http://dx.doi.org/10.1083/jcb.200802005]. [PMID: 18663142].
[43]
Gautschi, O.; Heighway, J.; Mack, P.C.; Purnell, P.R.; Lara, P.N., Jr; Gandara, D.R. Aurora kinases as anticancer drug targets. Clin. Cancer Res., 2008, 14(6), 1639-1648. [http://dx.doi.org/10.1158/1078-0432.CCR-07-2179]. [PMID: 18347165].
[44]
Liu, Q.; Kaneko, S.; Yang, L.; Feldman, R.I.; Nicosia, S.V.; Chen, J.; Cheng, J.Q. Aurora-A abrogation of p53 DNA binding and transactivation activity by phosphorylation of serine 215. J. Biol. Chem., 2004, 279(50), 52175-52182. [http://dx.doi.org/10.1074/jbc.M406802200]. [PMID: 15469940].
[45]
Anand, S.; Penrhyn-Lowe, S.; Venkitaraman, A.R. AURORA-A amplification overrides the mitotic spindle assembly checkpoint, inducing resistance to Taxol. Cancer Cell, 2003, 3(1), 51-62. [http://dx.doi.org/10.1016/S1535-6108(02)00235-0]. [PMID: 12559175].
[46]
Willems, E.; Lombard, A.; Dedobbeleer, M.; Goffart, N.; Rogister, B. The unexpected roles of Aurora A kinase in gliobastoma recurrences. Target. Oncol., 2017, 12(1), 11-18. [http://dx.doi.org/10.1007/s11523-016-0457-2].
[47]
Boss, D.S.; Beijnen, J.H.; Schellens, J.H. Clinical experience with aurora kinase inhibitors: A review. Oncologist, 2009, 14(8), 780-793. [http://dx.doi.org/10.1634/theoncologist.2009-0019]. [PMID: 19684075].
[48]
Burgess, S.G.; Oleksy, A.; Cavazza, T.; Richards, M.W.; Vernos, I.; Matthews, D.; Bayliss, R. Allosteric inhibition of Aurora-A kinase by a synthetic vNAR domain. Open Biol., 2016, 6(7)160089 [http://dx.doi.org/10.1098/rsob.160089]. [PMID: 27411893].
[49]
Bayliss, R.; Sardon, T.; Vernos, I.; Conti, E. Structural basis of Aurora-A activation by TPX2 at the mitotic spindle. Mol. Cell, 2003, 12(4), 851-862. [http://dx.doi.org/10.1016/S1097-2765(03)00392-7]. [PMID: 14580337].
[50]
Rennie, Y.K.; McIntyre, P.J.; Akindele, T.; Bayliss, R.; Jamieson, A.G.A. TPX2 proteomimetic has enhanced affinity for Aurora-A due to hydrocarbon stapling of a helix. ACS Chem. Biol., 2016, 11(12), 3383-3390. [http://dx.doi.org/10.1021/acschembio.6b00727]. [PMID: 27775325].
[51]
Kufer, T.A.; Silljé, H.H.; Körner, R.; Gruss, O.J.; Meraldi, P.; Nigg, E.A. Human TPX2 is required for targeting Aurora-A kinase to the spindle. J. Cell Biol., 2002, 158(4), 617-623. [http://dx.doi.org/10.1083/jcb.200204155]. [PMID: 12177045].
[52]
Anderson, K.; Yang, J.; Koretke, K.; Nurse, K.; Calamari, A.; Kirkpatrick, R.B.; Patrick, D.; Silva, D.; Tummino, P.J.; Copeland, R.A.; Lai, Z. Binding of TPX2 to Aurora A alters substrate and inhibitor interactions. Biochemistry, 2007, 46(36), 10287-10295. [http://dx.doi.org/10.1021/bi7011355]. [PMID: 17705509].
[53]
Lewis, J. Aurora Kinase Inhibitors. WO2007115805 2007.
[54]
Garuti, L.; Roberti, M.; Bottegoni, G. Small molecule aurora kinases inhibitors. Curr. Med. Chem., 2009, 16(16), 1949-1963. [http://dx.doi.org/10.2174/092986709788682227]. [PMID: 19519375].
[55]
Conti, E.; Bayliss, R.; Schultz, C.; Vernos, I.; Sardon, T. Crystals of an aurora-A TPX2 complex, TPX2 binding site of aurora-A, aurora-A ligands and their use. WO2005040368 2005.
[56]
Janeček, M.; Rossmann, M.; Sharma, P.; Emery, A.; Huggins, D.J.; Stockwell, S.R.; Stokes, J.E.; Tan, Y.S.; Almeida, E.G.; Hardwick, B.; Narvaez, A.J.; Hyvönen, M.; Spring, D.R.; McKenzie, G.J.; Venkitaraman, A.R. Allosteric modulation of AURKA kinase activity by a small-molecule inhibitor of its protein-protein interaction with TPX2. Sci. Rep., 2016, 6, 28528. [http://dx.doi.org/10.1038/srep28528]. [PMID: 27339427].
[57]
Huggins, D.J.; Venkitaraman, A.R.; Spring, D.R. Rational methods for the selection of diverse screening compounds. ACS Chem. Biol., 2011, 6(3), 208-217. [http://dx.doi.org/10.1021/cb100420r]. [PMID: 21261294].
[58]
Emanuel, S.; Rugg, C.A.; Gruninger, R.H.; Lin, R.; Fuentes-Pesquera, A.; Connolly, P.J.; Wetter, S.K.; Hollister, B.; Kruger, W.W.; Napier, C.; Jolliffe, L.; Middleton, S.A. The in vitro and in vivo effects of JNJ-7706621: a dual inhibitor of cyclin-dependent kinases and aurora kinases. Cancer Res., 2005, 65(19), 9038-9046. [http://dx.doi.org/10.1158/0008-5472.CAN-05-0882]. [PMID: 16204078].
[59]
Hirota, T.; Kunitoku, N.; Sasayama, T.; Marumoto, T.; Zhang, D.; Nitta, M.; Hatakeyama, K.; Saya, H. Aurora-A and an interacting activator, the LIM protein Ajuba, are required for mitotic commitment in human cells. Cell, 2003, 114(5), 585-598. [http://dx.doi.org/10.1016/S0092-8674(03)00642-1]. [PMID: 13678582].
[60]
Hutterer, A.; Berdnik, D.; Wirtz-Peitz, F.; Zigman, M.; Schleiffer, A.; Knoblich, J.A. Mitotic activation of the kinase Aurora-A requires its binding partner Bora. Dev. Cell, 2006, 11(2), 147-157. [http://dx.doi.org/10.1016/j.devcel.2006.06.002]. [PMID: 16890155].
[61]
Dauch, D.; Rudalska, R.; Cossa, G.; Nault, J.C.; Kang, T.W.; Wuestefeld, T.; Hohmeyer, A.; Imbeaud, S.; Yevsa, T.; Hoenicke, L.; Pantsar, T.; Bozko, P.; Malek, N.P.; Longerich, T.; Laufer, S.; Poso, A.; Zucman-Rossi, J.; Eilers, M.; Zender, L. A MYC-aurora kinase A protein complex represents an actionable drug target in p53-altered liver cancer. Nat. Med., 2016, 22(7), 744-753. [http://dx.doi.org/10.1038/nm.4107]. [PMID: 27213815].
[62]
Richards, M.W.; Burgess, S.G.; Poon, E.; Carstensen, A.; Eilers, M.; Chesler, L.; Bayliss, R. Structural basis of N-Myc binding by Aurora-A and its destabilization by kinase inhibitors. Proc. Natl. Acad. Sci. USA, 2016, 113(48), 13726-13731. [http://dx.doi.org/10.1073/pnas.1610626113]. [PMID: 27837025].
[63]
Kishore, A.H.; Vedamurthy, B.M.; Mantelingu, K.; Agrawal, S.; Reddy, B.A.; Roy, S.; Rangappa, K.S.; Kundu, T.K. Specific small-molecule activator of Aurora kinase A induces autophosphorylation in a cell-free system. J. Med. Chem., 2008, 51(4), 792-797. [http://dx.doi.org/10.1021/jm700954w]. [PMID: 18215015].
[64]
Sullivan, J.T.; Richards, C.S.; Lloyd, H.A.; Krishna, G. Anacardic acid: molluscicide in cashew nut shell liquid. Planta Med., 1982, 44(3), 175-177. [http://dx.doi.org/10.1055/s-2007-971434]. [PMID: 17402106].
[65]
Karthigeyan, D.; Siddhanta, S.; Kishore, A.H.; Perumal, S.S.R.R.; Ågren, H.; Sudevan, S.; Bhat, A.V.; Balasubramanyam, K.; Subbegowda, R.K.; Kundu, T.K.; Narayana, C. SERS and MD simulation studies of a kinase inhibitor demonstrate the emergence of a potential drug discovery tool. Proc. Natl. Acad. Sci. USA, 2014, 111(29), 10416-10421. [http://dx.doi.org/10.1073/pnas.1402695111]. [PMID: 24972791].
[66]
Kumari, G.; Kandula, J.; Narayana, C. How far can we probe by SERS? J. Phys. Chem. C, 2015, 119(23), 20057-20064. [http://dx.doi.org/10.1021/acs.jpcc.5b07556].
[67]
Pérez-Pineiro, R.; Correa-Duarte, M.A.; Salgueirino, V.; Alvarez-Puebla, R.A. SERS assisted ultra-fast peptidic screening: A new tool for drug discovery. Nanoscale, 2012, 4(1), 113-116. [http://dx.doi.org/10.1039/C1NR11293G]. [PMID: 22071599].
[68]
Costas, C.; López-Puente, V.; Bodelón, G.; González-Bello, C.; Pérez-Juste, J.; Pastoriza-Santos, I.; Liz-Marzán, L.M. Using surface enhanced Raman scattering to analyze the interactions of protein receptors with bacterial quorum sensing modulators. ACS Nano, 2015, 9(5), 5567-5576. [http://dx.doi.org/10.1021/acsnano.5b01800]. [PMID: 25927541].
[69]
Siddhanta, S.; Wróbel, M.S.; Barman, I. Integration of protein tethering in a rapid and label-free SERS screening platform for drugs of abuse. Chem. Commun. (Camb.), 2016, 52(58), 9016-9019. [http://dx.doi.org/10.1039/ C6CC00518G]. [PMID: 27002230].

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy