Review Article

千年营养素N,N-二甲基甘氨酸(DMG)及其在自闭症谱系障碍中的有效性

卷 29, 期 15, 2022

发表于: 24 January, 2022

页: [2632 - 2651] 页: 20

弟呕挨: 10.2174/0929867328666211125091811

价格: $65

摘要

自闭症是一种属于自闭症谱系障碍(ASD)的神经发育障碍。在ASD中,个体在生命的早期阶段表现出严重的社会沟通障碍,重复行为和感觉行为缺陷。在全球范围内,自闭症的患病率估计不到1%,特别是在高收入国家。近几十年来,ASD的发病率急剧增加,这使ASD成为流行病的范畴。目前,美国食品和药物管理局批准的两种药物阿立哌唑和利培酮用于治疗自闭症儿童的激越和易激惹症状。然而,迄今为止,还没有发现任何药物可以治疗ASD的核心症状。传统医学的不良副作用和有限的治疗选择导致自闭症儿童的家庭转向补充和替代医学(CAM)治疗,与传统医学相比,这些治疗被认为是相对安全的。最近,N,N-二甲基甘氨酸(DMG)是一种膳食补充剂,已成为改善ASD儿童精神和身体状态的有用补充剂。本综述讨论了ASD、ASD的患病率、CAM方法以及CAM治疗ASD患儿的疗效。此外,它突出了DMG的化学,药理作用和临床研究,突出了其改善ASD儿童生活方式的潜力。

关键词: 二甲基甘氨酸,药理学,自闭症谱系障碍(ASD),补充和替代医学(CAM),中枢神经系统(CNS),神经系统疾病。

[1]
Faras, H.; Al Ateeqi, N.; Tidmarsh, L. Autism spectrum disorders. Ann. Saudi Med., 2010, 30(4), 295-300.
[http://dx.doi.org/10.4103/0256-4947.65261] [PMID: 20622347]
[2]
Özerk, K. The Issue of Prevalence of Autism/ASD. IEJEE, 2016, 9(2), 263-306.
[3]
Almandil, N.B.; Alkuroud, D.N.; AbdulAzeez, S.; AlSulaiman, A.; Elaissari, A.; Borgio, J.F. Environmental and genetic factors in Autism Spectrum disorders: Special emphasis on data from Arabian studies. Int. J. Environ. Res. Public Health, 2019, 16(4), 658.
[http://dx.doi.org/10.3390/ijerph16040658] [PMID: 30813406]
[4]
Miranda, A.; Mira, A.; Berenguer, C.; Rosello, B.; Baixauli, I. Parenting stress in mothers of children with Autism without intellectual disability. Mediation of behavioral problems and coping strategies. Front. Psychol., 2019, 10, 464.
[http://dx.doi.org/10.3389/fpsyg.2019.00464] [PMID: 30906274]
[5]
Neggers, Y.H. Increasing prevalence, changes in diagnostic criteria, and nutritional risk factors for autism spectrum disorders. ISRN Nutr., 2014, 2014, 514026.
[http://dx.doi.org/10.1155/2014/514026] [PMID: 24967269]
[6]
Baio, J.; Wiggins, L.; Christensen, D.L.; Maenner, M.J.; Daniels, J.; Warren, Z.; Kurzius-Spencer, M.; Zahorodny, W.; Robinson Rosenberg, C.; White, T.; Durkin, M.S.; Imm, P.; Nikolaou, L.; Yeargin-Allsopp, M.; Lee, L.C.; Harrington, R.; Lopez, M.; Fitzgerald, R.T.; Hewitt, A.; Pettygrove, S.; Constantino, J.N.; Vehorn, A.; Shenouda, J.; Hall-Lande, J.; Van Naarden Braun, K.; Dowling, N.F. Prevalence of Autism Spectrum disorder among children aged 8 years - Autism and developmental disabilities monitoring network, 11 Sites, United States, 2014. MMWR Surveill. Summ., 2018, 67(6), 1-23.
[http://dx.doi.org/10.15585/mmwr.ss6706a1] [PMID: 29701730]
[7]
Srikantha, P.; Mohajeri, M.H.; Hasan Mohajeri, M. The possible role of the microbiota-Gut-Brain-Axis in Autism Spectrum Disorder. Int. J. Mol. Sci., 2019, 20(9), 2115.
[http://dx.doi.org/10.3390/ijms20092115] [PMID: 31035684]
[8]
Paşca, S.P.; Dronca, E.; Kaucsár, T.; Crǎciun, E.C.; Endreffy, E.; Ferencz, B.K.; Iftene, F.; Benga, I.; Cornean, R.; Banerjee, R.; Dronca, M. One carbon metabolism disturbances and the C677T MTHFR gene polymorphism in children with autism spectrum disorders. J. Cell. Mol. Med., 2009, 13(10), 4229-4238.
[http://dx.doi.org/10.1111/j.1582-4934.2008.00463.x] [PMID: 19267885]
[9]
Holm, P.I.; Ueland, P.M.; Kvalheim, G.; Lien, E.A. Determination of choline, betaine, and dimethylglycine in plasma by a high-throughput method based on normal-phase chromatography-tandem mass spectrometry. Clin. Chem., 2003, 49(2), 286-294.
[http://dx.doi.org/10.1373/49.2.286] [PMID: 12560353]
[10]
Zeisel, S.H.; da Costa, K.A. Choline: An essential nutrient for public health. Nutr. Rev., 2009, 67(11), 615-623.
[http://dx.doi.org/10.1111/j.1753-4887.2009.00246.x] [PMID: 19906248]
[11]
Levy, S.E.; Hyman, S.L. Complementary and alternative medicine treatments for children with autism spectrum disorders. Child Adolesc. Psychiatr. Clin. N. Am., 2008, 17(4), 803-820, ix.
[http://dx.doi.org/10.1016/j.chc.2008.06.004] [PMID: 18775371]
[12]
Kendall, R.V.; Lawson, J.W. Recent findings on N, N-Dimethylglycine (DMG): A nutrient for the new millennium. Townsend Lett. Dr. Patients, 2000, 25, 75-85.
[13]
Gottfried, C.; Riesgo, R. Antipsychotics in the Treatment of Autism. In: Autism Spectrum Disorders - from genes to environment; IntechOpen: London, 2011, pp. 23-46.
[http://dx.doi.org/10.5772/18608]
[14]
Fakhoury, M. Autistic spectrum disorders: A review of clinical features, theories and diagnosis. Int. J. Dev. Neurosci., 2015, 43, 70-77.
[http://dx.doi.org/10.1016/j.ijdevneu.2015.04.003] [PMID: 25862937]
[15]
Hodges, H.; Fealko, C.; Soares, N. Autism spectrum disorder: Definition, epidemiology, causes, and clinical evaluation. Transl. Pediatr., 2020, 9(Suppl. 1), S55-S65.
[http://dx.doi.org/10.21037/tp.2019.09.09] [PMID: 32206584]
[16]
Elsabbagh, M.; Divan, G.; Koh, Y.J.; Kim, Y.S.; Kauchali, S.; Marcín, C.; Montiel-Nava, C.; Patel, V.; Paula, C.S.; Wang, C.; Yasamy, M.T.; Fombonne, E. Global prevalence of autism and other pervasive developmental disorders. Autism Res., 2012, 5(3), 160-179.
[http://dx.doi.org/10.1002/aur.239] [PMID: 22495912]
[17]
Sun, X.; Allison, C.; Matthews, F.E.; Sharp, S.J.; Auyeung, B.; Baron-Cohen, S.; Brayne, C. Prevalence of autism in mainland China, Hong Kong and Taiwan: A systematic review and meta-analysis. Mol. Autism, 2013, 4(1), 7.
[http://dx.doi.org/10.1186/2040-2392-4-7] [PMID: 23570419]
[18]
Werling, D.M.; Geschwind, D.H. Sex differences in autism spectrum disorders. Curr. Opin. Neurol., 2013, 26(2), 146-153.
[http://dx.doi.org/10.1097/WCO.0b013e32835ee548] [PMID: 23406909]
[19]
Yoo, H. Genetics of Autism Spectrum disorder: Current status and possible clinical applications. Exp. Neurobiol., 2015, 24(4), 257-272.
[http://dx.doi.org/10.5607/en.2015.24.4.257] [PMID: 26713075]
[20]
Herbert, J.D.; Gaudiano, B. Separating fact from fiction in the etiology and treatment of Autism: A scientific review of the evidence. Sci. Rev. Mental Health Practice, 2010, 1(1), 23-43.
[21]
Geschwind, D.H. Genetics of autism spectrum disorders. Trends Cogn. Sci., 2011, 15(9), 409-416.
[http://dx.doi.org/10.1016/j.tics.2011.07.003] [PMID: 21855394]
[22]
Hallmayer, J.; Cleveland, S.; Torres, A.; Phillips, J.; Cohen, B.; Torigoe, T.; Miller, J.; Fedele, A.; Collins, J.; Smith, K.; Lotspeich, L.; Croen, L.A.; Ozonoff, S.; Lajonchere, C.; Grether, J.K.; Risch, N. Genetic heritability and shared environmental factors among twin pairs with autism. Arch. Gen. Psychiatry, 2011, 68(11), 1095-1102.
[http://dx.doi.org/10.1001/archgenpsychiatry.2011.76] [PMID: 21727249]
[23]
Takano, T. Role of microglia in autism: recent advances. Dev. Neurosci., 2015, 37(3), 195-202.
[http://dx.doi.org/10.1159/000398791] [PMID: 25998072]
[24]
Wiśniowiecka-Kowalnik, B.; Nowakowska, B.A. Genetics and epigenetics of autism spectrum disorder-current evidence in the field. J. Appl. Genet., 2019, 60(1), 37-47.
[http://dx.doi.org/10.1007/s13353-018-00480-w] [PMID: 30627967]
[25]
Campistol, J.; Díez-Juan, M.; Callejón, L.; Miguel, A.F-D.; Casado, M.; Cazorla, A.G.; Lozano, R.; Artuch, R.; Fernandez-De Miguel, A.; Casado, M.; Garcia Cazorla, A.; Lozano, R.; Artuch, R. Inborn error metabolic screening in individuals with nonsyndromic Autism Spectrum disorders. Dev. Med. Child Neurol, 2016, 58, 842-847.
[26]
Stoner, R.; Chow, M.L.; Boyle, M.P.; Sunkin, S.M.; Mouton, P.R.; Roy, S.; Wynshaw-Boris, A.; Colamarino, S.A.; Lein, E.S.; Courchesne, E. Patches of disorganization in the neocortex of children with autism. N. Engl. J. Med., 2014, 370(13), 1209-1219.
[http://dx.doi.org/10.1056/NEJMoa1307491] [PMID: 24670167]
[27]
Lin, Y.C.; Frei, J.A.; Kilander, M.B.C.; Shen, W.; Blatt, G.J. A subset of Autism-associated genes regulate the structural stability of neurons. Front. Cell. Neurosci., 2016, 10, 263.
[http://dx.doi.org/10.3389/fncel.2016.00263] [PMID: 27909399]
[28]
Gerard, E.; Meador, K. An update on maternal use of antiepileptic medications in pregnancy and neurodevelopment outcomes. J. Pediatr. Genet., 2015, 04, 094-110.
[29]
Keil, A.; Daniels, J.L.; Forssen, U.; Hultman, C.; Cnattingius, S.; Söderberg, K.C.; Feychting, M.; Sparen, P. Parental autoimmune diseases associated with autism spectrum disorders in offspring. Epidemiology, 2010, 21(6), 805-808.
[http://dx.doi.org/10.1097/EDE.0b013e3181f26e3f] [PMID: 20798635]
[30]
Guney, E.; Iseri, E. Genetic and Environmental Factors in Autism. In: Recent Advances in Autism Spectrum Disorders; IntechOpen: London, 2013.
[http://dx.doi.org/10.5772/53295]
[31]
Žigman, T.; Petković Ramadža, D.; Šimić, G.; Barić, I. Inborn errors of metabolism associated with Autism spectrum disorders: Approaches to intervention. Front. Neurosci., 2021, 15, 673600.
[http://dx.doi.org/10.3389/fnins.2021.673600] [PMID: 34121999]
[32]
Farr, C.V.; El-Kasaby, A.; Freissmuth, M.; Sucic, S. The creatine transporter unfolded: a knotty premise in the cerebral creatine deficiency syndrome. Front. Synaptic Neurosci., 2020, 12, 588954.
[http://dx.doi.org/10.3389/fnsyn.2020.588954] [PMID: 33192443]
[33]
Stockler, S.; Schutz, P.W.; Salomons, G.S. Cerebral creatine deficiency syndromes: Clinical aspects, treatment and pathophysiology. Subcell. Biochem., 2007, 46, 149-166.
[http://dx.doi.org/10.1007/978-1-4020-6486-9_8] [PMID: 18652076]
[34]
Lütjohann, D.; Stellaard, F.; Björkhem, I. Levels of 7alpha-hydroxycholesterol and/or 7alpha-hydroxy-4-cholest-3-one are the optimal biochemical markers for the evaluation of treatment of cerebrotendinous xanthomatosis. J. Neurol., 2020, 267(2), 572-573.
[http://dx.doi.org/10.1007/s00415-019-09650-0] [PMID: 31781930]
[35]
Thurm, A.; Tierney, E.; Farmer, C.; Albert, P.; Joseph, L.; Swedo, S.; Bianconi, S.; Bukelis, I.; Wheeler, C.; Sarphare, G.; Lanham, D.; Wassif, C.A.; Porter, F.D. Development, behavior, and biomarker characterization of Smith-Lemli-Opitz syndrome: An update. J. Neurodev. Disord., 2016, 8, 12.
[http://dx.doi.org/10.1186/s11689-016-9145-x] [PMID: 27053961]
[36]
Kiykim, E.; Zeybek, C.A.; Zubarioglu, T.; Cansever, S.; Yalcinkaya, C.; Soyucen, E.; Aydin, A. Inherited metabo- lic disorders in Turkish patients with autism spectrum disorders. Autism Res., 2016, 9(2), 217-223.
[http://dx.doi.org/10.1002/aur.1507] [PMID: 26055667]
[37]
Ferenci, P. Diagnosis of Wilson disease. Handb. Clin. Neurol., 2017, 142, 171-180.
[http://dx.doi.org/10.1016/B978-0-444-63625-6.00014-8] [PMID: 28433100]
[38]
Mulligan, C.; Bronstein, J.M. Wilson disease: An overview and approach to management. Neurol. Clin., 2020, 38(2), 417-432.
[http://dx.doi.org/10.1016/j.ncl.2020.01.005] [PMID: 32279718]
[39]
Hyland, K.; Shoffner, J.; Heales, S.J. Cerebral folate deficiency. J. Inherit. Metab. Dis., 2010, 33(5), 563-570.
[http://dx.doi.org/10.1007/s10545-010-9159-6] [PMID: 20668945]
[40]
Bustad, H.J.; Toska, K.; Schmitt, C.; Vorland, M.; Skjærven, L.; Kallio, J.P.; Simonin, S.; Letteron, P.; Underhaug, J.; Sandberg, S.; Martinez, A. A pharmacological chaperone therapy for acute intermittent Porphyria. Mol. Ther., 2020, 28(2), 677-689.
[http://dx.doi.org/10.1016/j.ymthe.2019.11.010] [PMID: 31810863]
[41]
Ciardo, F.; Salerno, C.; Curatolo, P. Neurologic aspects of adenylosuccinate lyase deficiency. J. Child Neurol., 2001, 16(5), 301-308.
[PMID: 11392513]
[42]
Didiášová, M.; Banning, A.; Brennenstuhl, H.; Jung-Klawitter, S.; Cinquemani, C.; Opladen, T.; Tikkanen, R. Succinic semialdehyde dehydrogenase deficiency: an update. Cells, 2020, 9(2), 477.
[http://dx.doi.org/10.3390/cells9020477] [PMID: 32093054]
[43]
Ghaziuddin, M.; Al-Owain, M. Autism spectrum disorders and inborn errors of metabolism: An update. Pediatr. Neurol., 2013, 49(4), 232-236.
[http://dx.doi.org/10.1016/j.pediatrneurol.2013.05.013] [PMID: 23921282]
[44]
Barić, I.; Fumić, K.; Glenn, B.; Ćuk, M.; Schulze, A.; Finkelstein, J.D.; James, S.J.; Mejaški-Bošnjak, V.; Pažanin, L.; Pogribny, I.P.; Radoš, M.; Sarnavka, V.; Šćukanec-Špoljar, M.; Allen, R.H.; Stabler, S.; Uzelac, L.; Vugrek, O.; Wagner, C.; Zeisel, S.; Mudd, S.H. S-adenosylhomocysteine hydrolase deficiency in a human: A genetic disorder of methionine metabolism. Proc. Natl. Acad. Sci. USA, 2004, 101(12), 4234-4239.
[http://dx.doi.org/10.1073/pnas.0400658101] [PMID: 15024124]
[45]
Dean, L. Methylenetetrahydrofolate Reductase Deficiency. Medical Genetics Summaries [Internet]; National Center for Biotechnology Information (US). National Center for Biotechnology Information: USA, 2016. Internet
[46]
Kato, Y.; Kuwabara, H.; Okada, T.; Munesue, T.; Benner, S.; Kuroda, M.; Kojima, M.; Yassin, W.; Eriguchi, Y.; Kameno, Y.; Murayama, C.; Nishimura, T.; Tsuchiya, K.; Kasai, K.; Ozaki, N.; Kosaka, H.; Yamasue, H. Oxytocin-induced increase in N,N-dimethylglycine and time course of changes in oxytocin efficacy for autism social core symptoms. Mol. Autism, 2021, 12(1), 15.
[http://dx.doi.org/10.1186/s13229-021-00423-z] [PMID: 33622389]
[47]
Hsieh, C.P.; Chen, H.; Chan, M.H.; Chen, L.; Chen, H.H.N. N,N-dimethylglycine prevents toluene-induced impairment in recognition memory and synaptic plasticity in mice. Toxicology, 2020, 446, 152613.
[http://dx.doi.org/10.1016/j.tox.2020.152613] [PMID: 33086094]
[48]
Vuong, H.E.; Hsiao, E.Y. Emerging roles for the gut microbiome in autism spectrum disorder. Biol. Psychiatry, 2017, 81(5), 411-423.
[http://dx.doi.org/10.1016/j.biopsych.2016.08.024] [PMID: 27773355]
[49]
Li, Q.; Han, Y.; Dy, A.B.C.; Hagerman, R.J. The gut microbiota and autism spectrum disorders. Front. Cell. Neurosci., 2017, 11, 120.
[http://dx.doi.org/10.3389/fncel.2017.00120] [PMID: 28503135]
[50]
Wasilewska, J.; Klukowski, M. Gastrointestinal symptoms and Autism spectrum disorder: links and risks - a possible new overlap syndrome. Pediatric Health Med. Ther., 2015, 6, 153-166.
[http://dx.doi.org/10.2147/PHMT.S85717] [PMID: 29388597]
[51]
Sivamaruthi, B.S.; Suganthy, N.; Kesika, P.; Chaiyasut, C. The role of microbiome, dietary supplements, and probiotics in autism spectrum disorder. Int. J. Environ. Res. Public Health, 2020, 17(8), 2647.
[http://dx.doi.org/10.3390/ijerph17082647] [PMID: 32290635]
[52]
Strati, F.; Cavalieri, D.; Albanese, D.; De Felice, C.; Donati, C.; Hayek, J.; Jousson, O.; Leoncini, S.; Renzi, D.; Calabrò, A.; De Filippo, C. New evidences on the altered gut microbiota in autism spectrum disorders. Microbiome, 2017, 5(1), 24.
[http://dx.doi.org/10.1186/s40168-017-0242-1] [PMID: 28222761]
[53]
Finegold, S.M.; Dowd, S.E.; Gontcharova, V.; Liu, C.; Henley, K.E.; Wolcott, R.D.; Youn, E.; Summanen, P.H.; Granpeesheh, D.; Dixon, D.; Liu, M.; Molitoris, D.R.; Green, J.A., III Pyrosequencing study of fecal microflora of autistic and control children. Anaerobe, 2010, 16(4), 444-453.
[http://dx.doi.org/10.1016/j.anaerobe.2010.06.008] [PMID: 20603222]
[54]
Rinninella, E.; Raoul, P.; Cintoni, M.; Franceschi, F.; Miggiano, G.A.D.; Gasbarrini, A.; Mele, M.C. . What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms, 2019, 7(1), 14.
[http://dx.doi.org/10.3390/microorganisms7010014] [PMID: 30634578]
[55]
Xu, M.; Xu, X.; Li, J.; Li, F. Association between gut microbiota and Autism Spectrum disorder: A systematic review and meta-analysis. Front. Psychiatry, 2019, 10, 473.
[http://dx.doi.org/10.3389/fpsyt.2019.00473] [PMID: 31404299]
[56]
Kang, D-W.; Park, J.G.; Ilhan, Z.E.; Wallstrom, G.; Labaer, J.; Adams, J.B.; Krajmalnik-Brown, R. Reduced incidence of Prevotella and other fermenters in intestinal microflora of autistic children. PLoS One, 2013, 8(7), e68322.
[http://dx.doi.org/10.1371/journal.pone.0068322] [PMID: 23844187]
[57]
Chandrasekhar, T.; Sikich, L. Challenges in the diagnosis and treatment of depression in autism spectrum disorders across the lifespan. Dialogues Clin. Neurosci., 2015, 17(2), 219-227.
[http://dx.doi.org/10.31887/DCNS.2015.17.2/tchandrasekhar] [PMID: 26246795]
[58]
Watt, N.; Wetherby, A.M.; Barber, A.; Morgan, L. Repetitive and stereotyped behaviors in children with autism spectrum disorders in the second year of life. J. Autism Dev. Disord., 2008, 38(8), 1518-1533.
[http://dx.doi.org/10.1007/s10803-007-0532-8] [PMID: 18266099]
[59]
Fuld, S. Autism Spectrum disorder: The impact of stressful and Traumatic life events and implications for clinical practice. Clin. Soc. Work J., 2018, 46(3), 210-219.
[http://dx.doi.org/10.1007/s10615-018-0649-6] [PMID: 30100640]
[60]
Ghaziuddin, M.; Alessi, N.; Greden, J.F. Life events and depression in children with pervasive developmental disorders. J. Autism Dev. Disord., 1995, 25(5), 495-502.
[http://dx.doi.org/10.1007/BF02178296] [PMID: 8567595]
[61]
Young, S.; Hollingdale, J.; Absoud, M.; Bolton, P.; Branney, P.; Colley, W.; Craze, E.; Dave, M.; Deeley, Q.; Farrag, E.; Gudjonsson, G.; Hill, P.; Liang, H.L.; Murphy, C.; Mackintosh, P.; Murin, M.; O’Regan, F.; Ougrin, D.; Rios, P.; Stover, N.; Taylor, E.; Woodhouse, E. Guidance for identification and treatment of individuals with attention deficit/hyperactivity disorder and autism spectrum disorder based upon expert consensus. BMC Med., 2020, 18(1), 146.
[http://dx.doi.org/10.1186/s12916-020-01585-y] [PMID: 32448170]
[62]
Wood, J.J.; Drahota, A.; Sze, K.; Har, K.; Chiu, A.; Langer, D.A. Cognitive behavioral therapy for anxiety in children with autism spectrum disorders: A randomized, controlled trial. J. Child Psychol. Psychiatry, 2009, 50(3), 224-234.
[http://dx.doi.org/10.1111/j.1469-7610.2008.01948.x] [PMID: 19309326]
[63]
Kuroda, M.; Kawakubo, Y.; Kuwabara, H.; Yokoyama, K.; Kano, Y.; Kamio, Y. A cognitive-behavioral intervention for emotion regulation in adults with high-functioning autism spectrum disorders: Study protocol for a randomized controlled trial. Trials, 2013, 14, 231.
[http://dx.doi.org/10.1186/1745-6215-14-231] [PMID: 23880333]
[64]
Sofronoff, K.; Attwood, T.; Hinton, S. A randomised controlled trial of a CBT intervention for anxiety in children with Asperger syndrome. J. Child Psychol. Psychiatry, 2005, 46(11), 1152-1160.
[http://dx.doi.org/10.1111/j.1469-7610.2005.00411.x] [PMID: 16238662]
[65]
Kiep, M.; Spek, A.A.; Hoeben, L. Mindfulness-based therapy in adults with an Autism Spectrum disorder: Do treatment effects last? Mindfulness (N.Y.), 2015, 6, 637-644.
[http://dx.doi.org/10.1007/s12671-014-0299-x]
[66]
Spek, A.A.; van Ham, N.C.; Nyklíček, I. Mindfulness-based therapy in adults with an autism spectrum disorder: A randomized controlled trial. Res. Dev. Disabil., 2013, 34(1), 246-253.
[http://dx.doi.org/10.1016/j.ridd.2012.08.009] [PMID: 22964266]
[67]
LeClerc, S.; Easley, D. Pharmacological therapies for autism spectrum disorder: A review. P&T, 2015, 40(6), 389-397.
[PMID: 26045648]
[68]
Blankenship, K.; Erickson, C.A.; Stigler, K.A.; Posey, D.J.; Mcdougle, C.J. Aripiprazole for irritability associated with Autistic disorder in children and adolescents aged 6-17 years. Ped. Health., 2010, 4(4), 375-381.
[69]
Posey, D.J.; Stigler, K.A.; Erickson, C.A.; McDougle, C.J. Antipsychotics in the treatment of autism. J. Clin. Invest., 2008, 118(1), 6-14.
[http://dx.doi.org/10.1172/JCI32483] [PMID: 18172517]
[70]
Mintz, M.; Hollenberg, E. Revisiting Lithium: Utility for behavioral stabilization in adolescents and adults with Autism Spectrum disorder. Psychopharmacol. Bull., 2019, 49(2), 28-40.
[PMID: 31308580]
[71]
Hollander, E.; Chaplin, W.; Soorya, L.; Wasserman, S.; Novotny, S.; Rusoff, J.; Feirsen, N.; Pepa, L.; Anagnostou, E. Divalproex sodium vs. placebo for the treatment of irritability in children and adolescents with autism spectrum disorders. Neuropsychopharmacology, 2010, 35(4), 990-998.
[http://dx.doi.org/10.1038/npp.2009.202] [PMID: 20010551]
[72]
Dodig-Curkovic, K.; Curkovic, M.; Radic, J. The medical treatment of Autism disorders. In: Recent Advances in Autism Spectrum Disorders; IntechOpen: London, 2013; Vol. II.
[http://dx.doi.org/10.5772/52832]
[73]
DeFilippis, M. The use of complementary alternative medicine in children and adolescents with autism spectrum disorder. Psychopharmacol. Bull., 2018, 48(1), 40-63.
[PMID: 29382959]
[74]
Christison, G.W.; Ivany, K. Elimination diets in autism spectrum disorders: Any wheat amidst the chaff? J. Dev. Behav. Pediatr., 2006, 27(2), S162-S171.
[http://dx.doi.org/10.1097/00004703-200604002-00015] [PMID: 16685183]
[75]
Alanazi, A.S. The role of nutraceuticals in the management of autism. Saudi Pharm. J., 2013, 21(3), 233-243.
[http://dx.doi.org/10.1016/j.jsps.2012.10.001] [PMID: 24151428]
[76]
Posar, A.; Visconti, P. Omega-3 supplementation in autism spectrum disorders: A still open question? J. Pediatr. Neurosci., 2016, 11(3), 225-227.
[http://dx.doi.org/10.4103/1817-1745.193363] [PMID: 27857792]
[77]
Chez, M.G.; Buchanan, C.P.; Aimonovitch, M.C.; Becker, M.; Schaefer, K.; Black, C.; Komen, J. Double-blind, placebo-controlled study of L-carnosine supplementation in children with autistic spectrum disorders. J. Child Neurol., 2002, 17(11), 833-837.
[http://dx.doi.org/10.1177/08830738020170111501] [PMID: 12585724]
[78]
Tsilioni, I.; Taliou, A.; Francis, K.; Theoharides, T.C. Children with autism spectrum disorders, who improved with a luteolin-containing dietary formulation, show reduced serum levels of TNF and IL-6. Transl. Psychiatry, 2015, 5, e647.
[http://dx.doi.org/10.1038/tp.2015.142] [PMID: 26418275]
[79]
Taliou, A.; Zintzaras, E.; Lykouras, L.; Francis, K. An open-label pilot study of a formulation containing the anti-inflammatory flavonoid luteolin and its effects on behavior in children with autism spectrum disorders. Clin. Ther., 2013, 35(5), 592-602.
[http://dx.doi.org/10.1016/j.clinthera.2013.04.006] [PMID: 23688534]
[80]
Fattorusso, A.; Di Genova, L.; Dell’Isola, G.B.; Mencaroni, E.; Esposito, S. Autism Spectrum disorders and the gut microbiota. Nutrients, 2019, 11(3), 521.
[http://dx.doi.org/10.3390/nu11030521] [PMID: 30823414]
[81]
Myers, S.M.; Johnson, C.P.; Lipkin, P.H.; Cartwright, J.D.; Desch, L.W.; Duby, J.C.; Elias, E.R.; Levey, E.B.; Liptak, G.S.; Murphy, N.A.; Tilton, A.H.; Lollar, D.; Macias, M.; McPherson, M.; Olson, D.G.; Strickland, B.; Skipper, S.M.; Ackermann, J.; Del Monte, M.; Challman, T.D.; Hyman, S.L.; Levy, S.E.; Spooner, S.A.; Yeargin-Allsopp, M. American Academy of Pediatrics Council on Children With Disabilities. Management of children with autism spectrum disorders. Pediatrics, 2007, 120(5), 1162-1182.
[http://dx.doi.org/10.1542/peds.2007-2362] [PMID: 17967921]
[82]
Hanson, E.; Kalish, L.A.; Bunce, E.; Curtis, C.; McDaniel, S.; Ware, J.; Petry, J. Use of complementary and alternative medicine among children diagnosed with autism spectrum disorder. J. Autism Dev. Disord., 2007, 37(4), 628-636.
[http://dx.doi.org/10.1007/s10803-006-0192-0] [PMID: 16977497]
[83]
Wong, H.H.L.; Smith, R.G. Patterns of complementary and alternative medical therapy use in children diagnosed with autism spectrum disorders. J. Autism Dev. Disord., 2006, 36(7), 901-909.
[http://dx.doi.org/10.1007/s10803-006-0131-0] [PMID: 16897395]
[84]
Brondino, N.; Fusar-Poli, L.; Rocchetti, M.; Provenzani, U.; Barale, F.; Politi, P. Complementary and alternative therapies for autism spectrum disorder. Evidence-Based Complement. Altern. Med., 2015, 2015, 258589.
[85]
Akins, R.S.; Angkustsiri, K.; Hansen, R.L. Complementary and alternative medicine in autism: An evidence-based approach to negotiating safe and efficacious interventions with families. Neurotherapeutics, 2010, 7(3), 307-319.
[http://dx.doi.org/10.1016/j.nurt.2010.05.002] [PMID: 20643384]
[86]
Kern, J.K.; Miller, V.S.; Cauller, P.L.; Kendall, P.R.; Mehta, P.J.; Dodd, M. Effectiveness of N,N-dimethylglycine in autism and pervasive developmental disorder. J. Child Neurol., 2001, 16(3), 169-173.
[http://dx.doi.org/10.1177/088307380101600303] [PMID: 11305684]
[87]
Noell, W.C. Synthetic process for the preparation of N,N dimethyl glycine (DMG). 1990, Patent No. US 4968839A.
[88]
Obeid, R. The metabolic burden of methyl donor deficiency with focus on the betaine homocysteine methyltransferase pathway. Nutrients, 2013, 5(9), 3481-3495.
[http://dx.doi.org/10.3390/nu5093481] [PMID: 24022817]
[89]
Lu, S.C.; Mato, J.M. S-adenosylmethionine in liver health, injury, and cancer. Physiol. Rev., 2012, 92(4), 1515-1542.
[http://dx.doi.org/10.1152/physrev.00047.2011] [PMID: 23073625]
[90]
Wortmann, S.B.; Mayr, J.A. Choline-related-inherited metabolic diseases-A mini review. J. Inherit. Metab. Dis., 2019, 42(2), 237-242.
[http://dx.doi.org/10.1002/jimd.12011] [PMID: 30681159]
[91]
Murthy, S.N.; Matta, A.S.; Mondal, D.; McNamara, D.B. Methods in assessing homocysteine metabolism. Metab. Syndr. Relat. Disord., 2003, 1(2), 129-140.
[http://dx.doi.org/10.1089/154041903322294452] [PMID: 18370634]
[92]
Lee, M.Y.; Lin, Y.R.; Tu, Y.S.; Tseng, Y.J.; Chan, M.H.; Chen, H.H. Effects of sarcosine and N, N-dimethylglycine on NMDA receptor-mediated excitatory field potentials. J. Biomed. Sci., 2017, 24(1), 18.
[http://dx.doi.org/10.1186/s12929-016-0314-8] [PMID: 28245819]
[93]
Kidd, P.M. Autism review permission Autism, An extreme challenge to integrative medicine. In: Part II: Medical Management. Altern. Med. Rev., 2002, 7(4), 292-316. Autism Review Permission Autism, An Extreme Challenge to Integrative Medicine. Part II: Medical Management, 2002, 7(6), 472-499.
[94]
Kidd, P.M. Autism, an extreme challenge to integrative medicine. Part 2: medical management. Altern. Med. Rev., 2002, 7(6), 472-499.
[PMID: 12495373]
[95]
Hyman, S.L.; Stewart, P.A.; Schmidt, B.; Cain, U.; Lemcke, N.; Foley, J.T.; Peck, R.; Clemons, T.; Reynolds, A.; Johnson, C.; Handen, B.; James, S.J.; Courtney, P.M.; Molloy, C.; Ng, P.K. Nutrient intake from food in children with autism. Pediatrics, 2012, 130(Suppl. 2), S145-S153.
[http://dx.doi.org/10.1542/peds.2012-0900L] [PMID: 23118245]
[96]
Sathe, N.; Andrews, J.C.; McPheeters, M.L.; Warren, Z.E. Nutritional and dietary interventions for autism spectrum disorder: a systematic review. Pediatrics, 2017, 139(6), 139.
[http://dx.doi.org/10.1542/peds.2017-0346] [PMID: 28562286]
[97]
Roach, E.S.; Carlin, L. N,N-dimethylglycine for epilepsy. N. Engl. J. Med., 1982, 307(17), 1081-1082.
[http://dx.doi.org/10.1056/NEJM198210213071717] [PMID: 6181403]
[98]
Roach, E.S.; Gibson, P. Failure of N,N-dimethylglycine in epilepsy. Ann. Neurol., 1983, 14(3), 347-347.
[http://dx.doi.org/10.1002/ana.410140314] [PMID: 6195957]
[99]
Gascon, G.; Patterson, B.; Yearwood, K.; Slotnick, H. N,N dimethylglycine and epilepsy. Epilepsia, 1989, 30(1), 90-93.
[http://dx.doi.org/10.1111/j.1528-1157.1989.tb05288.x] [PMID: 2463912]
[100]
Bolman, W.M.; Richmond, J.A.A. A double-blind, placebo-controlled, crossover pilot trial of low dose dimethylglycine in patients with autistic disorder. J. Autism Dev. Disord., 1999, 29(3), 191-194.
[http://dx.doi.org/10.1023/A:1023023820671] [PMID: 10425581]
[101]
Rimland, B. The use of vitamin B6, Magnesium, and DMG in the treatment of autistic children and adults. Biological treatments for autism and PDD. In: Biological Treatments for Autism and PDD.Biological Treatments for Autism and PDD; Lenexa, KS: The Great Plains Laboratory, Inc; The Great Plains Laboratory, Inc.: Lenexa, KS, 2002.
[102]
Kendall, R. Building Wellness with DMG: How A Breakthrough Nutrients Gives Cancer, Autism & Cardiovascular Patients a Second Chance at Health; Freedom Press: Topanga, CA, 2003.
[103]
Xia, R.R. Effectiveness of nutritional supplements for reducing symptoms in autism-spectrum disorder: A case report. J. Altern. Complement. Med., 2011, 17(3), 271-274.
[http://dx.doi.org/10.1089/acm.2010.0146] [PMID: 21417812]
[104]
Piwowarczyk, A.; Horvath, A.; Łukasik, J.; Pisula, E.; Szajewska, H. Gluten- and casein-free diet and autism spectrum disorders in children: A systematic review. Eur. J. Nutr., 2018, 57(2), 433-440.
[http://dx.doi.org/10.1007/s00394-017-1483-2] [PMID: 28612113]
[105]
Gogou, M.; Kolios, G. The effect of dietary supplements on clinical aspects of autism spectrum disorder: A systematic review of the literature. Brain Dev., 2017, 39(8), 656-664.
[http://dx.doi.org/10.1016/j.braindev.2017.03.029] [PMID: 28438367]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy