Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Glutamate Dehydrogenase as a Promising Target for Hyperinsulinism Hyperammonemia Syndrome Therapy

Author(s): Yunfei Bian, Wei Hou, Xinrou Chen, Jinzhang Fang, Ning Xu* and Benfang Helen Ruan

Volume 29, Issue 15, 2022

Published on: 05 January, 2022

Page: [2652 - 2672] Pages: 21

DOI: 10.2174/0929867328666210825105342

Price: $65

Abstract

Hyperinsulinism-hyperammonemia syndrome (HHS) is a rare disease characterized by recurrent hypoglycemia and persistent elevation of plasma ammonia, and it can lead to severe epilepsy and permanent brain damage. It has been demonstrated that functional mutations of glutamate dehydrogenase (GDH), an enzyme in the mitochondrial matrix, are responsible for the HHS. Thus, GDH has become a promising target for the small molecule therapeutic intervention of HHS. Several medicinal chemistry studies are currently aimed at GDH, however, to date, none of the compounds reported has been entered clinical trials. This perspective summarizes the progress in the discovery and development of GDH inhibitors, including the pathogenesis of HHS, potential binding sites, screening methods, and research models. Future therapeutic perspectives are offered to provide a reference for discovering potent GDH modulators and encourage additional research that will provide more comprehensive guidance for drug development.

Keywords: Hyperinsulinism hyperammonemia syndrome (HHS), glutamate dehydrogenase (GDH), screening method, enzyme inhibitors, drug discovery, in vitro/in vivo models.

[1]
Su, C.; Liang, X.J.; Li, W.J.; Wu, D.; Liu, M.; Cao, B.Y.; Chen, J.J.; Qin, M.; Meng, X.; Gong, C.X. Clinical and molecular spectrum of glutamate dehydrogenase gene defects in 26 chinese congenital hyperinsulinemia patients. J. Diabetes Res., 2018, 2018, 2802540.
[http://dx.doi.org/10.1155/2018/2802540] [PMID: 30306091]
[2]
Roy, K.; Satapathy, A.K.; Houhton, J.A.L.; Flanagan, S.E.; Radha, V.; Mohan, V.; Sharma, R.; Jain, V. Congenital hyperinsulinemic hypoglycemia and hyperammonemia due to pathogenic variants in GLUD1. Indian J. Pediatr., 2019, 86(11), 1051-1053.
[http://dx.doi.org/10.1007/s12098-019-02980-x] [PMID: 31119523]
[3]
Fahien, L.A.; Macdonald, M.J. The complex mechanism of glutamate dehydrogenase in insulin secretion. Diabetes, 2011, 60(10), 2450-2454.
[http://dx.doi.org/10.2337/db10-1150] [PMID: 21948999]
[4]
Hussain, J.; Schlachterman, A.; Kamel, A.; Gupte, A. Hyperinsulinism hyperammonemia syndrome, a rare clinical constellation. J. Investig. Med. High Impact Case Rep., 2016, 4(1), 2324709616632552.
[http://dx.doi.org/10.1177/2324709616632552] [PMID: 26962538]
[5]
Meissner, T.; Wendel, U.; Burgard, P.; Schaetzle, S.; Mayatepek, E. Long-term follow-up of 114 patients with congenital hyperinsulinism. Eur. J. Endocrinol., 2003, 149(1), 43-51.
[http://dx.doi.org/10.1530/eje.0.1490043] [PMID: 12824865]
[6]
De Lonlay, P.; Benelli, C.; Fouque, F.; Ganguly, A.; Aral, B.; Dionisi-Vici, C.; Touati, G.; Heinrichs, C.; Rabier, D.; Kamoun, P.; Robert, J.J.; Stanley, C.; Saudubray, J.M. Hyperinsulinism and hyperammonemia syndrome: report of twelve unrelated patients. Pediatr. Res., 2001, 50(3), 353-357.
[http://dx.doi.org/10.1203/00006450-200109000-00010] [PMID: 11518822]
[7]
De Cosio, A.P.; Thornton, P. Current and emerging agents for the treatment of hypoglycemia in patients with congenital hyperinsulinism. Paediatr. Drugs, 2019, 21(3), 123-136.
[http://dx.doi.org/10.1007/s40272-019-00334-w] [PMID: 31218604]
[8]
Yorifuji, T.; Horikawa, R.; Hasegawa, T.; Adachi, M.; Soneda, S.; Minagawa, M.; Ida, S.; Yonekura, T.; Kinoshita, Y.; Kanamori, Y.; Kitagawa, H.; Shinkai, M.; Sasaki, H.; Nio, M. Clinical practice guidelines for congenital hyperinsulinism. Clin. Pediatr. Endocrinol., 2017, 26(3), 127-152.
[http://dx.doi.org/10.1297/cpe.26.127] [PMID: 28804205]
[9]
Banerjee, I.; De Leon, D.; Dunne, M.J. Extreme caution on the use of sirolimus for the congenital hyperinsulinism in infancy patient. Orphanet J. Rare Dis., 2017, 12(1), 70.
[http://dx.doi.org/10.1186/s13023-017-0621-5] [PMID: 28410602]
[10]
Verrotti, A.; Greco, R.; Morgese, G.; Chiarelli, F. Carnitine deficiency and hyperammonemia in children receiving valproic acid with and without other anticonvulsant drugs. Int. J. Clin. Lab. Res., 1999, 29(1), 36-40.
[http://dx.doi.org/10.1007/s005990050060] [PMID: 10356662]
[11]
Zaganas, I.; Spanaki, C.; Plaitakis, A. Expression of human GLUD2 glutamate dehydrogenase in human tissues: functional implications. Neurochem. Int., 2012, 61(4), 455-462.
[http://dx.doi.org/10.1016/j.neuint.2012.06.007] [PMID: 22709674]
[12]
Bera, S.; Rashid, M.; Medvinsky, A.B.; Sun, G.Q.; Li, B.L.; Acquisti, C.; Sljoka, A.; Chakraborty, A. Allosteric regulation of glutamate dehydrogenase deamination activity. Sci. Rep., 2020, 10(1), 16523.
[http://dx.doi.org/10.1038/s41598-020-73743-4] [PMID: 33020580]
[13]
Smith, H.Q.; Li, C.; Stanley, C.A.; Smith, T.J. Glutamate dehydrogenase, a complex enzyme at a crucial metabolic branch point. Neurochem. Res., 2019, 44(1), 117-132.
[http://dx.doi.org/10.1007/s11064-017-2428-0] [PMID: 29079932]
[14]
Nassar, O.M.; Wong, K.Y.; Lynch, G.C.; Smith, T.J.; Pettitt, B.M. Allosteric discrimination at the NADH/ADP regulatory site of glutamate dehydrogenase. Protein Sci., 2019, 28(12), 2080-2088.
[http://dx.doi.org/10.1002/pro.3748] [PMID: 31610054]
[15]
Dimovasili, C.; Fadouloglou, V.E.; Kefala, A.; Providaki, M.; Kotsifaki, D.; Kanavouras, K.; Sarrou, I.; Plaitakis, A.; Zaganas, I.; Kokkinidis, M. Crystal structure of glutamate dehydrogenase 2, a positively selected novel human enzyme involved in brain biology and cancer pathophysiology. J. Neurochem., 2021, 157(3), 802-815.
[http://dx.doi.org/10.1111/jnc.15296] [PMID: 33421122]
[16]
Allen, A.; Kwagh, J.; Fang, J.; Stanley, C.A.; Smith, T.J. Evolution of glutamate dehydrogenase regulation of insulin homeostasis is an example of molecular exaptation. Biochemistry, 2004, 43(45), 14431-14443.
[http://dx.doi.org/10.1021/bi048817i] [PMID: 15533048]
[17]
Wang, X.; Liu, R.; Qu, X.; Yu, H.; Chu, H.; Zhang, Y.; Zhu, W.; Wu, X.; Gao, H.; Tao, B.; Li, W.; Liang, J.; Li, G.; Yang, W. α-Ketoglutarate-activated NF-κB signaling promotes compensatory glucose uptake and brain tumor development. Mol. Cell, 2019, 76(1), 148-162.e7.
[http://dx.doi.org/10.1016/j.molcel.2019.07.007] [PMID: 31447391]
[18]
Karaca, M.; Martin-Levilain, J.; Grimaldi, M.; Li, L.; Dizin, E.; Emre, Y.; Maechler, P. Liver glutamate dehydrogenase controls whole-body energy partitioning through amino acid-derived gluconeogenesis and ammonia homeostasis. Diabetes, 2018, 67(10), 1949-1961.
[http://dx.doi.org/10.2337/db17-1561] [PMID: 30002133]
[19]
Benner, B.J.M.; Bazelmans, M.; Huidekoper, H.; Langeveld, M.; Langendonk, J.; Schoenmakers, S. Multidisciplinary approach in medicine: successful pregnancy in a patient with hyperinsulinism/hyperammonaemia (HI/HA) syndrome. BMJ Case Rep., 2020, 13(8), e234055.
[http://dx.doi.org/10.1136/bcr-2019-234055] [PMID: 32747595]
[20]
Spanaki, C.; Plaitakis, A. The role of glutamate dehydrogenase in mammalian ammonia metabolism. Neurotox. Res., 2012, 21(1), 117-127.
[http://dx.doi.org/10.1007/s12640-011-9285-4] [PMID: 22038055]
[21]
Daniotti, M.; la Marca, G.; Fiorini, P.; Filippi, L. New developments in the treatment of hyperammonemia: emerging use of carglumic acid. Int. J. Gen. Med., 2011, 4, 21-28.
[PMID: 21403788]
[22]
Treberg, J.R.; Brosnan, M.E.; Watford, M.; Brosnan, J.T. On the reversibility of glutamate dehydrogenase and the source of hyperammonemia in the hyperinsulinism/hyperammonemia syndrome. Adv. Enzyme Regul., 2010, 50(1), 34-43.
[http://dx.doi.org/10.1016/j.advenzreg.2009.10.029] [PMID: 19895831]
[23]
Treberg, J.R.; Clow, K.A.; Greene, K.A.; Brosnan, M.E.; Brosnan, J.T. Systemic activation of glutamate dehydrogenase increases renal ammoniagenesis: implications for the hyperinsulinism/hyperammonemia syndrome. Am. J. Physiol. Endocrinol. Metab., 2010, 298(6), E1219-E1225.
[http://dx.doi.org/10.1152/ajpendo.00028.2010] [PMID: 20332361]
[24]
Kapoor, R.R.; Flanagan, S.E.; Arya, V.B.; Shield, J.P.; Ellard, S.; Hussain, K. Clinical and molecular characterisation of 300 patients with congenital hyperinsulinism. Eur. J. Endocrinol., 2013, 168(4), 557-564.
[http://dx.doi.org/10.1530/EJE-12-0673] [PMID: 23345197]
[25]
Whitelaw, B.S.; Robinson, M.B. Inhibitors of glutamate dehydrogenase block sodium-dependent glutamate uptake in rat brain membranes. Front. Endocrinol. (Lausanne), 2013, 4, 123.
[http://dx.doi.org/10.3389/fendo.2013.00123] [PMID: 24062726]
[26]
Komlos, D.; Mann, K.D.; Zhuo, Y.; Ricupero, C.L.; Hart, R.P.; Liu, A.Y.; Firestein, B.L. Glutamate dehydrogenase 1 and SIRT4 regulate glial development. Glia, 2013, 61(3), 394-408.
[http://dx.doi.org/10.1002/glia.22442] [PMID: 23281078]
[27]
Görg, B.; Karababa, A.; Häussinger, D. Hepatic Encephalopathy and Astrocyte Senescence. J. Clin. Exp. Hepatol., 2018, 8(3), 294-300.
[http://dx.doi.org/10.1016/j.jceh.2018.05.003] [PMID: 30302047]
[28]
Ninković, D.; Sarnavka, V.; Bašnec, A.; Ćuk, M.; Ramadža, D.P.; Fumić, K.; Kušec, V.; Santer, R.; Barić, I. Hyperinsulinism-hyperammonemia syndrome: A de novo mutation of the GLUD1 gene in twins and a review of the literature. J. Pediatr. Endocrinol. Metab., 2016, 29(9), 1083-1088.
[http://dx.doi.org/10.1515/jpem-2016-0086] [PMID: 27383869]
[29]
Galcheva, S.; Demirbilek, H.; Al-Khawaga, S.; Hussain, K. The genetic and molecular mechanisms of congenital hyperinsulinism. Front. Endocrinol. (Lausanne), 2019, 10, 111.
[http://dx.doi.org/10.3389/fendo.2019.00111] [PMID: 30873120]
[30]
Grimaldi, M.; Karaca, M.; Latini, L.; Brioudes, E.; Schalch, T.; Maechler, P. Identification of the molecular dysfunction caused by glutamate dehydrogenase S445L mutation responsible for hyperinsulinism/hyperammonemia. Hum. Mol. Genet., 2017, 26(18), 3453-3465.
[http://dx.doi.org/10.1093/hmg/ddx213] [PMID: 28911206]
[31]
Luczkowska, K.; Stekelenburg, C.; Sloan-Béna, F.; Ranza, E.; Gastaldi, G.; Schwitzgebel, V.; Maechler, P. Hyperinsulinism associated with GLUD1 mutation: allosteric regulation and functional characterization of p.G446V glutamate dehydrogenase. Hum. Genomics, 2020, 14(1), 9.
[http://dx.doi.org/10.1186/s40246-020-00262-8] [PMID: 32143698]
[32]
Carobbio, S.; Ishihara, H.; Fernandez-Pascual, S.; Bartley, C.; Martin-Del-Rio, R.; Maechler, P. Insulin secretion profiles are modified by overexpression of glutamate dehydrogenase in pancreatic islets. Diabetologia, 2004, 47(2), 266-276.
[http://dx.doi.org/10.1007/s00125-003-1306-2] [PMID: 14689183]
[33]
Barrosse-Antle, M.; Su, C.; Chen, P.; Boodhansingh, K.E.; Smith, T.J.; Stanley, C.A.; De León, D.D.; Li, C. A severe case of hyperinsulinism due to hemizygous activating mutation of glutamate dehydrogenase. Pediatr. Diabetes, 2017, 18(8), 911-916.
[http://dx.doi.org/10.1111/pedi.12507] [PMID: 28165182]
[34]
Fang, C.; Ding, X.; Huang, Y.; Huang, J.; Zhao, P.; Hu, J. A novel mutation in the glutamate dehydrogenase (GLUD1) of a patient with congenital hyperinsulinism-hyperammonemia (HI/HA). J. Pediatr. Endocrinol. Metab., 2016, 29(3), 385-388.
[http://dx.doi.org/10.1515/jpem-2015-0276] [PMID: 26656609]
[35]
Nassar, O.M.; Li, C.; Stanley, C.A.; Pettitt, B.M.; Smith, T.J. Glutamate dehydrogenase: Structure of a hyperinsulinism mutant, corrections to the atomic model, and insights into a regulatory site. Proteins, 2019, 87(1), 41-50.
[http://dx.doi.org/10.1002/prot.25620] [PMID: 30367518]
[36]
Stanley, C.A.; Fang, J.; Kutyna, K.; Hsu, B.Y.; Ming, J.E.; Glaser, B.; Poncz, M. Molecular basis and characterization of the hyperinsulinism/hyperammonemia syndrome: predominance of mutations in exons 11 and 12 of the glutamate dehydrogenase gene. Diabetes, 2000, 49(4), 667-673.
[http://dx.doi.org/10.2337/diabetes.49.4.667] [PMID: 10871207]
[37]
Fujioka, H.; Okano, Y.; Inada, H.; Asada, M.; Kawamura, T.; Hase, Y.; Yamano, T. Molecular characterisation of glutamate dehydrogenase gene defects in Japanese patients with congenital hyperinsulinism/hyperammonaemia. Eur. J. Hum. Genet., 2001, 9(12), 931-937.
[http://dx.doi.org/10.1038/sj.ejhg.5200749] [PMID: 11840195]
[38]
MacMullen, C.; Fang, J.; Hsu, B.Y.L.; Kelly, A.; de Lonlay-Debeney, P.; Saudubray, J.M.; Ganguly, A.; Smith, T.J.; Stanley, C.A. Hyperinsulinism/hyperammonemia syndrome in children with regulatory mutations in the inhibitory guanosine triphosphate-binding domain of glutamate dehydrogenase. J. Clin. Endocrinol. Metab., 2001, 86(4), 1782-1787.
[http://dx.doi.org/10.1210/jc.86.4.1782] [PMID: 11297618]
[39]
Velasco, K.; St-Louis, J.L.; Hovland, H.N.; Thompson, N.; Ottesen, Å.; Choi, M.H.; Pedersen, L.; Njølstad, P.R.; Arnesen, T.; Fjeld, K.; Aukrust, I.; Myklebust, L.M.; Molven, A. Functional evaluation of 16 SCHAD missense variants: Only amino acid substitutions causing congenital hyperinsulinism of infancy lead to loss-of-function phenotypes in vitro. J. Inherit. Metab. Dis., 2021, 44(1), 240-252.
[http://dx.doi.org/10.1002/jimd.12309] [PMID: 32876354]
[40]
Heslegrave, A.J.; Kapoor, R.R.; Eaton, S.; Chadefaux, B.; Akcay, T.; Simsek, E.; Flanagan, S.E.; Ellard, S.; Hussain, K. Leucine-sensitive hyperinsulinaemic hypoglycaemia in patients with loss of function mutations in 3-Hydroxyacyl-CoA dehydrogenase. Orphanet J. Rare Dis., 2012, 7, 25.
[http://dx.doi.org/10.1186/1750-1172-7-25] [PMID: 22583614]
[41]
Molven, A.; Hollister-Lock, J.; Hu, J.; Martinez, R.; Njølstad, P.R.; Liew, C.W.; Weir, G.; Kulkarni, R.N. The hypoglycemic phenotype is islet cell-autonomous in short-chain hydroxyacyl-coa dehydrogenase-deficient mice. Diabetes, 2016, 65(6), 1672-1678.
[http://dx.doi.org/10.2337/db15-1475] [PMID: 26953163]
[42]
Li, C.; Chen, P.; Palladino, A.; Narayan, S.; Russell, L.K.; Sayed, S.; Xiong, G.; Chen, J.; Stokes, D.; Butt, Y.M.; Jones, P.M.; Collins, H.W.; Cohen, N.A.; Cohen, A.S.; Nissim, I.; Smith, T.J.; Strauss, A.W.; Matschinsky, F.M.; Bennett, M.J.; Stanley, C.A. Mechanism of hyperinsulinism in short-chain 3-hydroxyacyl-CoA dehydrogenase deficiency involves activation of glutamate dehydrogenase. J. Biol. Chem., 2010, 285(41), 31806-31818.
[http://dx.doi.org/10.1074/jbc.M110.123638] [PMID: 20670938]
[43]
Chandran, S.; Yap, F.; Hussain, K. Molecular mechanisms of protein induced hyperinsulinaemic hypoglycaemia. World J. Diabetes, 2014, 5(5), 666-677.
[http://dx.doi.org/10.4239/wjd.v5.i5.666] [PMID: 25317244]
[44]
Carrico, C.; Meyer, J.G.; He, W.; Gibson, B.W.; Verdin, E. The mitochondrial acylome emerges: proteomics, regulation by sirtuins, and metabolic and disease implications. Cell Metab., 2018, 27(3), 497-512.
[http://dx.doi.org/10.1016/j.cmet.2018.01.016] [PMID: 29514063]
[45]
Kato, Y.; Kihara, H.; Fukui, K.; Kojima, M. A ternary complex model of Sirtuin4-NAD+-Glutamate dehydrogenase. Comput. Biol. Chem., 2018, 74, 94-104.
[http://dx.doi.org/10.1016/j.compbiolchem.2018.03.006] [PMID: 29571013]
[46]
Wang, T.; Yao, W.; He, Q.; Shao, Y.; Zheng, R.; Huang, F. L-leucine stimulates glutamate dehydrogenase activity and glutamate synthesis by regulating mTORC1/SIRT4 pathway in pig liver. Anim. Nutr., 2018, 4(3), 329-337.
[http://dx.doi.org/10.1016/j.aninu.2017.12.002] [PMID: 30175263]
[47]
Mavrothalassitis, G.; Tzimagiorgis, G.; Mitsialis, A.; Zannis, V.; Plaitakis, A.; Papamatheakis, J.; Moschonas, N. Isolation and characterization of cDNA clones encoding human liver glutamate dehydrogenase: evidence for a small gene family. Proc. Natl. Acad. Sci. USA, 1988, 85(10), 3494-3498.
[http://dx.doi.org/10.1073/pnas.85.10.3494] [PMID: 3368458]
[48]
Al-Hawash, A.B.; Zhang, X.; Ma, F. Strategies of codon optimization for high-level heterologous protein expression in microbial expression systems. Gene Rep., 2017, 9, 46-53.
[http://dx.doi.org/10.1016/j.genrep.2017.08.006]
[49]
Kaur, J.; Kumar, A.; Kaur, J. Strategies for optimization of heterologous protein expression in E. coli: Roadblocks and reinforcements. Int. J. Biol. Macromol., 2018, 106, 803-822.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.08.080] [PMID: 28830778]
[50]
Fang, J.; Hsu, B.Y.L.; MacMullen, C.M.; Poncz, M.; Smith, T.J.; Stanley, C.A. Expression, purification and characterization of human glutamate dehydrogenase (GDH) allosteric regulatory mutations. Biochem. J., 2002, 363(Pt 1), 81-87.
[http://dx.doi.org/10.1042/bj3630081] [PMID: 11903050]
[51]
Mathioudakis, L.; Bourbouli, M.; Daklada, E.; Kargatzi, S.; Michaelidou, K.; Zaganas, I. Localization of human glutamate dehydrogenases provides insights into their metabolic role and their involvement in disease processes. Neurochem. Res., 2019, 44(1), 170-187.
[http://dx.doi.org/10.1007/s11064-018-2575-y] [PMID: 29943084]
[52]
Kibbey, R.G.; Choi, C.S.; Lee, H.Y.; Cabrera, O.; Pongratz, R.L.; Zhao, X.; Birkenfeld, A.L.; Li, C.; Berggren, P.O.; Stanley, C.; Shulman, G.I. Mitochondrial GTP insensitivity contributes to hypoglycemia in hyperinsulinemia hyperammonemia by inhibiting glucagon release. Diabetes, 2014, 63(12), 4218-4229.
[http://dx.doi.org/10.2337/db14-0783] [PMID: 25024374]
[53]
Hoffpauir, Z.A.; Sherman, E.; Smith, T.J. Dissecting the Antenna in Human Glutamate Dehydrogenase: Understanding Its Role in Subunit Communication and Allosteric Regulation. Biochemistry, 2019, 58(41), 4195-4206.
[http://dx.doi.org/10.1021/acs.biochem.9b00722] [PMID: 31577135]
[54]
Pajęcka, K.; Nielsen, C.W.; Hauge, A.; Zaganas, I.; Bak, L.K.; Schousboe, A.; Plaitakis, A.; Waagepetersen, H.S. Glutamate dehydrogenase isoforms with N-terminal (His)6- or FLAG-tag retain their kinetic properties and cellular localization. Neurochem. Res., 2014, 39(3), 487-499.
[http://dx.doi.org/10.1007/s11064-013-1042-z] [PMID: 23619558]
[55]
Li, M.; Smith, C.J.; Walker, M.T.; Smith, T.J. Novel inhibitors complexed with glutamate dehydrogenase: allosteric regulation by control of protein dynamics. J. Biol. Chem., 2009, 284(34), 22988-23000.
[http://dx.doi.org/10.1074/jbc.M109.020222] [PMID: 19531491]
[56]
Kawajiri, M.; Okano, Y.; Kuno, M.; Tokuhara, D.; Hase, Y.; Inada, H.; Tashiro, F.; Miyazaki, J.; Yamano, T. Unregulated insulin secretion by pancreatic beta cells in hyperinsulinism/hyperammonemia syndrome: role of glutamate dehydrogenase, ATP-sensitive potassium channel, and nonselective cation channel. Pediatr. Res., 2006, 59(3), 359-364.
[http://dx.doi.org/10.1203/01.pdr.0000198775.22719.46] [PMID: 16492972]
[57]
Vetterli, L.; Carobbio, S.; Pournourmohammadi, S.; Martin-Del-Rio, R.; Skytt, D.M.; Waagepetersen, H.S.; Tamarit-Rodriguez, J.; Maechler, P. Delineation of glutamate pathways and secretory responses in pancreatic islets with β-cell-specific abrogation of the glutamate dehydrogenase. Mol. Biol. Cell, 2012, 23(19), 3851-3862.
[http://dx.doi.org/10.1091/mbc.e11-08-0676] [PMID: 22875990]
[58]
Li, C.; Matter, A.; Kelly, A.; Petty, T.J.; Najafi, H.; MacMullen, C.; Daikhin, Y.; Nissim, I.; Lazarow, A.; Kwagh, J.; Collins, H.W.; Hsu, B.Y.; Nissim, I.; Yudkoff, M.; Matschinsky, F.M.; Stanley, C.A. Effects of a GTP-insensitive mutation of glutamate dehydrogenase on insulin secretion in transgenic mice. J. Biol. Chem., 2006, 281(22), 15064-15072.
[http://dx.doi.org/10.1074/jbc.M600994200] [PMID: 16574664]
[59]
Jia, G.; Sowers, J.R. Interaction of islet α-cell and β-cell in the regulation of glucose homeostasis in HI/HA syndrome patients with the GDH(H454Y) mutation. Diabetes, 2014, 63(12), 4008-4010.
[http://dx.doi.org/10.2337/db14-1243] [PMID: 25414017]
[60]
Tanizawa, Y.; Nakai, K.; Sasaki, T.; Anno, T.; Ohta, Y.; Inoue, H.; Matsuo, K.; Koga, M.; Furukawa, S.; Oka, Y. Unregulated elevation of glutamate dehydrogenase activity induces glutamine-stimulated insulin secretion: identification and characterization of a GLUD1 gene mutation and insulin secretion studies with MIN6 cells overexpressing the mutant glutamate dehydrogenase. Diabetes, 2002, 51(3), 712-717.
[http://dx.doi.org/10.2337/diabetes.51.3.712] [PMID: 11872671]
[61]
Wilson, D.F.; Cember, A.T.J.; Matschinsky, F.M. Glutamate dehydrogenase: role in regulating metabolism and insulin release in pancreatic β-cells. J. Appl. Physiol., 2018, 125(2), 419-428.
[http://dx.doi.org/10.1152/japplphysiol.01077.2017] [PMID: 29648519]
[62]
Xu, G.; Tang, Y.; Ma, Y.; Xu, A.; Lin, W. A new aggregation-induced emission fluorescent probe for rapid detection of nitroreductase and its application in living cells. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2018, 188, 197-201.
[http://dx.doi.org/10.1016/j.saa.2017.06.065] [PMID: 28715686]
[63]
O’Neil, R.G.; Wu, L.; Mullani, N. Uptake of a fluorescent deoxyglucose analog (2-NBDG) in tumor cells. Mol. Imaging Biol., 2005, 7(6), 388-392.
[http://dx.doi.org/10.1007/s11307-005-0011-6] [PMID: 16284704]
[64]
Yamamoto, T.; Tanaka, S.; Suga, S.; Watanabe, S.; Nagatomo, K.; Sasaki, A.; Nishiuchi, Y.; Teshima, T.; Yamada, K. Syntheses of 2-NBDG analogues for monitoring stereoselective uptake of D-glucose. Bioorg. Med. Chem. Lett., 2011, 21(13), 4088-4096.
[http://dx.doi.org/10.1016/j.bmcl.2011.04.148] [PMID: 21636274]
[65]
Xu, H.; Liu, X.; Yang, J.; Liu, R.; Li, T.; Shi, Y.; Zhao, H.; Gao, Q. Cyanine-based 1-amino-1-deoxyglucose as fluorescent probes for glucose transporter mediated bioimaging. Biochem. Biophys. Res. Commun., 2016, 474(2), 240-246.
[http://dx.doi.org/10.1016/j.bbrc.2016.03.133] [PMID: 27033602]
[66]
Su, L.; Wu, R.; Chen, X.; Hou, W.; Ruan, B.H. FITC-labeled d-glucose analog is suitable as a probe for detecting insulin-dependent glucose uptake. Bioorg. Med. Chem. Lett., 2018, 28(22), 3560-3563.
[http://dx.doi.org/10.1016/j.bmcl.2018.09.027] [PMID: 30293953]
[67]
Smith, H.Q.; Smith, T.J. Identification of a novel activator of mammalian glutamate dehydrogenase. Biochemistry, 2016, 55(47), 6568-6576.
[http://dx.doi.org/10.1021/acs.biochem.6b00979] [PMID: 27808506]
[68]
Plaitakis, A.; Kalef-Ezra, E.; Kotzamani, D.; Zaganas, I.; Spanaki, C. The glutamate dehydrogenase pathway and its roles in cell and tissue biology in health and disease. Biology (Basel), 2017, 6(1), 11.
[http://dx.doi.org/10.3390/biology6010011] [PMID: 28208702]
[69]
Ponti, V.; Dianzani, M.U.; Cheeseman, K.; Slater, T.F. Studies on the reduction of nitroblue tetrazolium chloride mediated through the action of NADH and phenazine methosulphate. Chem. Biol. Interact., 1978, 23(3), 281-291.
[http://dx.doi.org/10.1016/0009-2797(78)90090-X] [PMID: 214250]
[70]
Vodenicarovova, M.; Skalska, H.; Holecek, M. Deproteinization is necessary for the accurate determination of ammonia levels by glutamate dehydrogenase assay in blood plasma from subjects with liver injury. Lab. Med., 2017, 48(4), 339-345.
[http://dx.doi.org/10.1093/labmed/lmx053] [PMID: 29126300]
[71]
Zaganas, I.; Spanaki, C.; Karpusas, M.; Plaitakis, A. Substitution of Ser for Arg-443 in the regulatory domain of human housekeeping (GLUD1) glutamate dehydrogenase virtually abolishes basal activity and markedly alters the activation of the enzyme by ADP and L-leucine. J. Biol. Chem., 2002, 277(48), 46552-46558.
[http://dx.doi.org/10.1074/jbc.M208596200] [PMID: 12324473]
[72]
Zhang, W.; Zhu, M.; Wang, F.; Cao, D.; Ruan, J.J.; Su, W.; Ruan, B.H. Mono-sulfonated tetrazolium salt based NAD(P)H detection reagents suitable for dehydrogenase and real-time cell viability assays. Anal. Biochem., 2016, 509, 33-40.
[http://dx.doi.org/10.1016/j.ab.2016.06.026] [PMID: 27387057]
[73]
Li, M.; Li, C.; Allen, A.; Stanley, C.A.; Smith, T.J. The structure and allosteric regulation of glutamate dehydrogenase. Neurochem. Int., 2011, 59(4), 445-455.
[http://dx.doi.org/10.1016/j.neuint.2010.10.017] [PMID: 21070828]
[74]
Zhu, M.; Fang, J.; Zhang, J.; Zhang, Z.; Xie, J.; Yu, Y.; Ruan, J.J.; Chen, Z.; Hou, W.; Yang, G.; Su, W.; Ruan, B.H. Biomolecular interaction assays identified dual inhibitors of glutaminase and glutamate dehydrogenase that disrupt mitochondrial function and prevent growth of cancer cells. Anal. Chem., 2017, 89(3), 1689-1696.
[http://dx.doi.org/10.1021/acs.analchem.6b03849] [PMID: 28208301]
[75]
Yu, Y.; Jin, Y.; Zhou, J.; Ruan, H.; Zhao, H.; Lu, S.; Zhang, Y.; Li, D.; Ji, X.; Ruan, B.H. Ebselen: mechanisms of glutamate dehydrogenase and glutaminase enzyme inhibition. ACS Chem. Biol., 2017, 12(12), 3003-3011.
[http://dx.doi.org/10.1021/acschembio.7b00728] [PMID: 29072450]
[76]
Jin, Y.; Li, D.; Lu, S.; Zhao, H.; Chen, Z.; Hou, W.; Ruan, B.H. Ebselen reversibly inhibits human glutamate dehydrogenase at the catalytic site. Assay Drug Dev. Technol., 2018, 16(2), 115-122.
[http://dx.doi.org/10.1089/adt.2017.822] [PMID: 29470101]
[77]
Hou, W.; Lu, S.; Zhao, H.; Yu, Y.; Xu, H.; Yu, B.; Su, L.; Lin, C.; Ruan, B.H. Propylselen inhibits cancer cell growth by targeting glutamate dehydrogenase at the NADP+ binding site. Biochem. Biophys. Res. Commun., 2019, 509(1), 262-267.
[http://dx.doi.org/10.1016/j.bbrc.2018.12.117] [PMID: 30583861]
[78]
Ferruz, N.; De Fabritiis, G. Binding kinetics in drug discovery. Mol. Inform., 2016, 35(6-7), 216-226.
[http://dx.doi.org/10.1002/minf.201501018] [PMID: 27492236]
[79]
Li, M.; Allen, A.; Smith, T.J. High throughput screening reveals several new classes of glutamate dehydrogenase inhibitors. Biochemistry, 2007, 46(51), 15089-15102.
[http://dx.doi.org/10.1021/bi7018783] [PMID: 18044977]
[80]
Baranauskiene, L.; Kuo, T.C.; Chen, W.Y.; Matulis, D. Isothermal titration calorimetry for characterization of recombinant proteins. Curr. Opin. Biotechnol., 2019, 55, 9-15.
[http://dx.doi.org/10.1016/j.copbio.2018.06.003] [PMID: 30031160]
[81]
Jin, L.; Li, D.; Alesi, G.N.; Fan, J.; Kang, H.B.; Lu, Z.; Boggon, T.J.; Jin, P.; Yi, H.; Wright, E.R.; Duong, D.; Seyfried, N.T.; Egnatchik, R.; DeBerardinis, R.J.; Magliocca, K.R.; He, C.; Arellano, M.L.; Khoury, H.J.; Shin, D.M.; Khuri, F.R.; Kang, S. Glutamate dehydrogenase 1 signals through antioxidant glutathione peroxidase 1 to regulate redox homeostasis and tumor growth. Cancer Cell, 2015, 27(2), 257-270.
[http://dx.doi.org/10.1016/j.ccell.2014.12.006] [PMID: 25670081]
[82]
Burke, T.J.; Loniello, K.R.; Beebe, J.A.; Ervin, K.M. Development and application of fluorescence polarization assays in drug discovery. Comb. Chem. High Throughput Screen., 2003, 6(3), 183-194.
[http://dx.doi.org/10.2174/138620703106298365] [PMID: 12678697]
[83]
Wartchow, C.A.; Podlaski, F.; Li, S.; Rowan, K.; Zhang, X.; Mark, D.; Huang, K.S. Biosensor-based small molecule fragment screening with biolayer interferometry. J. Comput. Aided Mol. Des., 2011, 25(7), 669-676.
[http://dx.doi.org/10.1007/s10822-011-9439-8] [PMID: 21660516]
[84]
Kaminski, T.; Gunnarsson, A.; Geschwindner, S. Harnessing the versatility of optical biosensors for target-based small-molecule drug discovery. ACS Sens., 2017, 2(1), 10-15.
[http://dx.doi.org/10.1021/acssensors.6b00735] [PMID: 28722441]
[85]
Gunnarsson, K. Affinity-based biosensors for biomolecular interaction analysis. Curr. Protoc. Immunol., 2001, Chapter 18(1), 6.
[PMID: 18432748]
[86]
Stalnecker, C.A.; Erickson, J.W.; Cerione, R.A. Conformational changes in the activation loop of mitochondrial glutaminase C: A direct fluorescence readout that distinguishes the binding of allosteric inhibitors from activators. J. Biol. Chem., 2017, 292(15), 6095-6107.
[http://dx.doi.org/10.1074/jbc.M116.758219] [PMID: 28196863]
[87]
Cheng, L.; Wu, C.R.; Zhu, L.H.; Li, H.; Chen, L.X. Physapubescin, a natural withanolide as a kidney-type glutaminase (KGA) inhibitor. Bioorg. Med. Chem. Lett., 2017, 27(5), 1243-1246.
[http://dx.doi.org/10.1016/j.bmcl.2017.01.057] [PMID: 28174105]
[88]
Koch, H.; Eisen, K.; Werblinski, T.; Perlitz, J.; Prihoda, F.; Lee, G.; Will, S. High-speed, inline measurement of protein activity and inactivation processes by supercontinuum attenuation spectroscopy. Analyst (Lond.), 2019, 144(23), 7041-7048.
[http://dx.doi.org/10.1039/C9AN00893D] [PMID: 31656968]
[89]
Li, C.; Allen, A.; Kwagh, J.; Doliba, N.M.; Qin, W.; Najafi, H.; Collins, H.W.; Matschinsky, F.M.; Stanley, C.A.; Smith, T.J. Green tea polyphenols modulate insulin secretion by inhibiting glutamate dehydrogenase. J. Biol. Chem., 2006, 281(15), 10214-10221.
[http://dx.doi.org/10.1074/jbc.M512792200] [PMID: 16476731]
[90]
Li, C.; Li, M.; Chen, P.; Narayan, S.; Matschinsky, F.M.; Bennett, M.J.; Stanley, C.A.; Smith, T.J. Green tea polyphenols control dysregulated glutamate dehydrogenase in transgenic mice by hijacking the ADP activation site. J. Biol. Chem., 2011, 286(39), 34164-34174.
[http://dx.doi.org/10.1074/jbc.M111.268599] [PMID: 21813650]
[91]
Li, M.; Li, C.; Allen, A.; Stanley, C.A.; Smith, T.J. Glutamate dehydrogenase: structure, allosteric regulation, and role in insulin homeostasis. Neurochem. Res., 2014, 39(3), 433-445.
[http://dx.doi.org/10.1007/s11064-013-1173-2] [PMID: 24122080]
[92]
Pournourmohammadi, S.; Grimaldi, M.; Stridh, M.H.; Lavallard, V.; Waagepetersen, H.S.; Wollheim, C.B.; Maechler, P. Epigallocatechin-3-gallate (EGCG) activates AMPK through the inhibition of glutamate dehydrogenase in muscle and pancreatic ß-cells: A potential beneficial effect in the pre-diabetic state? Int. J. Biochem. Cell Biol., 2017, 88, 220-225.
[http://dx.doi.org/10.1016/j.biocel.2017.01.012] [PMID: 28137482]
[93]
Peeters, T.H.; Lenting, K.; Breukels, V.; van Lith, S.A.M.; van den Heuvel, C.N.A.M.; Molenaar, R.; van Rooij, A.; Wevers, R.; Span, P.N.; Heerschap, A.; Leenders, W.P.J. Isocitrate dehydrogenase 1-mutated cancers are sensitive to the green tea polyphenol epigallocatechin-3-gallate. Cancer Metab., 2019, 7, 4.
[http://dx.doi.org/10.1186/s40170-019-0198-7] [PMID: 31139406]
[94]
Li, M.; Li, C.; Allen, A.; Stanley, C.A.; Smith, T.J. The structure and allosteric regulation of mammalian glutamate dehydrogenase. Arch. Biochem. Biophys., 2012, 519(2), 69-80.
[http://dx.doi.org/10.1016/j.abb.2011.10.015] [PMID: 22079166]
[95]
Domith, I.; Duarte-Silva, A.T.; Garcia, C.G.; Calaza, K.D.C.; Paes-de-Carvalho, R.; Cossenza, M. Chlorogenic acids inhibit glutamate dehydrogenase and decrease intracellular ATP levels in cultures of chick embryo retina cells. Biochem. Pharmacol., 2018, 155, 393-402.
[http://dx.doi.org/10.1016/j.bcp.2018.07.023] [PMID: 30031809]
[96]
Tomita, T.; Kuzuyama, T.; Nishiyama, M. Structural basis for leucine-induced allosteric activation of glutamate dehydrogenase. J. Biol. Chem., 2011, 286(43), 37406-37413.
[http://dx.doi.org/10.1074/jbc.M111.260265] [PMID: 21900230]
[97]
Jarzyna, R.; Lenarcik, E.; Bryła, J. Chloroquine is a potent inhibitor of glutamate dehydrogenase in liver and kidney-cortex of rabbit. Pharmacol. Res., 1997, 35(1), 79-84.
[http://dx.doi.org/10.1006/phrs.1996.0108] [PMID: 9149320]
[98]
Jarzyna, R.; Kiersztan, A.; Lisowa, O.; Bryła, J. The inhibition of gluconeogenesis by chloroquine contributes to its hypoglycaemic action. Eur. J. Pharmacol., 2001, 428(3), 381-388.
[http://dx.doi.org/10.1016/S0014-2999(01)01221-3] [PMID: 11689198]
[99]
Choi, M.M.; Kim, E.A.; Choi, S.Y.; Kim, T.U.; Cho, S.W.; Yang, S.J. Inhibitory properties of nerve-specific human glutamate dehydrogenase isozyme by chloroquine. J. Biochem. Mol. Biol., 2007, 40(6), 1077-1082.
[PMID: 18047806]
[100]
Yielding, K.L.; Tomkins, G.M.; Munday, J.S.; Curran, J.F. The effects of steroid hormones on the glutamic dehydrogenase reaction. Biochem. Biophys. Res. Commun., 1960, 2(4), 303-306.
[http://dx.doi.org/10.1016/0006-291X(60)90189-3]
[101]
Pinkerton, J.V.; Conner, E.A. Beyond estrogen: advances in tissue selective estrogen complexes and selective estrogen receptor modulators. Climacteric, 2019, 22(2), 140-147.
[http://dx.doi.org/10.1080/13697137.2019.1568403] [PMID: 30895900]
[102]
Banerjee, S.; Schmidt, T.; Fang, J.; Stanley, C.A.; Smith, T.J. Structural studies on ADP activation of mammalian glutamate dehydrogenase and the evolution of regulation. Biochemistry, 2003, 42(12), 3446-3456.
[http://dx.doi.org/10.1021/bi0206917] [PMID: 12653548]
[103]
Chen, Z.; Jiang, Z.; Chen, N.; Shi, Q.; Tong, L.; Kong, F.; Cheng, X.; Chen, H.; Wang, C.; Tang, B. Target discovery of ebselen with a biotinylated probe. Chem. Commun. (Camb.), 2018, 54(68), 9506-9509.
[http://dx.doi.org/10.1039/C8CC04258F] [PMID: 30091742]
[104]
Rosenfeld, E.; Li, C.; Leon-Crutchlow, D.D. OR05-2 targeted inhibition of glutamate dehydrogenase by alpha-tocopherol: a potential novel treatment for hyperinsulinism hyperammonemia syndrome. J. Endocr. Soc., 2019, 3
[http://dx.doi.org/10.1210/js.2019-OR05-2]
[105]
Yang, S.J.; Hahn, H.G.; Choi, S.Y.; Cho, S.W. Inhibitory effects of KHG26377 on glutamate dehydrogenase activity in cultured islets. BMB Rep., 2010, 43(4), 245-249.
[http://dx.doi.org/10.5483/BMBRep.2010.43.4.245] [PMID: 20423608]
[106]
Secker, P.F.; Beneke, S.; Schlichenmaier, N.; Delp, J.; Gutbier, S.; Leist, M.; Dietrich, D.R. Canagliflozin mediated dual inhibition of mitochondrial glutamate dehydrogenase and complex I: an off-target adverse effect. Cell Death Dis., 2018, 9(2), 226.
[http://dx.doi.org/10.1038/s41419-018-0273-y] [PMID: 29445145]
[107]
Lin, Y.; Nan, J.; Shen, J.; Lv, X.; Chen, X.; Lu, X.; Zhang, C.; Xiang, P.; Wang, Z.; Li, Z. Canagliflozin impairs blood reperfusion of ischaemic lower limb partially by inhibiting the retention and paracrine function of bone marrow derived mesenchymal stem cells. EBioMedicine, 2020, 52, 102637.
[http://dx.doi.org/10.1016/j.ebiom.2020.102637] [PMID: 31981975]
[108]
Li, Y.; Zhao, S.; Zhang, W.; Zhao, P.; He, B.; Wu, N.; Han, P. Epigallocatechin-3-O-gallate (EGCG) attenuates FFAs-induced peripheral insulin resistance through AMPK pathway and insulin signaling pathway in vivo. Diabetes Res. Clin. Pract., 2011, 93(2), 205-214.
[http://dx.doi.org/10.1016/j.diabres.2011.03.036] [PMID: 21514684]
[109]
Borompokas, N.; Papachatzaki, M.M.; Kanavouras, K.; Mastorodemos, V.; Zaganas, I.; Spanaki, C.; Plaitakis, A. Estrogen modification of human glutamate dehydrogenases is linked to enzyme activation state. J. Biol. Chem., 2010, 285(41), 31380-31387.
[http://dx.doi.org/10.1074/jbc.M110.146084] [PMID: 20628048]
[110]
Pons, M.; Michel, F.; Descomps, B.; Crastes de Paulet, A. Structural requirements for maximal inhibitory allosteric effect of estrogens and estrogen analogues on glutamate dehydrogenase. Eur. J. Biochem., 1978, 84(1), 257-266.
[http://dx.doi.org/10.1111/j.1432-1033.1978.tb12164.x] [PMID: 565713]
[111]
Spinelli, J.B.; Yoon, H.; Ringel, A.E.; Jeanfavre, S.; Clish, C.B.; Haigis, M.C. Metabolic recycling of ammonia via glutamate dehydrogenase supports breast cancer biomass. Science, 2017, 358(6365), 941-946.
[http://dx.doi.org/10.1126/science.aam9305] [PMID: 29025995]
[112]
Liu, G.; Zhu, J.; Yu, M.; Cai, C.; Zhou, Y.; Yu, M.; Fu, Z.; Gong, Y.; Yang, B.; Li, Y.; Zhou, Q.; Lin, Q.; Ye, H.; Ye, L.; Zhao, X.; Li, Z.; Chen, R.; Han, F.; Tang, C.; Zeng, B. Glutamate dehydrogenase is a novel prognostic marker and predicts metastases in colorectal cancer patients. J. Transl. Med., 2015, 13, 144.
[http://dx.doi.org/10.1186/s12967-015-0500-6] [PMID: 25947346]
[113]
Ju, H.Q.; Lin, J.F.; Tian, T.; Xie, D.; Xu, R.H. NADPH homeostasis in cancer: functions, mechanisms and therapeutic implications. Signal Transduct. Target. Ther., 2020, 5(1), 231.
[http://dx.doi.org/10.1038/s41392-020-00326-0] [PMID: 33028807]
[114]
Mulder, H. Transcribing β-cell mitochondria in health and disease. Mol. Metab., 2017, 6(9), 1040-1051.
[http://dx.doi.org/10.1016/j.molmet.2017.05.014] [PMID: 28951827]
[115]
Han, S.J.; Choi, S.E.; Yi, S.A.; Lee, S.J.; Kim, H.J.; Kim, D.J.; Lee, H.C.; Lee, K.W.; Kang, Y. β-Cell-protective effect of 2-aminobicyclo-(2,2,1)-heptane-2-carboxylic acid as a glutamate dehydrogenase activator in db/db mice. J. Endocrinol., 2012, 212(3), 307-315.
[http://dx.doi.org/10.1530/JOE-11-0340] [PMID: 22131441]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy