Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

The Role of 4-Thiazolidinone Scaffold in Targeting Variable Biomarkers and Pathways Involving Cancer

Author(s): Meenakshi Negi, Pooja Chawla*, Abdul Faruk and Viney Chawla

Volume 22, Issue 8, 2022

Published on: 06 July, 2021

Page: [1458 - 1477] Pages: 20

DOI: 10.2174/1871520621666210706104227

Price: $65

Abstract

Background: Cancer can be considered as a genetic as well as a metabolic disorder. The current cancer treatment scenario looks like aggravating tumor cell metabolism, causing the disease to progress even with greater intensity. The cancer therapy is restricted to the limitations of poor patient compliance due to toxicities to normal tissues and multi-drug resistance development. There is an emerging need for cancer therapy to be more focused towards better understanding of genetic, epigenetic and transcriptional changes resulting in cancer progression and their relationship with treatment sensitivity.

Objective: The 4-thiazolidinone nucleus possesses marked anticancer potential towards different biotargets, thus targeting different cancer types like breast, prostate, lung, colorectal and colon cancers, renal cell adenocarcinomas and gliomas. Therefore, conjugating the 4-thiazolidinone scaffold with other promising moieties or directing the therapy towards targeted drug delivery systems like the use of nanocarrier systems, can provide the gateway for optimizing the anticancer efficiency and minimizing the adverse effects and drug resistance development, thus providing stimulus for personalized pharmacotherapy.

Methods: An exhaustive literature survey has been done to give an insight into the anticancer potential of the 4- thiazolidinone nucleus either alone or in conjugation with other active moieties, with the mechanisms involved in preventing proliferation and metastasis of cancer covering a vast range of publications of repute.

Conclusion: This review aims to summarise the work reported on anticancer activity of 4-thiazolidinone derivatives covering various cancer biomarkers and pathways involved, citing the data from the year 2005 till now, which may be beneficial to the researchers for future development of more efficient 4-thiazolidinone derivatives.

Keywords: 4-Thiazolidinone, cancer, genetic, transcriptional, cytotoxicity, biotargets.

Graphical Abstract

[1]
Seyfried, T.N. Cancer as a metabolic disease: On the origin, management and prevention of cancer; John Wiley & Sons, Inc.: New Jersey, 2012.
[http://dx.doi.org/10.1002/9781118310311]
[2]
de Siqueira, L.R.P.; de Moraes Gomes, P.A.T.; de Lima Ferreira, L.P.; de Melo Rêgo, M.J.B.; Leite, A.C.L. Multi-target compounds acting in cancer progression: Focus on thiosemicarbazone, thiazole and thiazolidinone analogues. Eur. J. Med. Chem., 2019, 170, 237-260.
[http://dx.doi.org/10.1016/j.ejmech.2019.03.024] [PMID: 30904782]
[3]
Ottanà, R.; Carotti, S.; Maccari, R.; Landini, I.; Chiricosta, G.; Caciagli, B.; Vigorita, M.G.; Mini, E. in vitro antiproliferative activity against human colon cancer cell lines of representative 4-thiazolidinones. Part I. Bioorg. Med. Chem. Lett., 2005, 15(17), 3930-3933.
[http://dx.doi.org/10.1016/j.bmcl.2005.05.093] [PMID: 15993594]
[4]
Ye, X.; Zhou, W.; Li, Y.; Sun, Y.; Zhang, Y.; Ji, H.; Lai, Y. Darbufelone, a novel anti-inflammatory drug, induces growth inhibition of lung cancer cells both in vitro and in vivo. Cancer Chemother. Pharmacol., 2010, 66(2), 277-285.
[http://dx.doi.org/10.1007/s00280-009-1161-z] [PMID: 20352217]
[5]
Shawky, A.M.; Abourehab, M.A.S.; Abdalla, A.N.; Gouda, A.M. Optimization of pyrrolizine-based Schiff bases with 4-thiazolidinone motif: Design, synthesis and investigation of cytotoxicity and anti-inflammatory potency. Eur. J. Med. Chem., 2020, 185111780
[http://dx.doi.org/10.1016/j.ejmech.2019.111780] [PMID: 31655429]
[6]
Suthar, S.K.; Jaiswal, V.; Lohan, S.; Bansal, S.; Chaudhary, A.; Tiwari, A.; Alex, A.T.; Joesph, A. Novel quinolone substituted thiazolidin-4-ones as anti-inflammatory, anticancer agents: Design, synthesis and biological screening. Eur. J. Med. Chem., 2013, 63, 589-602.
[http://dx.doi.org/10.1016/j.ejmech.2013.03.011] [PMID: 23548704]
[7]
Holota, S.M.; Nektegayev, I.O.; Soronovych, I.I.; Chubuchna, I.I.; Kolishetska, M.A.; Sysak, S.P.; Regeda, M.S.; Lesyk, R.B. The novel pyrazolin-5-one bearing thiazolidin-4-ones: Synthesis, characterization and biological evaluation. Biopolymers Cell, 2021, 37, 46-61.
[http://dx.doi.org/10.7124/bc.000A4B]
[8]
McCubrey, J.A.; Steelman, L.S.; Chappell, W.H.; Abrams, S.L.; Wong, E.W.T.; Chang, F.; Lehmann, B.; Terrian, D.M.; Milella, M.; Tafuri, A.; Stivala, F.; Libra, M.; Basecke, J.; Evangelisti, C.; Martelli, A.M.; Franklin, R.A. Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim. Biophys. Acta, 2007, 1773(8), 1263-1284.
[http://dx.doi.org/10.1016/j.bbamcr.2006.10.001] [PMID: 17126425]
[9]
Wong, K.K. Recent developments in anti-cancer agents targeting the Ras/Raf/MEK/ERK pathway. Recent Patents Anticancer Drug Discov., 2009, 4(1), 28-35.
[http://dx.doi.org/10.2174/157489209787002461] [PMID: 19149686]
[10]
Ahmed, M.F.; Belal, A.; Youns, M. Design, synthesis, molecular modeling and anti-breast cancer activity of novel quinazolin-4-one derivatives linked to thiazolidinone, oxadiazole or pyrazole moieties. Med. Chem. Res., 2015, 24, 2993-3007.
[http://dx.doi.org/10.1007/s00044-015-1357-1]
[11]
Abdellatif, K.R.; Abdelall, E.K.; Abdelgawad, M.A.; Abdelhakeem, M.M.; Omar, H.A. Design and synthesis of certain novel arylidene thiazolidinone derivatives as anticancer agents. Der Pharma Chem., 2015, 7, 149-161.
[12]
Senkiv, J.; Finiuk, N.; Kaminskyy, D.; Havrylyuk, D.; Wojtyra, M.; Kril, I.; Gzella, A.; Stoika, R.; Lesyk, R. 5-Ene-4-thiazolidinones induce apoptosis in mammalian leukemia cells. Eur. J. Med. Chem., 2016, 117, 33-46.
[http://dx.doi.org/10.1016/j.ejmech.2016.03.089] [PMID: 27089210]
[13]
Nilsson, M.; Heymach, J.V. Vascular endothelial growth factor (VEGF) pathway. J. Thorac. Oncol., 2006, 1(8), 768-770.
[http://dx.doi.org/10.1097/01243894-200610000-00003] [PMID: 17409958]
[14]
Abdelgawad, M.A.; Belal, A.; Ahmed, O.M. Synthesis, molecular docking studies and cytotoxic screening of certain novel thiazolidinone derivatives substituted with benzothiazole or benzoxazole. J. Chem. Pharm. Res., 2013, 5, 318-327.
[15]
Frost, S. C.; McKenna, R. Carbonic anhydrase: Mechanism, regulation, links to disease, and industrial applications.
[16]
Chiche, J.; Brahimi-Horn, M.C.; Pouysségur, J. Tumour hypoxia induces a metabolic shift causing acidosis: A common feature in cancer. J. Cell. Mol. Med., 2010, 14(4), 771-794.
[http://dx.doi.org/10.1111/j.1582-4934.2009.00994.x] [PMID: 20015196]
[17]
Ansari, M.F.; Idrees, D.; Hassan, M.I.; Ahmad, K.; Avecilla, F.; Azam, A. Design, synthesis and biological evaluation of novel pyridine-thiazolidinone derivatives as anticancer agents: Targeting human carbonic anhydrase IX. Eur. J. Med. Chem., 2018, 144, 544-556.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.049] [PMID: 29289880]
[18]
Güzel-Akdemir, Ö.; Angeli, A.; Demir, K.; Supuran, C.T.; Akdemir, A. Novel thiazolidinone-containing compounds, without the well-known sulphonamide zinc-binding group acting as human carbonic anhydrase IX inhibitors. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 1299-1308.
[http://dx.doi.org/10.1080/14756366.2018.1499628] [PMID: 30249139]
[19]
Thacker, P.S.A.; Sridhar Goud, N.; Argulwar, O.S.; Soman, J.; Angeli, A.; Alvala, M.; Arifuddin, M.; Supuran, C.T. Synthesis and biological evaluation of some coumarin hybrids as selective carbonic anhydrase IX and XII inhibitors. Bioorg. Chem., 2020, 104104272
[http://dx.doi.org/10.1016/j.bioorg.2020.104272] [PMID: 32961467]
[20]
Kumar, A.S.; Kudva, J.; Bharath, B.R.; Ananda, K.; Sadashiva, R.; Kumar, S.M.; Revanasidappa, B.C.; Kumar, V.; Rekha, P.D.; Naral, D. Synthesis, structural, biological and in silico studies of new 5-arylidene-4-thiazolidinone derivatives as possible anticancer, antimicrobial and antitubercular agents. New J. Chem., 2019, 43, 1597-1610.
[http://dx.doi.org/10.1039/C8NJ03671C]
[21]
Tang, A.; Gao, K.; Chu, L.; Zhang, R.; Yang, J.; Zheng, J. Aurora kinases: Novel therapy targets in cancers. Oncotarget, 2017, 8(14), 23937-23954.
[http://dx.doi.org/10.18632/oncotarget.14893] [PMID: 28147341]
[22]
Zhang, T.; Li, J.; He, Y.; Yang, F.; Hao, Y.; Jin, W.; Wu, J.; Sun, Z.; Li, Y.; Chen, Y.; Yi, Z.; Liu, M. A small molecule targeting myoferlin exerts promising anti-tumor effects on breast cancer. Nat. Commun., 2018, 9(1), 3726.
[http://dx.doi.org/10.1038/s41467-018-06179-0] [PMID: 30213946]
[23]
Bhat, M.; Poojary, B.; Kalal, B.S.; Gurubasavaraja Swamy, P.M.; Kabilan, S.; Kumar, V.; Shruthi, N.; Alias Anand, S.A.; Pai, V.R.; Pai, V.R. Synthesis and evaluation of thiazolidinone-pyrazole conjugates as anticancer and antimicrobial agents. Future Med. Chem., 2018, 10(9), 1017-1036.
[http://dx.doi.org/10.4155/fmc-2017-0191] [PMID: 29708431]
[24]
Zeng, F.; Quan, L.; Yang, G.; Qi, T.; Zhang, L.; Li, S.; Li, H.; Zhu, L.; Xu, X. Structural optimization and structure–activity relationship of 4-thiazolidinone derivatives as novel inhibitors of human dihydroorotate dehydrogenase. Molecules, 2019, 24(15), 1-24.
[http://dx.doi.org/10.3390/molecules24152780] [PMID: 31370178]
[25]
Deininger, M.W.N.; Vieira, S.; Mendiola, R.; Schultheis, B.; Goldman, J.M.; Melo, J.V. BCR-ABL tyrosine kinase activity regulates the expression of multiple genes implicated in the pathogenesis of chronic myeloid leukemia. Cancer Res., 2000, 60(7), 2049-2055.
[PMID: 10766197]
[26]
Türe, A.; Ergül, M.; Ergül, M.; Altun, A.; Küçükgüzel, İ. Design, synthesis, and anticancer activity of novel 4-thiazolidinone-phenylaminopyrimidine hybrids. Mol. Divers., 2020, 23.
[http://dx.doi.org/10.1007/s11030-020-10087-1] [PMID: 32328961]
[27]
Joseph, C.; Alsaleem, M.; Orah, N.; Narasimha, P.L.; Miligy, I.M.; Kurozumi, S.; Ellis, I.O.; Mongan, N.P.; Green, A.R.; Rakha, E.A. Elevated MMP9 expression in breast cancer is a predictor of shorter patient survival. Breast Cancer Res. Treat., 2020, 182(2), 267-282.
[http://dx.doi.org/10.1007/s10549-020-05670-x] [PMID: 32445177]
[28]
Tahmasvand, R.; Bayat, P.; Vahdaniparast, S.M.; Dehghani, S.; Kooshafar, Z.; Khaleghi, S.; Almasirad, A.; Salimi, M. Design and synthesis of novel 4-thiazolidinone derivatives with promising anti-breast cancer activity: Synthesis, characterization, in vitro and in vivo results. Bioorg. Chem., 2020, 104104276
[http://dx.doi.org/10.1016/j.bioorg.2020.104276] [PMID: 32992280]
[29]
Tadesse, S.; Anshabo, A.T.; Portman, N.; Lim, E.; Tilley, W.; Caldon, E.; Wang, S. Targeting CDK2 in cancer: Challenges and opportunities for therapy. Drug Discov. Today, 2020, 25, 406-413.
[http://dx.doi.org/10.1016/j.drudis.2019.12.001]
[30]
Abdullah, J.A.; Aldahham, B.J.M.; Rabeea, M.A.; Asmary, F.A.; Alhajri, H.M.; Islam, M.A. Synthesis, characterization and in-silico assessment of novel thiazolidinone derivatives for cyclin-dependent kinases-2 inhibitors. J. Mol. Struct., 2020, 1223.
[http://dx.doi.org/10.1016/j.molstruc.2020.129311]
[31]
Masoud, G.N.; Youssef, A.M.; Khalek, M.M.; Wahab, A.E.; Labouta, I.M.; Hazzaa, A.A. Design, synthesis, and biological evaluation of new 4-thiazolidinone derivatives substituted with benzimidazole ring as potential chemotherapeutic agents. Med. Chem. Res., 2013, 22, 707-725.
[http://dx.doi.org/10.1007/s00044-012-0057-3]
[32]
Aggarwal, V.; Tuli, H.S.; Varol, A.; Thakral, F.; Yerer, M.B.; Sak, K.; Varol, M.; Jain, A.; Khan, M.A.; Sethi, G. Role of reactive oxygen species in cancer progression: Molecular mechanisms and recent advancements. Biomolecules, 2019, 9(11), 1-26.
[http://dx.doi.org/10.3390/biom9110735] [PMID: 31766246]
[33]
Kobylinska, L.I.; Boiko, N.M.; Panchuk, R.R.; Grytsyna, I.I.; Klyuchivska, O.Y.; Biletska, L.P.; Lesyk, R.B.; Zimenkovsky, B.S.; Stoika, R.S. Putative anticancer potential of novel 4-thiazolidinone derivatives: Cytotoxicity toward rat C6 glioma in vitro and correlation of general toxicity with the balance of free radical oxidation in rats. Croat. Med. J., 2016, 57(2), 151-163.
[http://dx.doi.org/10.3325/cmj.2016.57.151] [PMID: 27106357]
[34]
Szychowski, K.A.; Leja, M.L.; Kaminskyy, D.V.; Binduga, U.E.; Pinyazhko, O.R.; Lesyk, R.B.; Gmiński, J. Study of novel anticancer 4-thiazolidinone derivatives. Chem. Biol. Interact., 2017, 262, 46-56.
[http://dx.doi.org/10.1016/j.cbi.2016.12.008] [PMID: 27965178]
[35]
Teraishi, F.; Wu, S.; Sasaki, J.; Zhang, L.; Zhu, H.B.; Davis, J.J.; Fang, B. P-glycoprotein-independent apoptosis induction by a novel synthetic compound, MMPT [5-[(4-methylphenyl)methylene]-2-(phenylamino)-4(5H)-thiazolone J. Pharmacol. Exp. Ther., 2005, 314(1), 355-362.
[http://dx.doi.org/10.1124/jpet.105.085654] [PMID: 15831436]
[36]
Zhou, H.; Wu, S.; Zhai, S.; Liu, A.; Sun, Y.; Li, R.; Zhang, Y.; Ekins, S.; Swaan, P.W.; Fang, B.; Zhang, B.; Yan, B. Design, synthesis, cytoselective toxicity, structure-activity relationships, and pharmacophore of thiazolidinone derivatives targeting drug-resistant lung cancer cells. J. Med. Chem., 2008, 51(5), 1242-1251.
[http://dx.doi.org/10.1021/jm7012024] [PMID: 18257542]
[37]
Wang, F.; Liu, Z.; Wang, J.; Tao, J.; Gong, P.; Bao, X.; Zhao, Y.; Wang, Y. The interaction of 4-thiazolidinone derivatives containing indolin-2-one moiety with P-glycoprotein studied using K562 cell lines. Eur. J. Med. Chem., 2015, 101, 126-132.
[http://dx.doi.org/10.1016/j.ejmech.2015.06.002] [PMID: 26123642]
[38]
Fulda, S. Evasion of apoptosis as a cellular stress response in cancer. Int. J. Cell Biol., 2010, 2010370835
[http://dx.doi.org/10.1155/2010/370835] [PMID: 20182539]
[39]
Schug, Z.T.; Gottlieb, E. Cardiolipin acts as a mitochondrial signalling platform to launch apoptosis. Biochim. Biophys. Acta, 2009, 1788(10), 2022-2031.
[http://dx.doi.org/10.1016/j.bbamem.2009.05.004] [PMID: 19450542]
[40]
Havrylyuk, D.; Mosula, L.; Zimenkovsky, B.; Vasylenko, O.; Gzella, A.; Lesyk, R. Synthesis and anticancer activity evaluation of 4-thiazolidinones containing benzothiazole moiety. Eur. J. Med. Chem., 2010, 45(11), 5012-5021.
[http://dx.doi.org/10.1016/j.ejmech.2010.08.008] [PMID: 20810193]
[41]
Lesyk, R.; Zimenkovsky, B.; Atamanyuk, D.; Jensen, F.; Kieć-Kononowicz, K.; Gzella, A. Anticancer thiopyrano[2,3-d][1,3]thiazol-2-ones with norbornane moiety. Synthesis, cytotoxicity, physico-chemical properties, and computational studies. Bioorg. Med. Chem., 2006, 14(15), 5230-5240.
[http://dx.doi.org/10.1016/j.bmc.2006.03.053] [PMID: 16632367]
[42]
Chandrappa, S.; Kavitha, C.V.; Shahabuddin, M.S.; Vinaya, K.; Ananda Kumar, C.S.; Ranganatha, S.R.; Raghavan, S.C.; Rangappa, K.S. Synthesis of 2-(5-((5-(4-chlorophenyl)furan-2-yl)methylene)-4-oxo-2-thioxothiazolidin-3-yl)acetic acid derivatives and evaluation of their cytotoxicity and induction of apoptosis in human leukemia cells. Bioorg. Med. Chem., 2009, 17(6), 2576-2584.
[http://dx.doi.org/10.1016/j.bmc.2009.01.016] [PMID: 19243955]
[43]
Isloor, A.M.; Sunil, D.; Shetty, P.; Malladi, S.; Pai, K.S.R.; Maliyakkl, N. Synthesis, characterization, anticancer, and antioxidant activity of some new thiazolidin-4-ones in MCF-7 cells. Med. Chem. Res., 2012, 22, 758-767.
[http://dx.doi.org/10.1007/s00044-012-0071-5]
[44]
Wu, J.; Yu, L.; Yang, F.; Li, J.; Wang, P.; Zhou, W.; Qin, L.; Li, Y.; Luo, J.; Yi, Z.; Liu, M.; Chen, Y. Optimization of 2-(3-(arylalkyl amino carbonyl) phenyl)-3-(2-methoxyphenyl)-4-thiazolidinone derivatives as potent antitumor growth and metastasis agents. Eur. J. Med. Chem., 2014, 80, 340-351.
[http://dx.doi.org/10.1016/j.ejmech.2014.04.068] [PMID: 24794770]
[45]
Sharath Kumar, K.S.; Hanumappa, A.; Hegde, M.; Narasimhamurthy, K.H.; Raghavan, S.C.; Rangappa, K.S. Synthesis and antiproliferative effect of novel 4-thiazolidinone-, pyridine- and piperazine-based conjugates on human leukemic cells. Eur. J. Med. Chem., 2014, 81, 341-349.
[http://dx.doi.org/10.1016/j.ejmech.2014.05.009] [PMID: 24852281]
[46]
Revelant, G.; Huber-Villaume, S.; Dunand, S.; Kirsch, G.; Schohn, H.; Hesse, S. Synthesis and biological evaluation of novel 2-heteroarylimino-1,3-thiazolidin-4-ones as potential anti-tumor agents. Eur. J. Med. Chem., 2015, 94, 102-112.
[http://dx.doi.org/10.1016/j.ejmech.2015.02.053] [PMID: 25757093]
[47]
Sharath Kumar, K.S.; Hanumappa, A.; Vetrivel, M.; Hegde, M.; Girish, Y.R.; Byregowda, T.R.; Rao, S.; Raghavan, S.C.; Rangappa, K.S. Antiproliferative and tumor inhibitory studies of 2,3 disubstituted 4-thiazolidinone derivatives. Bioorg. Med. Chem. Lett., 2015, 25(17), 3616-3620.
[http://dx.doi.org/10.1016/j.bmcl.2015.06.069] [PMID: 26152430]
[48]
Appalanaidu, K.; Kotcherlakota, R.; Dadmal, T.L.; Bollu, V.S.; Kumbhare, R.M.; Patra, C.R. Synthesis and biological evaluation of novel 2-imino-4-thiazolidinone derivatives as potent anti-cancer agents. Bioorg. Med. Chem. Lett., 2016, 26(21), 5361-5368.
[http://dx.doi.org/10.1016/j.bmcl.2016.08.013] [PMID: 27546293]
[49]
Barbosa, V.A.; Baréa, P.; Mazia, R.S.; Ueda-Nakamura, T.; Costa, W.F.D.; Foglio, M.A.; Goes Ruiz, A.L.T.; Carvalho, J.E.; Vendramini-Costa, D.B.; Nakamura, C.V.; Sarragiotto, M.H. Synthesis and evaluation of novel hybrids β-carboline-4-thiazolidinones as potential antitumor and antiviral agents. Eur. J. Med. Chem., 2016, 124, 1093-1104.
[http://dx.doi.org/10.1016/j.ejmech.2016.10.018] [PMID: 27792980]
[50]
El-Naggar, M.; Eldehna, W.M.; Almahli, H.; Elgez, A.; Fares, M.; Elaasser, M.M.; Abdel-Aziz, H.A. Novel Thiazolidinone/thiazolo[3,2-a] benzimidazolone-isatin conjugates as apoptic anti-proliferative agents towards breast cancer: One-pot synthesis and in vitro biological evaluation. Molecules, 2018, 23(6), 1-19.
[http://dx.doi.org/10.3390/molecules23061420] [PMID: 29895744]
[51]
Mir, S.; Jan, M.; Kumar, P.; Dar, A.M. Synthesis, characterization and cytotoxic studies of new thiazolidinones. Eur. J. Pharm. Med. Res., 2018, 5, 333-339.
[http://dx.doi.org/10.19080/OMCIJ.2018.08.555730]
[52]
Gawrońska-Grzywacz, M.; Popiołek, Ł.; Natorska-Chomicka, D.; Piątkowska-Chmiel, I.; Izdebska, M.; Herbet, M.; Iwan, M.; Korga, A.; Dudka, J.; Wujec, M. Novel 2,3 disubstituted 1,3 thiazolidin-4- one derivatives as potential antitumor agents in renal cell adenocarcinoma. Oncol. Rep., 2019, 41(1), 693-701.
[http://dx.doi.org/10.3892/or.2018.6800] [PMID: 30365115]
[53]
Szychowski, K.A.; Kaminskyy, D.V.; Leja, M.L.; Kryshchyshyn, A.P.; Lesyk, R.B.; Tobiasz, J.; Wnuk, M.; Pomianek, T.; Gmiński, J. Anticancer properties of 5Z-(4-fluorobenzylidene)-2-(4-hydroxyphenylamino)-thiazol-4-one. Sci. Rep., 2019, 9(1), 10609.
[http://dx.doi.org/10.1038/s41598-019-47177-6] [PMID: 31337851]
[54]
Kovaleva, K.; Mamontova, E.; Yarovaya, O.; Zakharova, O.; Zakharenko, A.; Lavrik, O.; Salakhutdinov, N. Dehydroabietylamine-based thiazolidin-4-ones and 2-thioxoimidazolidin-4-ones as novel tyrosyl-DNA phosphodiesterase 1 inhibitors. Mol. Divers., 2020.
[http://dx.doi.org/10.1007/s11030-020-10132-z] [PMID: 32833106]
[55]
Hussein, E.M.; Alsantali, R.I.; Morad, M.; Obaid, R.J.; Altass, H.M.; Sayqal, A.; Abourehab, M.A.S.; Elkhawaga, A.A.; Aboraia, A.S.M.; Ahmed, S.A. Bioactive fluorenes. Part III: 2,7-dichloro-9H-fluorene-based thiazolidinone and azetidinone analogues as anticancer and antimicrobial against multidrug resistant strains agents. BMC Chem, 2020, 14(1), 42.
[http://dx.doi.org/10.1186/s13065-020-00694-2] [PMID: 32596690]
[56]
Güzel, O.; Salman, A. Synthesis and biological evaluation of new 4-thiazolidinone derivatives. J. Enzyme Inhib. Med. Chem., 2009, 24(4), 1015-1023.
[http://dx.doi.org/10.1080/14756360802608021] [PMID: 19624255]
[57]
Wang, S.; Zhao, Y.; Zhang, G.; Lv, Y.; Zhang, N.; Gong, P. Design, synthesis and biological evaluation of novel 4-thiazolidinones containing indolin-2-one moiety as potential antitumor agent. Eur. J. Med. Chem., 2011, 46(8), 3509-3518.
[http://dx.doi.org/10.1016/j.ejmech.2011.05.017] [PMID: 21621880]
[58]
Kaminskyy, D.; Bednarczyk-Cwynar, B.; Vasylenko, O.; Kazakova, O.; Zimenkovsky, B.; Zaprutko, L.; Lesyk, R. Synthesis of new potential anticancer agents based on 4-thiazolidinone and oleanane scaffolds. Med. Chem. Res., 2012, 21, 3568-3580.
[http://dx.doi.org/10.1007/s00044-011-9893-9]
[59]
Havrylyuk, D.; Zimenkovsky, B.; Vasylenko, O.; Gzella, A.; Lesyk, R. Synthesis of new 4-thiazolidinone-, pyrazoline-, and isatin-based conjugates with promising antitumor activity. J. Med. Chem., 2012, 55(20), 8630-8641.
[http://dx.doi.org/10.1021/jm300789g] [PMID: 22992049]
[60]
Devinyak, O.; Havrylyuk, D.; Zimenkovsky, B.; Lesyk, R. Computational search for possible mechanisms of 4-thiazolidinones anticancer activity: The power of visualization. Mol. Inform., 2014, 33(3), 216-229.
[http://dx.doi.org/10.1002/minf.201300086] [PMID: 27485690]
[61]
Sala, M.; Chimento, A.; Saturnino, C.; Gomez-Monterrey, I.M.; Musella, S.; Bertamino, A.; Milite, C.; Sinicropi, M.S.; Caruso, A.; Sirianni, R.; Tortorella, P.; Novellino, E.; Campiglia, P.; Pezzi, V. Synthesis and cytotoxic activity evaluation of 2,3-thiazolidin-4-one derivatives on human breast cancer cell lines. Bioorg. Med. Chem. Lett., 2013, 23(17), 4990-4995.
[http://dx.doi.org/10.1016/j.bmcl.2013.06.051] [PMID: 23860590]
[62]
Živković, M.B.; Matić, I.Z.; Rodić, M.V.; Novaković, I.T.; Krivokuća, A.M.; Sladić, D.M.; Krstić, N.M. Anticancer potential of new steroidal thiazolidin-4-one derivatives. Mechanisms of cytotoxic action and effects on angiogenesis in vitro. J. Steroid Biochem. Mol. Biol., 2017, 174, 72-85.
[http://dx.doi.org/10.1016/j.jsbmb.2017.07.031] [PMID: 28756292]
[63]
Kobylinska, L.I.; Skorohyd, N.R.; Klyuchivska, O.V.; Mitina, N.Y.; Zaichenko, A.S.; Lesyk, R.B.; Zimenkovsky, B.S.; Stoika, R.S. Increased antitumor efficiency and reduced negative side effects of 4-thiazolidinone derivatives in complexes with PEG-containing polymeric nanocarrier. Biopolymers Cell, 2018, 34, 313-328.
[http://dx.doi.org/10.7124/bc.000985]
[64]
da Silveira, E.F.; Ferreira, L.M.; Gehrcke, M.; Cruz, L.; Pedra, N.S.; Ramos, P.T.; Bona, N.P.; Soares, M.S.P.; Rodrigues, R.; Spanevello, R.M.; Cunico, W.; Stefanello, F.M.; Azambuja, J.H.; Horn, A.P.; Braganhol, E. 2-(2-Methoxyphenyl)-3-((piperidin-1-yl)ethyl)thiazolidin-4-one- loaded polymeric nanocapsules : in vitro antiglioma activity and in vivo toxicity evaluation. Cell. Mol. Neurobiol., 2019, 39(6), 783-797.
[http://dx.doi.org/10.1007/s10571-019-00678-4] [PMID: 31115733]
[65]
Holota, S.; Kryshchyshyn, A.; Derkach, H.; Trufin, Y.; Demchuk, I.; Gzella, A.; Grellier, P.; Lesyk, R. Synthesis of 5-enamine-4-thiazolidinone derivatives with trypanocidal and anticancer activity. Bioorg. Chem., 2019, 86, 126-136.
[http://dx.doi.org/10.1016/j.bioorg.2019.01.045] [PMID: 30690336]
[66]
Abumelha, H.M.A.; Saeed, A. Synthesis of some 5-arylidene-2-(4-acetamidophenylimino)-thiazolidin-4-one derivatives and exploring their breast anticancer activity. J. Heterocycl. Chem., 2020, 57(4), 1-9.
[http://dx.doi.org/10.1002/jhet.3906]
[67]
Shepeta, Y.; Lozynskyi, A.; Sulyma, M.; Nektegayev, I.; Grellier, P.; Lesyk, R. Synthesis and biological activity evaluation of new thiazolidinone-diclofenac hybrid molecules. Phosphorus Sulfur Silicon Relat. Elem., 2020, 195(10), 1-6.
[http://dx.doi.org/10.1080/10426507.2020.1759060]
[68]
Ashraf, S.; Saeed, A.; Moon, S.; Florke, U.; Kim, S.H.; Ashraf, Z.; Yaseen, M.; Latif, M. Design, synthesis and biological evaluation of 2-(naphthoyl) iminothiazolidin-4-ones as potential anticancer agents. ChemistrySelect, 2020, 5, 3965-3970.
[http://dx.doi.org/10.1002/slct.202000579]
[69]
Sigalapalli, D.K.; Pooladanda, V.; Kadagathur, M.; Guggilapu, S.D.; Uppu, J.L.; Godugu, C.; Bathini, N.B.; Tangellamudi, N.D. Novel chromenyl-based 2-iminothiazolidin-4-one derivatives as tubulin polymerization inhibitors: Design, synthesis, biological evaluation and molecular modelling studies. J. Mol. Struct., 2020, 1225, 1-15.
[http://dx.doi.org/10.1016/j.molstruc.2020.128847]
[70]
Hebishy, A.M.S.; Abdelfattah, M.S.; Elmorsy, A.; Elwahy, A.H.M. Novel bis(thiazolidin-4-ones) linked to aliphatic or aromatic spacers: Synthesis, characterization, and anticancer evaluation; J; Sulphur Chem, 2020, pp. 1-17.
[71]
S Ramadan, W.; Saleh, E.M.; Menon, V.; Vazhappilly, C.G.; Abdu- Allah, H.H.M.; El-Shorbagi, A.A.; Mansour, W.; El-Awady, R. Induction of DNA damage, apoptosis and cell cycle perturbation mediate cytotoxic activity of new 5-aminosalicylate-4-thiazolinone hybrid derivatives. Biomed. Pharmacother.,; , 2020. 131, 110571
[http://dx.doi.org/10.1016/j.biopha.2020.110571] [PMID: 32861966]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy