Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Alkylating Agents, the Road Less Traversed, Changing Anticancer Therapy

Author(s): Dipanjan Karati, Kakasaheb Ramoo Mahadik, Piyush Trivedi and Dileep Kumar*

Volume 22, Issue 8, 2022

Published on: 11 August, 2021

Page: [1478 - 1495] Pages: 18

DOI: 10.2174/1871520621666210811105344

Price: $65

Abstract

Cancer is considered one of the gruelling challenges and poses a grave health hazard across the globe. According to the International Agency for Research on Cancer (IARC), new cancer cases increased to 18.1 million in 2018, with 9.6 million deaths, bringing the global cancer rate to 23.6 million by 2030. In 1942, the discovery of nitrogen mustard as an alkylating agent was a tremendous breakthrough in cancer chemotherapy. It acts by binding to the DNA, and creating cross linkages between the two strands, leading to halt of DNA replication and eventual cell death. Nitrogen lone pairs of ‘nitrogen mustard’ produce an intermediate 'aziridinium ion' at the molecular level, which is very reactive towards DNA of tumour cells, resulting in multiple side effects with therapeutic consequences. Owing to its high reactivity and peripheral cytotoxicity, several improvements have been made with structural modifications for the past 75 years to enhance its efficacy and improve the direct transport of drugs to the tumour cells. Alkylating agents were among the first non-hormonal substances proven to be active against malignant cells and also the most valuable cytotoxic therapies available for the treatment of leukaemia and lymphoma patients. This review focus on the versatile use of alkylating agents and the Structure Activity Relationship (SAR) of each class of these compounds. This could provide an understanding for design and synthesis of new alkylating agents having enhanced target specificity and adequate bioavailability.

Keywords: Alkylating agents, cross resistance, MicroRNA, chlorambucil, melphalan, cyclophosphamide, SAR study.

Graphical Abstract

[1]
Plummer, M.; de Martel, C.; Vignat, J.; Ferlay, J.; Bray, F.; Franceschi, S. Global burden of cancers attributable to infections in 2012: a synthetic analysis. Lancet Glob. Health, 2016, 4(9), e609-e616.
[http://dx.doi.org/10.1016/S2214-109X(16)30143-7] [PMID: 27470177]
[2]
Chaney, S.G.; Sancar, A. DNA repair: enzymatic mechanisms and relevance to drug response. J. Natl. Cancer Inst., 1996, 88(19), 1346-1360.
[http://dx.doi.org/10.1093/jnci/88.19.1346] [PMID: 8827012]
[3]
Schmidt, L.H.; Fradkin, R.; Sullivan, R.; Flowers, A. Comparative pharmacology of alkylating agents. Cancer Chemother. Rep,, 1965, (parts 1,2, and 3)(suppl. 2),, 1-1528.
[4]
Schmidt, L.H. Experimental approaches to evaluating the activities of alkylating agents. Cancer Chemother. Rep., 1962, 16, 25-28.
[PMID: 13908772]
[5]
Connors, T.A. Mechanisms of clinical drug resistance to alkylating agents. Biochem. Pharmacol., 1974, 23(2), 89-100.
[6]
Ye, W. The complexity of translating anti-angiogenesis therapy from basic science to the clinic. Dev. Cell, 2016, 37(2), 114-125.
[http://dx.doi.org/10.1016/j.devcel.2016.03.015] [PMID: 27093081]
[7]
Yang, W.H.; Xu, J.; Mu, J.B.; Xie, J. Revision of the concept of anti-angiogenesis and its applications in tumor treatment. Chronic Dis. Transl. Med., 2017, 3(1), 33-40.
[http://dx.doi.org/10.1016/j.cdtm.2017.01.002] [PMID: 29063054]
[8]
Mezencev, R. Interactions of cisplatin with non-DNA targets and their influence on anticancer activity and drug toxicity: the complex world of the platinum complex. Curr. Cancer Drug Targets, 2015, 14(9), 794-816.
[http://dx.doi.org/10.2174/1568009614666141128105146] [PMID: 25431081]
[9]
Gibson, D. Multi-action Pt(IV) anticancer agents; do we understand how they work? J. Inorg. Biochem., 2019, 191, 77-84.
[http://dx.doi.org/10.1016/j.jinorgbio.2018.11.008] [PMID: 30471522]
[10]
Kelland, L. The resurgence of platinum-based cancer chemotherapy. Nat. Rev. Cancer, 2007, 7(8), 573-584.
[http://dx.doi.org/10.1038/nrc2167] [PMID: 17625587]
[11]
Johnstone, T.C.; Suntharalingam, K.; Lippard, S.J. Third row transition metals for the treatment of cancer. Philos. Trans.- Royal Soc., Math. Phys. Eng. Sci., 2015, 373(2037), 20140185.
[http://dx.doi.org/10.1098/rsta.2014.0185] [PMID: 25666060]
[12]
Anand, P.; Kunnumakkara, A.B.; Sundaram, C.; Harikumar, K.B.; Tharakan, S.T.; Lai, O.S.; Sung, B.; Aggarwal, B.B. Cancer is a preventable disease that requires major lifestyle changes. Pharm. Res., 2008, 25(9), 2097-2116.
[http://dx.doi.org/10.1007/s11095-008-9661-9] [PMID: 18626751]
[13]
Wolff, M.E. Burger’s Medicinal Chemistry and Drug Discovery. Am. J. Ther., 1996, 3(8), 608.
[http://dx.doi.org/10.1097/00045391-199608000-00012]
[14]
Kushi, L.H.; Doyle, C.; McCullough, M.; Rock, C.L.; Demark-Wahnefried, W.; Bandera, E.V.; Gapstur, S.; Patel, A.V.; Andrews, K.; Gansler, T. American cancer society guidelines on nutrition and physical activity for cancer prevention: reducing the risk of cancer with healthy food choices and physical activity. CA Cancer J. Clin., 2012, 62(1), 30-67.
[http://dx.doi.org/10.3322/caac.20140] [PMID: 22237782]
[15]
Giri, B.; Gomes, A.; Debnath, A.; Saha, A.; Biswas, A.K.; Dasgupta, S.C.; Gomes, A. Antiproliferative, cytotoxic and apoptogenic activity of Indian toad (Bufo melanostictus, Schneider) skin extract on U937 and K562 cells. Toxicon, 2006, 48(4), 388-400.
[http://dx.doi.org/10.1016/j.toxicon.2006.06.011] [PMID: 16889807]
[16]
Mbaveng, A.T.; Kuete, V.; Mapunya, B.M.; Beng, V.P.; Nkengfack, A.E.; Meyer, J.J.M.; Lall, N. Evaluation of four Cameroonian medicinal plants for anticancer, antigonorrheal and antireverse transcriptase activities. Environ. Toxicol. Pharmacol., 2011, 32(2), 162-167.
[http://dx.doi.org/10.1016/j.etap.2011.04.006] [PMID: 21843795]
[17]
Burstein, H.J.; Schwartz, R.S. Molecular origins of cancer. N. Engl. J. Med., 2008, 358(5), 527.
[http://dx.doi.org/10.1056/NEJMe0800065] [PMID: 18234758]
[18]
Kuper, H.; Adami, H.O.; Boffetta, P. Tobacco use, cancer causation and public health impact. J. Intern. Med., 2002, 251(6), 455-466.
[http://dx.doi.org/10.1046/j.1365-2796.2002.00993.x] [PMID: 12028500]
[19]
Goubran, H.A.; Kotb, R.R.; Stakiw, J.; Emara, M.E.; Burnouf, T. Regulation of tumor growth and metastasis: the role of tumor microenvironment. Cancer Growth Metastasis, 2014, 7, 9-18.
[http://dx.doi.org/10.4137/CGM.S11285] [PMID: 24926201]
[20]
Singh, P.; Singh, C.L. Chemical investigations of Clerodendraon fragrans. J. Indian Chem. Soc., 1981, 58, 626-627.
[21]
Rastogi, P.R.; Meharotra, B.N. Compendium of Indian medicinal plants; PID, CSIR: New Delhi, India, , 1990. I, p. 194. 339; a) (1993)
[22]
Colvin, M.; Brundrett, R.B.; Kan, M.N.N.; Jardine, I.; Fenselau, C. Alkylating properties of phosphoramide mustard. Cancer Res., 1976, 36(3), 1121-1126.
[PMID: 1253171]
[23]
Fenselau, C.; Kan, M.N.N.; Billets, S.; Colvin, M. Identification of phosphorodiamidic acid mustard as a human metabolite of cyclop hosphamide. Cancer Res., 1975, 35(6), 1453-1457.
[PMID: 1131817]
[24]
Struck, R.F.; Kirk, M.C.; Witt, M.H.; Laster, W.R., Jr Isolation and mass spectral identification of blood metabolites of cyclophosphamide: evidence for phosphoramide mustard as the biologically active metabolite. Biomed. Mass Spectrom., 1975, 2(1), 46-52.
[http://dx.doi.org/10.1002/bms.1200020109] [PMID: 1131393]
[25]
Ludlum, D.B.; Kramer, B.S.; Wang, J.; Fenselau, C. Reaction of 1,3-bis(2-chloroethyl)-1-nitrosourea with synthetic polynucleotides. Biochemistry, 1975, 14(25), 5480-5485.
[http://dx.doi.org/10.1021/bi00696a016] [PMID: 1201275]
[26]
Colvin, M.E.; Sasaki, J.C.; Tran, N.L. Chemical factors in the action of phosphoramidic mustard alkylating anticancer drugs: roles for computational chemistry. Curr. Pharm. Des., 1999, 5(8), 645-663.
[PMID: 10469896]
[27]
Sladek, N.E. Oxaza-phosphorines.Metabolism and action of anti-cancer drugs; Powis, G; Prough, R.A., Ed.; Taylor and Francis: London, 1987, pp. 48-90.
[28]
Vistica, D.T. Cytotoxicity as an indicator for transport mechanism: evidence that melphalan is transported by two leucine-preferring carrier systems in the L1210 murine leukemia cell. Biochim. Biophys. Acta, 1979, 550(2), 309-317.
[http://dx.doi.org/10.1016/0005-2736(79)90217-7] [PMID: 569503]
[29]
Francisco, A.P.; Perry, M.J.; Moreira, R.; Mendes, E. Alkylating agents. In: anticancer therapeutics; misssailidis, , Ed.; John Wiley & Sons, Ltd,, 2008, 9, pp. 133-154.
[http://dx.doi.org/10.1002/9780470697047.ch9]
[30]
Maanen, M.J.; Smeets, C.J.; Beijnen, J.H. Chemistry, pharmacology and pharmacokinetics of N,N¢,N” -triethylenethiophosphoramide (ThioTEPA). Cancer Treat. Rev., 2000, 26(4), 257-268.
[http://dx.doi.org/10.1053/ctrv.2000.0170] [PMID: 10913381]
[31]
Brown, J.M.; Giaccia, A.J. The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res., 1998, 58(7), 1408-1416.
[PMID: 9537241]
[32]
Vaupel, P.; Hockel, M.; Vaupel, P.W.; Kelleher, D.K. Tumor oxygenation; Gustav Fischer Verlag: Stuttgart, 1995, pp. 219-232.
[33]
Nordsmark, M.; Bentzen, S.M.; Overgaard, J. Measurement of human tumor oxygenation status by a polarographic needle electrode. Acta Oncol., 1994, 33, 383-389.
[http://dx.doi.org/10.3109/02841869409098433] [PMID: 8018370]
[34]
Tercel, M.; Wilson, W.R.; Denny, W.A. Nitrobenzyl mustard quaternary salts: a new class of hypoxia-selective cytotoxins showing very high in vitro selectivity. J. Med. Chem., 1993, 36(17), 2578-2579.
[http://dx.doi.org/10.1021/jm00069a019] [PMID: 8355257]
[35]
Denny, W.A.; Wilson, W.R.; Tercel, M.; Van Zijl, P.; Pullen, S.M. Nitrobenzyl mustard quaternary salts: a new class of hypoxia-selective cytotoxins capable of releasing diffusible cytotoxins on bioreduction. Int. J. Radiat. Oncol. Biol. Phys., 1994, 29(2), 317-321.
[http://dx.doi.org/10.1016/0360-3016(94)90282-8] [PMID: 8195026]
[36]
Tercel, M.; Wilson, W.R.; Anderson, R.F.; Denny, W.A. Hypoxia-selective antitumor agents. 12. Nitrobenzyl quaternary salts as bioreductive prodrugs of the alkylating agent mechlorethamine. J. Med. Chem., 1996, 39(5), 1084-1094.
[http://dx.doi.org/10.1021/jm9507791] [PMID: 8676343]
[37]
Wilson, W.R.; Tercel, M.; Anderson, R.F.; Denny, W.A. Radiation-activated prodrugs as hypoxia-selective cytotoxins: model studies with nitroarylmethyl quaternary salts. Anticancer Drug Des., 1998, 13(6), 663-685.
[PMID: 9755724]
[38]
Kapuriya, N.; Kakadiya, R.; Dong, H.; Kumar, A.; Lee, P.C.; Zhang, X.; Chou, T.C.; Lee, T.C.; Chen, C.H.; Lam, K.; Marvania, B.; Shah, A.; Su, T.L. Design, synthesis, and biological evaluation of novel water-soluble N-mustards as potential anticancer agents. Bioorg. Med. Chem., 2011, 19(1), 471-485.
[http://dx.doi.org/10.1016/j.bmc.2010.11.005] [PMID: 21106377]
[39]
Xu, Y.Z.; Gu, X.Y.; Peng, S.J.; Fang, J.G.; Zhang, Y.M.; Huang, D.J.; Chen, J.J.; Gao, K. Design, synthesis and biological evaluation of novel sesquiterpene mustards as potential anticancer agents. Eur. J. Med. Chem., 2015, 94, 284-297.
[http://dx.doi.org/10.1016/j.ejmech.2015.03.001] [PMID: 25771034]
[40]
Tercel, M.; Lee, A.E.; Hogg, A.; Anderson, R.F.; Lee, H.H.; Siim, B.G.; Denny, W.A.; Wilson, W.R. Hypoxia-selective antitumor agents. 16. Nitroarylmethyl quaternary salts as bioreductive prodrugs of the alkylating agent mechlorethamine. J. Med. Chem., 2001, 44(21), 3511-3522.
[http://dx.doi.org/10.1021/jm010202l] [PMID: 11585455]
[41]
Holland, J.F.; Frei, E. Holland-Frei cancer medicine, 6th ed; BC Decker Inc: Hamilton, ON, 2003.
[42]
Giorgi-Renault, S.; Mitomycine, C. Médicaments, antitumoraux.perspectives dans le treatment des cancers; TEC & DOC: Paris, 2003, pp. 127-149.
[43]
Iyer, V.N.; Szybalski, W. Mitomycins and porfiromycin chemical mechanism of activation and cross-linking of DNA. Science, 1964, 145(3627), 55-58.
[http://dx.doi.org/10.1126/science.145.3627.55] [PMID: 14162693]
[44]
Dorr, R.T.; Bowden, G.T.; Alberts, D.S.; Liddil, J.D. Interactions of mitomycin C with mammalian DNA detected by alkaline elution. Cancer Res., 1985, 45(8), 3510-3516.
[PMID: 3926301]
[45]
Montgomery, J.A. Chemistry and structure-activity studies of the nitrosoureas. Cancer Treat. Rep., 1976, 60(6), 651-664.
[PMID: 954007]
[46]
Zhang, K.; Yang, E.B.; Wong, K.P.; Mack, P. GSH, GSH-related enzymes and GS-X pump in relation to sensitivity of human tumor cell lines to chlorambucil and adriamycin. Int. J. Oncol., 1999, 14(5), 861-867.
[http://dx.doi.org/10.3892/ijo.14.5.861] [PMID: 10200335]
[47]
O’Grady, S.; Finn, S.P.; Cuffe, S.; Richard, D.J.; O’Byrne, K.J.; Barr, M.P. The role of DNA repair pathways in cisplatin resistant lung cancer. Cancer Treat. Rev., 2014, 40(10), 1161-1170.
[http://dx.doi.org/10.1016/j.ctrv.2014.10.003] [PMID: 25458603]
[48]
Hoebers, F.J.P.; Pluim, D.; Hart, A.A.; Verheij, M.; Balm, A.J.; Fons, G.; Rasch, C.R.; Schellens, J.H.; Stalpers, L.J.; Bartelink, H.; Begg, A.C. Cisplatin-DNA adduct formation in patients treated with cisplatin-based chemoradiation: lack of correlation between normal tissues and primary tumor. Cancer Chemother. Pharmacol., 2008, 61(6), 1075-1081.
[http://dx.doi.org/10.1007/s00280-007-0545-1] [PMID: 17639394]
[49]
Chalmers, A.J.; Ruff, E.M.; Martindale, C.; Lovegrove, N.; Short, S.C. Cytotoxic effects of temozolomide and radiation are additive- and schedule-dependent. Int. J. Radiat. Oncol. Biol. Phys., 2009, 75(5), 1511-1519.
[http://dx.doi.org/10.1016/j.ijrobp.2009.07.1703] [PMID: 19931733]
[50]
Eckert, F.; Matuschek, C.; Mueller, A.C.; Weinmann, M.; Hartmann, J.T.; Belka, C.; Budach, W. Definitive radiotherapy and single-agent radiosensitizing ifosfamide in patients with localized, irresectable soft tissue sarcoma: a retrospective analysis. Radiat. Oncol., 2010, 5, 55.
[http://dx.doi.org/10.1186/1748-717X-5-55] [PMID: 20553599]
[51]
Krętowski, R.; Drozdowska, D.; Kolesińska, B.; Kamiński, Z.; Frączyk, J.; Cechowska-Pasko, M. The cellular effects of novel triazine nitrogen mustards in glioblastoma LBC3, LN-18 and LN-229 cell lines. Invest. New Drugs, 2019.
[http://dx.doi.org/10.1007/s10637-018-0712-8]
[52]
Bauer, M. R.; Joerger, A. C.; Fersht, A. R. 2-Sulfonylpyrimidines: Mild alkylating agents with anticancer activity toward p53- compromised cells.PNAS early edition; , 1-10.
[53]
Guarnieri, D.J.; DiLeone, R.J. MicroRNAs: a new class of gene regulators. Ann. Med., 2008, 40(3), 197-208.
[http://dx.doi.org/10.1080/07853890701771823] [PMID: 18382885]
[54]
Bartel, D.P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004, 116(2), 281-297.
[http://dx.doi.org/10.1016/S0092-8674(04)00045-5] [PMID: 14744438]
[55]
Calin, G.A.; Croce, C.M. MicroRNA signatures in human cancers. Nat. Rev. Cancer, 2006, 6(11), 857-866.
[http://dx.doi.org/10.1038/nrc1997] [PMID: 17060945]
[56]
Mallick, R.; Patnaik, S.K.; Yendamuri, S. MicroRNAs and lung cancer: Biology and applications in diagnosis and prognosis. J. Carcinog., 2010, 9, 8.
[http://dx.doi.org/10.4103/1477-3163.67074] [PMID: 20808843]
[57]
Rothe, F.; Ignatiadis, M.; Chaboteaux, C.; Haibe-Kains, B. Kheddoumi; N. Majjaj, S.; Badran, B.; Kazan, H. F.; Desmedt, C.; Harris, A. L.; Piccart, M.; Sotiriou, C. Global microRNA expression profiling identifies miR-210 associated with tumour proliferation, invasion and poor clinical outcome in breast cancer. PLoS One, 2011, 6, 209-280.
[http://dx.doi.org/10.1371/journal.pone.0020980]
[58]
Shimono, Y.; Zabala, M.; Cho, R.W.; Lobo, N.; Dalerba, P.; Qian, D.; Diehn, M.; Liu, H.; Panula, S.P.; Chiao, E.; Dirbas, F.M.; Somlo, G.; Pera, R.A.; Lao, K.; Clarke, M.F. Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell, 2009, 138(3), 592-603.
[http://dx.doi.org/10.1016/j.cell.2009.07.011] [PMID: 19665978]
[59]
Gregory, P.A.; Bracken, C.P.; Bert, A.G.; Goodall, G.J. MicroRNAs as regulators of epithelial-mesenchymal transition. Cell Cycle, 2008, 7(20), 3112-3118.
[http://dx.doi.org/10.4161/cc.7.20.6851] [PMID: 18927505]
[60]
Feng, Y.H.; Tsao, C.J. Emerging role of microRNA-21 in cancer. Biomed. Rep., 2016, 5(4), 395-402.
[http://dx.doi.org/10.3892/br.2016.747] [PMID: 27699004]
[61]
Mitra, S.; Kaina, B. Regulation of repair of alkylation damage in mammalian genomes. Prog. Nucleic Acid Res. Mol. Biol., 1993, 44, 109-142.
[http://dx.doi.org/10.1016/S0079-6603(08)60218-4] [PMID: 8434121]
[62]
Christmann, M.; Verbeek, B.; Roos, W.P.; Kaina, B.O. (6)-Methylguanine-DNA methyltransferase (MGMT) in normal tissues and tumors: enzyme activity, promoter methylation and immunohistochemistry. Biochim. Biophys. Acta, 2011, 1816(2), 179-190.
[PMID: 21745538]
[63]
Hegi, M.E.; Diserens, A.C.; Gorlia, T.; Hamou, M.F.; de Tribolet, N.; Weller, M.; Kros, J.M.; Hainfellner, J.A.; Mason, W.; Mariani, L.; Bromberg, J.E.C.; Hau, P.; Mirimanoff, R.O.; Cairncross, J.G.; Janzer, R.C.; Stupp, R. MGMT gene silencing and benefit from temozolomide in glioblastoma. N. Engl. J. Med., 2005, 352(10), 997-1003.
[http://dx.doi.org/10.1056/NEJMoa043331] [PMID: 15758010]
[64]
Kulke, M.H.; Hornick, J.L.; Frauenhoffer, C.; Hooshmand, S.; Ryan, D.P.; Enzinger, P.C.; Meyerhardt, J.A.; Clark, J.W.; Stuart, K.; Fuchs, C.S.; Redston, M.S.O. O6-methylguanine DNA methyltransferase deficiency and response to temozolomide-based therapy in patients with neuroendocrine tumors. Clin. Cancer Res., 2009, 15(1), 338-345.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-1476] [PMID: 19118063]
[65]
Martinez-Cardús, A.; Vizoso, M.; Moran, S.; Manzano, J.L. Epigenetic mechanisms involved in melanoma pathogenesis and chemoresistance. Ann. Transl. Med., 2015, 3(15), 209.
[PMID: 26488005]
[66]
Ozegowski, W.; Krebs, D. IMET 3393, (-[1-Methyl-5-bis-(β-chloroethyl)-amino-benzimidazolyl- (2)]-butyric acid hydrochloride, a new cytostatic agent from among the series of benzimidazole mustard compounds, Zbl. Pharm, 1971, 110, 1013-1019.
[67]
Rasschaert, M.; Schrijvers, D.; Van den Brande, J.; Dyck, J.; Bosmans, J.; Merkle, K.; Vermorken, J.B. A phase I study of bendamustine hydrochloride administered once every 3 weeks in patients with solid tumors. Anticancer Drugs, 2007, 18(5), 587-595.
[http://dx.doi.org/10.1097/CAD.0b013e3280149eb1] [PMID: 17414628]
[68]
Knauf, W.U.; Lissichkov, T.; Aldaoud, A.; Liberati, A.; Loscertales, J.; Herbrecht, R.; Juliusson, G.; Postner, G.; Gercheva, L.; Goranov, S.; Becker, M.; Fricke, H.J.; Huguet, F.; Del Giudice, I.; Klein, P.; Tremmel, L.; Merkle, K.; Montillo, M. Phase III randomized study of bendamustine compared with chlorambucil in previously untreated patients with chronic lymphocytic leukemia. J. Clin. Oncol., 2009, 27(26), 4378-4384.
[http://dx.doi.org/10.1200/JCO.2008.20.8389] [PMID: 19652068]
[69]
Tageja, N.; Nagi, J. Bendamustine: something old, something new. Cancer Chemother. Pharmacol., 2010, 66(3), 413-423.
[http://dx.doi.org/10.1007/s00280-010-1317-x] [PMID: 20376452]
[70]
Liu, C.; Ding, H.; Li, X.; Pallasch, C.P.; Hong, L.; Guo, D.; Chen, Y.; Wang, D.; Wang, W.; Wang, Y.; Hemann, M.T.; Jiang, H. A DNA/HDAC dual-targeting drug CY190602 with significantly enhanced anticancer potency. EMBO Mol. Med., 2015, 7(4), 438-449.
[http://dx.doi.org/10.15252/emmm.201404580] [PMID: 25759362]
[71]
Xie, R.; Tang, P.; Yua, Q. Rational design and characterization of a DNA/HDAC dual-targeting inhibitor containing nitrogen mustard and 2-aminobenzamide moieties. MedChemComm, 2018.
[http://dx.doi.org/10.1039/C7MD00476A] [PMID: 30108928]
[72]
Strese, S.; Wickström, M.; Fuchs, P.F.; Fryknäs, M.; Gerwins, P.; Dale, T.; Larsson, R.; Gullbo, J. The novel alkylating prodrug melflufen (J1) inhibits angiogenesis in vitro and in vivo. Biochem. Pharmacol., 2013, 86(7), 888-895.
[http://dx.doi.org/10.1016/j.bcp.2013.07.026] [PMID: 23933387]
[73]
Friedman, O.M.; Seligman, A.M. Preparation of N-phosphorylated derivatives of bis-(2- chloroethylamine). J. Am. Chem. Soc., 1954, 76, 655-658.
[http://dx.doi.org/10.1021/ja01632a006]
[74]
Friedman, O.M.; Myles, A.; Colvin, M. Cyclophosphamide and related phosphoramide mustards. Current status and future prospects. Adv. Cancer Chemother, 1979, 1, 143-204.
[75]
Stec, W.J. Cyclophosphamide and its congeners. Organophosphorus Chemistry, 1982, 13(8), 145-174.
[76]
Zon, G. Cyclophosphamide analogues. Prog. Med. Chem., 1982, 19, 205-246.
[http://dx.doi.org/10.1016/S0079-6468(08)70330-8] [PMID: 6758039]
[77]
Borch, R.F.; Millard, J.A. The mechanism of activation of 4-hydroxycyclophosphamide. J. Med. Chem., 1987, 30(2), 427-431.
[http://dx.doi.org/10.1021/jm00385a029] [PMID: 3806624]
[78]
Chang, T.K.H.; Weber, G.F.; Crespi, C.L.; Waxman, D.J. Differential activation of cyclophosphamide and ifosphamide by cytochromes P-450 2B and 3A in human liver microsomes. Cancer Res., 1993, 53(23), 5629-5637.
[PMID: 8242617]
[79]
Draeger, U.; Hohorst, H-J. Permeation of cyclophosphamide (NSC-26271) metabolites into tumor cells. Cancer Treat. Rep., 1976, 60(4), 423-427.
[PMID: 1277217]
[80]
Teicher, B.A.; Holden, S.A.; Cucchi, C.A.; Cathcart, K.N.; Korbut, T.T.; Flatow, J.L.; Frei, E. III Combination of N,N¢,N”-triethylenethiophosphoramide and cyclophosphamide in vitro and in vivo. Cancer Res., 1988, 48(1), 94-100.
[PMID: 3121169]
[81]
Chen, G.; Waxman, D.J. Identification of glutathione S-transferase as a determinant of 4-hydroperoxycyclophosphamide resistance in human breast cancer cells. Biochem. Pharmacol., 1995, 49(11), 1691-1701.
[http://dx.doi.org/10.1016/0006-2952(95)00079-F] [PMID: 7786310]
[82]
Kwon, C.H.; Borch, R.F.; Engel, J.; Niemeyer, U. Activation mechanisms of mafosfamide and the role of thiols in cyclophosphamide metabolism. J. Med. Chem., 1987, 30(2), 395-399.
[http://dx.doi.org/10.1021/jm00385a023] [PMID: 3806619]
[83]
Niemeyer, U.; Engel, J.; Scheffler, G.; Molge, K.; Sauerbier, D.; Weigert, W. Chemical characterization of ASTA Z 7557 (INN mafosfamide, CIS-4-sulfoethylthio-cyclophosphamide), a stable derivative of 4-hydroxy-cyclophosphamide. Invest. New Drugs, 1984, 2(2), 133-139.
[http://dx.doi.org/10.1007/BF00232342] [PMID: 6469506]
[84]
Hupe, A.J.; Kendall, M.C.R.; Spencer, T.A. Amine catalysis of elimination from. β.-acetoxy ketone, catalysis via iminium ion formation. J. Am. Chem. Soc., 1972, 94, 1250-1254.
[http://dx.doi.org/10.1021/ja00759a036]
[85]
Hupe, D.J.; Spencer, M.C.R. Amine catalysis of β-ketol dehydration catalysis via iminium ion formation. General analysis of nucleophilic amine catalysis. J. Am. Chem. Soc., 1973, 95, 2271-2278.
[http://dx.doi.org/10.1021/ja00788a028]
[86]
McClelland, R.E.; Somani, R.J. Kinetic analysis of the ring opening of an N- alkyl-oxazolidine. Hydrolysis of 2-(4-methylphenyl)-2, 3-dimethyl-1,3-oxazolidine. J. Org. Chem., 1981, 46, 4345.
[http://dx.doi.org/10.1021/jo00335a004]
[87]
Emadi, A.; Jones, R.J.; Brodsky, R.A. Cyclophosphamide and cancer: golden anniversary. Nat. Rev. Clin. Oncol., 2009, 6(11), 638-647.
[http://dx.doi.org/10.1038/nrclinonc.2009.146] [PMID: 19786984]
[88]
Cytarska, J.; Misiura, K.; Filip-Psurska, B.; Wietrzyk, J. Acyloxymethyl esters of isophosphoramide mustard as new anticancer prodrugs. Acta Pol. Pharm., 2013, 70(3), 481-487.
[PMID: 23757939]
[89]
Pajic, M.; Blatter, S.; Guyader, C.; Gonggrijp, M.; Kersbergen, A. Selected alkylating agents can overcome drug tolerance of G0-like tumour cells and eradicate BRCA1-deficient mammary tumours in mice. American association for cancer research, , 2017. Available from: clincancerres.aacrjournals.org
[90]
Sugiyama, Hiroshi Novel indole derivative for alkylating specific base sequence of DNA and alkylating agent and drug each comprising the same. EP1731519, 2006.
[91]
Ralhan, R.; Kaur, J. Review on alkylating agents and cancer therapy. Expert Opin. Ther. Pat., 2007, 17(9), 1061-1075.
[http://dx.doi.org/10.1517/13543776.17.9.1061]
[92]
US20070060637 2007.
[93]
US2006078494 2006.
[94]
Bardos, T.J.; Datta-Gupta, N.; Hebborn, P.; Triggle, D.J. A study of comparative chemical and biological activities of alkylating agents. J. Med. Chem., 1965, 8, 167-174.
[http://dx.doi.org/10.1021/jm00326a006] [PMID: 14335145]
[95]
Epstein, J.; Rosenthal, R.W.; Ess, R.J. Use of y-(4-nitrobenzyl) pyridine as analytical reagent for ethylenimines and alkylating agents. Anal. Chem., 1955, 27, 1435.
[96]
Brock, N. Oxazaphosphorine cytostatics: past-present-future. Seventh Cain memorial award lecture. Cancer Res., 1989, 49(1), 1-7.
[PMID: 2491747]
[97]
Dulik, D.M.; Fenselau, C. Conversion of melphalan to 4-(glutathione) phenylalanine. Drug Metab. Dispos., 1987, 15, 195-199.
[PMID: 2882977]
[98]
Meyer, D.J.; Coles, B.; Pemble, S.E.; Gilmore, K.S.; Fraser, G.M.; Ketterer, B. Theta, a new class of glutathione transferases purified from rat and man. Biochem. J., 1991, 274(Pt 2), 409-414.
[http://dx.doi.org/10.1042/bj2740409] [PMID: 1848757]
[99]
Leyland-Jones, B.R.; Townsend, A.J.; Tu, C-P.D.; Cowan, K.H.; Goldsmith, M.E. Antineoplastic drug sensitivity of human MCF-7 breast cancer cells stably transfected with a human alpha class glutathione S-transferase gene. Cancer Res., 1991, 51(2), 587-594.
[PMID: 1985777]
[100]
Meyer, D.J.; Gilmore, K.S.; Harris, J.M.; Hartley, J.A.; Ketterer, B. Chlorambucil-monoglutathionyl conjugate is sequestered by human alpha class glutathione S-transferases. Br. J. Cancer, 1992, 66(3), 433-438.
[http://dx.doi.org/10.1038/bjc.1992.292] [PMID: 1520581]
[101]
Mounetou, E.; Legault, J.; Lacroix, J.; C-Gaudreault, R. Antimitotic antitumor agents: synthesis, structure-activity relationships, and biological characterization of N-aryl-N'-(2-chloroethyl)ureas as new selective alkylating agents. J. Med. Chem. 2001, 44(5), 649-702.
[http://dx.doi.org/10.1021/jm0010264] [PMID: 11262080]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy