摘要
高胰岛素血症 - 高氨血症综合征(HHS)是一种罕见的疾病,其特征是复发性低血糖和血浆氨持续升高,可导致严重癫痫和永久性脑损伤。已经证明,谷氨酸脱氢酶 (GDH) 是线粒体基质中的一种酶,其功能突变是造成 HHS 的原因。因此,GDH已成为HHS小分子治疗干预的有希望的靶点。目前有几项药物化学研究针对GDH,然而,迄今为止,所报道的化合物均未进入临床试验。本文综述了GDH抑制剂的发现和开发进展,包括HHS的发病机制、潜在结合位点、筛选方法和研究模型。提供未来的治疗视角,为发现有效的GDH调节剂提供参考,并鼓励更多的研究,为药物开发提供更全面的指导。
关键词: 高胰岛素血症综合征(HHS),谷氨酸脱氢酶(GDH),筛选方法,酶抑制剂,药物发现,体外/体内模型。
[1]
Su, C.; Liang, X.J.; Li, W.J.; Wu, D.; Liu, M.; Cao, B.Y.; Chen, J.J.; Qin, M.; Meng, X.; Gong, C.X. Clinical and molecular spectrum of glutamate dehydrogenase gene defects in 26 chinese congenital hyperinsulinemia patients. J. Diabetes Res., 2018, 2018, 2802540.
[http://dx.doi.org/10.1155/2018/2802540] [PMID: 30306091]
[http://dx.doi.org/10.1155/2018/2802540] [PMID: 30306091]
[2]
Roy, K.; Satapathy, A.K.; Houhton, J.A.L.; Flanagan, S.E.; Radha, V.; Mohan, V.; Sharma, R.; Jain, V. Congenital hyperinsulinemic hypoglycemia and hyperammonemia due to pathogenic variants in GLUD1. Indian J. Pediatr., 2019, 86(11), 1051-1053.
[http://dx.doi.org/10.1007/s12098-019-02980-x] [PMID: 31119523]
[http://dx.doi.org/10.1007/s12098-019-02980-x] [PMID: 31119523]
[3]
Fahien, L.A.; Macdonald, M.J. The complex mechanism of glutamate dehydrogenase in insulin secretion. Diabetes, 2011, 60(10), 2450-2454.
[http://dx.doi.org/10.2337/db10-1150] [PMID: 21948999]
[http://dx.doi.org/10.2337/db10-1150] [PMID: 21948999]
[4]
Hussain, J.; Schlachterman, A.; Kamel, A.; Gupte, A. Hyperinsulinism hyperammonemia syndrome, a rare clinical constellation. J. Investig. Med. High Impact Case Rep., 2016, 4(1), 2324709616632552.
[http://dx.doi.org/10.1177/2324709616632552] [PMID: 26962538]
[http://dx.doi.org/10.1177/2324709616632552] [PMID: 26962538]
[5]
Meissner, T.; Wendel, U.; Burgard, P.; Schaetzle, S.; Mayatepek, E. Long-term follow-up of 114 patients with congenital hyperinsulinism. Eur. J. Endocrinol., 2003, 149(1), 43-51.
[http://dx.doi.org/10.1530/eje.0.1490043] [PMID: 12824865]
[http://dx.doi.org/10.1530/eje.0.1490043] [PMID: 12824865]
[6]
De Lonlay, P.; Benelli, C.; Fouque, F.; Ganguly, A.; Aral, B.; Dionisi-Vici, C.; Touati, G.; Heinrichs, C.; Rabier, D.; Kamoun, P.; Robert, J.J.; Stanley, C.; Saudubray, J.M. Hyperinsulinism and hyperammonemia syndrome: report of twelve unrelated patients. Pediatr. Res., 2001, 50(3), 353-357.
[http://dx.doi.org/10.1203/00006450-200109000-00010] [PMID: 11518822]
[http://dx.doi.org/10.1203/00006450-200109000-00010] [PMID: 11518822]
[7]
De Cosio, A.P.; Thornton, P. Current and emerging agents for the treatment of hypoglycemia in patients with congenital hyperinsulinism. Paediatr. Drugs, 2019, 21(3), 123-136.
[http://dx.doi.org/10.1007/s40272-019-00334-w] [PMID: 31218604]
[http://dx.doi.org/10.1007/s40272-019-00334-w] [PMID: 31218604]
[8]
Yorifuji, T.; Horikawa, R.; Hasegawa, T.; Adachi, M.; Soneda, S.; Minagawa, M.; Ida, S.; Yonekura, T.; Kinoshita, Y.; Kanamori, Y.; Kitagawa, H.; Shinkai, M.; Sasaki, H.; Nio, M. Clinical practice guidelines for congenital hyperinsulinism. Clin. Pediatr. Endocrinol., 2017, 26(3), 127-152.
[http://dx.doi.org/10.1297/cpe.26.127] [PMID: 28804205]
[http://dx.doi.org/10.1297/cpe.26.127] [PMID: 28804205]
[9]
Banerjee, I.; De Leon, D.; Dunne, M.J. Extreme caution on the use of sirolimus for the congenital hyperinsulinism in infancy patient. Orphanet J. Rare Dis., 2017, 12(1), 70.
[http://dx.doi.org/10.1186/s13023-017-0621-5] [PMID: 28410602]
[http://dx.doi.org/10.1186/s13023-017-0621-5] [PMID: 28410602]
[10]
Verrotti, A.; Greco, R.; Morgese, G.; Chiarelli, F. Carnitine deficiency and hyperammonemia in children receiving valproic acid with and without other anticonvulsant drugs. Int. J. Clin. Lab. Res., 1999, 29(1), 36-40.
[http://dx.doi.org/10.1007/s005990050060] [PMID: 10356662]
[http://dx.doi.org/10.1007/s005990050060] [PMID: 10356662]
[11]
Zaganas, I.; Spanaki, C.; Plaitakis, A. Expression of human GLUD2 glutamate dehydrogenase in human tissues: functional implications. Neurochem. Int., 2012, 61(4), 455-462.
[http://dx.doi.org/10.1016/j.neuint.2012.06.007] [PMID: 22709674]
[http://dx.doi.org/10.1016/j.neuint.2012.06.007] [PMID: 22709674]
[12]
Bera, S.; Rashid, M.; Medvinsky, A.B.; Sun, G.Q.; Li, B.L.; Acquisti, C.; Sljoka, A.; Chakraborty, A. Allosteric regulation of glutamate dehydrogenase deamination activity. Sci. Rep., 2020, 10(1), 16523.
[http://dx.doi.org/10.1038/s41598-020-73743-4] [PMID: 33020580]
[http://dx.doi.org/10.1038/s41598-020-73743-4] [PMID: 33020580]
[13]
Smith, H.Q.; Li, C.; Stanley, C.A.; Smith, T.J. Glutamate dehydrogenase, a complex enzyme at a crucial metabolic branch point. Neurochem. Res., 2019, 44(1), 117-132.
[http://dx.doi.org/10.1007/s11064-017-2428-0] [PMID: 29079932]
[http://dx.doi.org/10.1007/s11064-017-2428-0] [PMID: 29079932]
[14]
Nassar, O.M.; Wong, K.Y.; Lynch, G.C.; Smith, T.J.; Pettitt, B.M. Allosteric discrimination at the NADH/ADP regulatory site of glutamate dehydrogenase. Protein Sci., 2019, 28(12), 2080-2088.
[http://dx.doi.org/10.1002/pro.3748] [PMID: 31610054]
[http://dx.doi.org/10.1002/pro.3748] [PMID: 31610054]
[15]
Dimovasili, C.; Fadouloglou, V.E.; Kefala, A.; Providaki, M.; Kotsifaki, D.; Kanavouras, K.; Sarrou, I.; Plaitakis, A.; Zaganas, I.; Kokkinidis, M. Crystal structure of glutamate dehydrogenase 2, a positively selected novel human enzyme involved in brain biology and cancer pathophysiology. J. Neurochem., 2021, 157(3), 802-815.
[http://dx.doi.org/10.1111/jnc.15296] [PMID: 33421122]
[http://dx.doi.org/10.1111/jnc.15296] [PMID: 33421122]
[16]
Allen, A.; Kwagh, J.; Fang, J.; Stanley, C.A.; Smith, T.J. Evolution of glutamate dehydrogenase regulation of insulin homeostasis is an example of molecular exaptation. Biochemistry, 2004, 43(45), 14431-14443.
[http://dx.doi.org/10.1021/bi048817i] [PMID: 15533048]
[http://dx.doi.org/10.1021/bi048817i] [PMID: 15533048]
[17]
Wang, X.; Liu, R.; Qu, X.; Yu, H.; Chu, H.; Zhang, Y.; Zhu, W.; Wu, X.; Gao, H.; Tao, B.; Li, W.; Liang, J.; Li, G.; Yang, W. α-Ketoglutarate-activated NF-κB signaling promotes compensatory glucose uptake and brain tumor development. Mol. Cell, 2019, 76(1), 148-162.e7.
[http://dx.doi.org/10.1016/j.molcel.2019.07.007] [PMID: 31447391]
[http://dx.doi.org/10.1016/j.molcel.2019.07.007] [PMID: 31447391]
[18]
Karaca, M.; Martin-Levilain, J.; Grimaldi, M.; Li, L.; Dizin, E.; Emre, Y.; Maechler, P. Liver glutamate dehydrogenase controls whole-body energy partitioning through amino acid-derived gluconeogenesis and ammonia homeostasis. Diabetes, 2018, 67(10), 1949-1961.
[http://dx.doi.org/10.2337/db17-1561] [PMID: 30002133]
[http://dx.doi.org/10.2337/db17-1561] [PMID: 30002133]
[19]
Benner, B.J.M.; Bazelmans, M.; Huidekoper, H.; Langeveld, M.; Langendonk, J.; Schoenmakers, S. Multidisciplinary approach in medicine: successful pregnancy in a patient with hyperinsulinism/hyperammonaemia (HI/HA) syndrome. BMJ Case Rep., 2020, 13(8), e234055.
[http://dx.doi.org/10.1136/bcr-2019-234055] [PMID: 32747595]
[http://dx.doi.org/10.1136/bcr-2019-234055] [PMID: 32747595]
[20]
Spanaki, C.; Plaitakis, A. The role of glutamate dehydrogenase in mammalian ammonia metabolism. Neurotox. Res., 2012, 21(1), 117-127.
[http://dx.doi.org/10.1007/s12640-011-9285-4] [PMID: 22038055]
[http://dx.doi.org/10.1007/s12640-011-9285-4] [PMID: 22038055]
[21]
Daniotti, M.; la Marca, G.; Fiorini, P.; Filippi, L. New developments in the treatment of hyperammonemia: emerging use of carglumic acid. Int. J. Gen. Med., 2011, 4, 21-28.
[PMID: 21403788]
[PMID: 21403788]
[22]
Treberg, J.R.; Brosnan, M.E.; Watford, M.; Brosnan, J.T. On the reversibility of glutamate dehydrogenase and the source of hyperammonemia in the hyperinsulinism/hyperammonemia syndrome. Adv. Enzyme Regul., 2010, 50(1), 34-43.
[http://dx.doi.org/10.1016/j.advenzreg.2009.10.029] [PMID: 19895831]
[http://dx.doi.org/10.1016/j.advenzreg.2009.10.029] [PMID: 19895831]
[23]
Treberg, J.R.; Clow, K.A.; Greene, K.A.; Brosnan, M.E.; Brosnan, J.T. Systemic activation of glutamate dehydrogenase increases renal ammoniagenesis: implications for the hyperinsulinism/hyperammonemia syndrome. Am. J. Physiol. Endocrinol. Metab., 2010, 298(6), E1219-E1225.
[http://dx.doi.org/10.1152/ajpendo.00028.2010] [PMID: 20332361]
[http://dx.doi.org/10.1152/ajpendo.00028.2010] [PMID: 20332361]
[24]
Kapoor, R.R.; Flanagan, S.E.; Arya, V.B.; Shield, J.P.; Ellard, S.; Hussain, K. Clinical and molecular characterisation of 300 patients with congenital hyperinsulinism. Eur. J. Endocrinol., 2013, 168(4), 557-564.
[http://dx.doi.org/10.1530/EJE-12-0673] [PMID: 23345197]
[http://dx.doi.org/10.1530/EJE-12-0673] [PMID: 23345197]
[25]
Whitelaw, B.S.; Robinson, M.B. Inhibitors of glutamate dehydrogenase block sodium-dependent glutamate uptake in rat brain membranes. Front. Endocrinol. (Lausanne), 2013, 4, 123.
[http://dx.doi.org/10.3389/fendo.2013.00123] [PMID: 24062726]
[http://dx.doi.org/10.3389/fendo.2013.00123] [PMID: 24062726]
[26]
Komlos, D.; Mann, K.D.; Zhuo, Y.; Ricupero, C.L.; Hart, R.P.; Liu, A.Y.; Firestein, B.L. Glutamate dehydrogenase 1 and SIRT4 regulate glial development. Glia, 2013, 61(3), 394-408.
[http://dx.doi.org/10.1002/glia.22442] [PMID: 23281078]
[http://dx.doi.org/10.1002/glia.22442] [PMID: 23281078]
[27]
Görg, B.; Karababa, A.; Häussinger, D. Hepatic Encephalopathy and Astrocyte Senescence. J. Clin. Exp. Hepatol., 2018, 8(3), 294-300.
[http://dx.doi.org/10.1016/j.jceh.2018.05.003] [PMID: 30302047]
[http://dx.doi.org/10.1016/j.jceh.2018.05.003] [PMID: 30302047]
[28]
Ninković, D.; Sarnavka, V.; Bašnec, A.; Ćuk, M.; Ramadža, D.P.; Fumić, K.; Kušec, V.; Santer, R.; Barić, I. Hyperinsulinism-hyperammonemia syndrome: A de novo mutation of the GLUD1 gene in twins and a review of the literature. J. Pediatr. Endocrinol. Metab., 2016, 29(9), 1083-1088.
[http://dx.doi.org/10.1515/jpem-2016-0086] [PMID: 27383869]
[http://dx.doi.org/10.1515/jpem-2016-0086] [PMID: 27383869]
[29]
Galcheva, S.; Demirbilek, H.; Al-Khawaga, S.; Hussain, K. The genetic and molecular mechanisms of congenital hyperinsulinism. Front. Endocrinol. (Lausanne), 2019, 10, 111.
[http://dx.doi.org/10.3389/fendo.2019.00111] [PMID: 30873120]
[http://dx.doi.org/10.3389/fendo.2019.00111] [PMID: 30873120]
[30]
Grimaldi, M.; Karaca, M.; Latini, L.; Brioudes, E.; Schalch, T.; Maechler, P. Identification of the molecular dysfunction caused by glutamate dehydrogenase S445L mutation responsible for hyperinsulinism/hyperammonemia. Hum. Mol. Genet., 2017, 26(18), 3453-3465.
[http://dx.doi.org/10.1093/hmg/ddx213] [PMID: 28911206]
[http://dx.doi.org/10.1093/hmg/ddx213] [PMID: 28911206]
[31]
Luczkowska, K.; Stekelenburg, C.; Sloan-Béna, F.; Ranza, E.; Gastaldi, G.; Schwitzgebel, V.; Maechler, P. Hyperinsulinism associated with GLUD1 mutation: allosteric regulation and functional characterization of p.G446V glutamate dehydrogenase. Hum. Genomics, 2020, 14(1), 9.
[http://dx.doi.org/10.1186/s40246-020-00262-8] [PMID: 32143698]
[http://dx.doi.org/10.1186/s40246-020-00262-8] [PMID: 32143698]
[32]
Carobbio, S.; Ishihara, H.; Fernandez-Pascual, S.; Bartley, C.; Martin-Del-Rio, R.; Maechler, P. Insulin secretion profiles are modified by overexpression of glutamate dehydrogenase in pancreatic islets. Diabetologia, 2004, 47(2), 266-276.
[http://dx.doi.org/10.1007/s00125-003-1306-2] [PMID: 14689183]
[http://dx.doi.org/10.1007/s00125-003-1306-2] [PMID: 14689183]
[33]
Barrosse-Antle, M.; Su, C.; Chen, P.; Boodhansingh, K.E.; Smith, T.J.; Stanley, C.A.; De León, D.D.; Li, C. A severe case of hyperinsulinism due to hemizygous activating mutation of glutamate dehydrogenase. Pediatr. Diabetes, 2017, 18(8), 911-916.
[http://dx.doi.org/10.1111/pedi.12507] [PMID: 28165182]
[http://dx.doi.org/10.1111/pedi.12507] [PMID: 28165182]
[34]
Fang, C.; Ding, X.; Huang, Y.; Huang, J.; Zhao, P.; Hu, J. A novel mutation in the glutamate dehydrogenase (GLUD1) of a patient with congenital hyperinsulinism-hyperammonemia (HI/HA). J. Pediatr. Endocrinol. Metab., 2016, 29(3), 385-388.
[http://dx.doi.org/10.1515/jpem-2015-0276] [PMID: 26656609]
[http://dx.doi.org/10.1515/jpem-2015-0276] [PMID: 26656609]
[35]
Nassar, O.M.; Li, C.; Stanley, C.A.; Pettitt, B.M.; Smith, T.J. Glutamate dehydrogenase: Structure of a hyperinsulinism mutant, corrections to the atomic model, and insights into a regulatory site. Proteins, 2019, 87(1), 41-50.
[http://dx.doi.org/10.1002/prot.25620] [PMID: 30367518]
[http://dx.doi.org/10.1002/prot.25620] [PMID: 30367518]
[36]
Stanley, C.A.; Fang, J.; Kutyna, K.; Hsu, B.Y.; Ming, J.E.; Glaser, B.; Poncz, M. Molecular basis and characterization of the hyperinsulinism/hyperammonemia syndrome: predominance of mutations in exons 11 and 12 of the glutamate dehydrogenase gene. Diabetes, 2000, 49(4), 667-673.
[http://dx.doi.org/10.2337/diabetes.49.4.667] [PMID: 10871207]
[http://dx.doi.org/10.2337/diabetes.49.4.667] [PMID: 10871207]
[37]
Fujioka, H.; Okano, Y.; Inada, H.; Asada, M.; Kawamura, T.; Hase, Y.; Yamano, T. Molecular characterisation of glutamate dehydrogenase gene defects in Japanese patients with congenital hyperinsulinism/hyperammonaemia. Eur. J. Hum. Genet., 2001, 9(12), 931-937.
[http://dx.doi.org/10.1038/sj.ejhg.5200749] [PMID: 11840195]
[http://dx.doi.org/10.1038/sj.ejhg.5200749] [PMID: 11840195]
[38]
MacMullen, C.; Fang, J.; Hsu, B.Y.L.; Kelly, A.; de Lonlay-Debeney, P.; Saudubray, J.M.; Ganguly, A.; Smith, T.J.; Stanley, C.A. Hyperinsulinism/hyperammonemia syndrome in children with regulatory mutations in the inhibitory guanosine triphosphate-binding domain of glutamate dehydrogenase. J. Clin. Endocrinol. Metab., 2001, 86(4), 1782-1787.
[http://dx.doi.org/10.1210/jc.86.4.1782] [PMID: 11297618]
[http://dx.doi.org/10.1210/jc.86.4.1782] [PMID: 11297618]
[39]
Velasco, K.; St-Louis, J.L.; Hovland, H.N.; Thompson, N.; Ottesen, Å.; Choi, M.H.; Pedersen, L.; Njølstad, P.R.; Arnesen, T.; Fjeld, K.; Aukrust, I.; Myklebust, L.M.; Molven, A. Functional evaluation of 16 SCHAD missense variants: Only amino acid substitutions causing congenital hyperinsulinism of infancy lead to loss-of-function phenotypes in vitro. J. Inherit. Metab. Dis., 2021, 44(1), 240-252.
[http://dx.doi.org/10.1002/jimd.12309] [PMID: 32876354]
[http://dx.doi.org/10.1002/jimd.12309] [PMID: 32876354]
[40]
Heslegrave, A.J.; Kapoor, R.R.; Eaton, S.; Chadefaux, B.; Akcay, T.; Simsek, E.; Flanagan, S.E.; Ellard, S.; Hussain, K. Leucine-sensitive hyperinsulinaemic hypoglycaemia in patients with loss of function mutations in 3-Hydroxyacyl-CoA dehydrogenase. Orphanet J. Rare Dis., 2012, 7, 25.
[http://dx.doi.org/10.1186/1750-1172-7-25] [PMID: 22583614]
[http://dx.doi.org/10.1186/1750-1172-7-25] [PMID: 22583614]
[41]
Molven, A.; Hollister-Lock, J.; Hu, J.; Martinez, R.; Njølstad, P.R.; Liew, C.W.; Weir, G.; Kulkarni, R.N. The hypoglycemic phenotype is islet cell-autonomous in short-chain hydroxyacyl-coa dehydrogenase-deficient mice. Diabetes, 2016, 65(6), 1672-1678.
[http://dx.doi.org/10.2337/db15-1475] [PMID: 26953163]
[http://dx.doi.org/10.2337/db15-1475] [PMID: 26953163]
[42]
Li, C.; Chen, P.; Palladino, A.; Narayan, S.; Russell, L.K.; Sayed, S.; Xiong, G.; Chen, J.; Stokes, D.; Butt, Y.M.; Jones, P.M.; Collins, H.W.; Cohen, N.A.; Cohen, A.S.; Nissim, I.; Smith, T.J.; Strauss, A.W.; Matschinsky, F.M.; Bennett, M.J.; Stanley, C.A. Mechanism of hyperinsulinism in short-chain 3-hydroxyacyl-CoA dehydrogenase deficiency involves activation of glutamate dehydrogenase. J. Biol. Chem., 2010, 285(41), 31806-31818.
[http://dx.doi.org/10.1074/jbc.M110.123638] [PMID: 20670938]
[http://dx.doi.org/10.1074/jbc.M110.123638] [PMID: 20670938]
[43]
Chandran, S.; Yap, F.; Hussain, K. Molecular mechanisms of protein induced hyperinsulinaemic hypoglycaemia. World J. Diabetes, 2014, 5(5), 666-677.
[http://dx.doi.org/10.4239/wjd.v5.i5.666] [PMID: 25317244]
[http://dx.doi.org/10.4239/wjd.v5.i5.666] [PMID: 25317244]
[44]
Carrico, C.; Meyer, J.G.; He, W.; Gibson, B.W.; Verdin, E. The mitochondrial acylome emerges: proteomics, regulation by sirtuins, and metabolic and disease implications. Cell Metab., 2018, 27(3), 497-512.
[http://dx.doi.org/10.1016/j.cmet.2018.01.016] [PMID: 29514063]
[http://dx.doi.org/10.1016/j.cmet.2018.01.016] [PMID: 29514063]
[45]
Kato, Y.; Kihara, H.; Fukui, K.; Kojima, M. A ternary complex model of Sirtuin4-NAD+-Glutamate dehydrogenase. Comput. Biol. Chem., 2018, 74, 94-104.
[http://dx.doi.org/10.1016/j.compbiolchem.2018.03.006] [PMID: 29571013]
[http://dx.doi.org/10.1016/j.compbiolchem.2018.03.006] [PMID: 29571013]
[46]
Wang, T.; Yao, W.; He, Q.; Shao, Y.; Zheng, R.; Huang, F. L-leucine stimulates glutamate dehydrogenase activity and glutamate synthesis by regulating mTORC1/SIRT4 pathway in pig liver. Anim. Nutr., 2018, 4(3), 329-337.
[http://dx.doi.org/10.1016/j.aninu.2017.12.002] [PMID: 30175263]
[http://dx.doi.org/10.1016/j.aninu.2017.12.002] [PMID: 30175263]
[47]
Mavrothalassitis, G.; Tzimagiorgis, G.; Mitsialis, A.; Zannis, V.; Plaitakis, A.; Papamatheakis, J.; Moschonas, N. Isolation and characterization of cDNA clones encoding human liver glutamate dehydrogenase: evidence for a small gene family. Proc. Natl. Acad. Sci. USA, 1988, 85(10), 3494-3498.
[http://dx.doi.org/10.1073/pnas.85.10.3494] [PMID: 3368458]
[http://dx.doi.org/10.1073/pnas.85.10.3494] [PMID: 3368458]
[48]
Al-Hawash, A.B.; Zhang, X.; Ma, F. Strategies of codon optimization for high-level heterologous protein expression in microbial expression systems. Gene Rep., 2017, 9, 46-53.
[http://dx.doi.org/10.1016/j.genrep.2017.08.006]
[http://dx.doi.org/10.1016/j.genrep.2017.08.006]
[49]
Kaur, J.; Kumar, A.; Kaur, J. Strategies for optimization of heterologous protein expression in E. coli: Roadblocks and reinforcements. Int. J. Biol. Macromol., 2018, 106, 803-822.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.08.080] [PMID: 28830778]
[http://dx.doi.org/10.1016/j.ijbiomac.2017.08.080] [PMID: 28830778]
[50]
Fang, J.; Hsu, B.Y.L.; MacMullen, C.M.; Poncz, M.; Smith, T.J.; Stanley, C.A. Expression, purification and characterization of human glutamate dehydrogenase (GDH) allosteric regulatory mutations. Biochem. J., 2002, 363(Pt 1), 81-87.
[http://dx.doi.org/10.1042/bj3630081] [PMID: 11903050]
[http://dx.doi.org/10.1042/bj3630081] [PMID: 11903050]
[51]
Mathioudakis, L.; Bourbouli, M.; Daklada, E.; Kargatzi, S.; Michaelidou, K.; Zaganas, I. Localization of human glutamate dehydrogenases provides insights into their metabolic role and their involvement in disease processes. Neurochem. Res., 2019, 44(1), 170-187.
[http://dx.doi.org/10.1007/s11064-018-2575-y] [PMID: 29943084]
[http://dx.doi.org/10.1007/s11064-018-2575-y] [PMID: 29943084]
[52]
Kibbey, R.G.; Choi, C.S.; Lee, H.Y.; Cabrera, O.; Pongratz, R.L.; Zhao, X.; Birkenfeld, A.L.; Li, C.; Berggren, P.O.; Stanley, C.; Shulman, G.I. Mitochondrial GTP insensitivity contributes to hypoglycemia in hyperinsulinemia hyperammonemia by inhibiting glucagon release. Diabetes, 2014, 63(12), 4218-4229.
[http://dx.doi.org/10.2337/db14-0783] [PMID: 25024374]
[http://dx.doi.org/10.2337/db14-0783] [PMID: 25024374]
[53]
Hoffpauir, Z.A.; Sherman, E.; Smith, T.J. Dissecting the Antenna in Human Glutamate Dehydrogenase: Understanding Its Role in Subunit Communication and Allosteric Regulation. Biochemistry, 2019, 58(41), 4195-4206.
[http://dx.doi.org/10.1021/acs.biochem.9b00722] [PMID: 31577135]
[http://dx.doi.org/10.1021/acs.biochem.9b00722] [PMID: 31577135]
[54]
Pajęcka, K.; Nielsen, C.W.; Hauge, A.; Zaganas, I.; Bak, L.K.; Schousboe, A.; Plaitakis, A.; Waagepetersen, H.S. Glutamate dehydrogenase isoforms with N-terminal (His)6- or FLAG-tag retain their kinetic properties and cellular localization. Neurochem. Res., 2014, 39(3), 487-499.
[http://dx.doi.org/10.1007/s11064-013-1042-z] [PMID: 23619558]
[http://dx.doi.org/10.1007/s11064-013-1042-z] [PMID: 23619558]
[55]
Li, M.; Smith, C.J.; Walker, M.T.; Smith, T.J. Novel inhibitors complexed with glutamate dehydrogenase: allosteric regulation by control of protein dynamics. J. Biol. Chem., 2009, 284(34), 22988-23000.
[http://dx.doi.org/10.1074/jbc.M109.020222] [PMID: 19531491]
[http://dx.doi.org/10.1074/jbc.M109.020222] [PMID: 19531491]
[56]
Kawajiri, M.; Okano, Y.; Kuno, M.; Tokuhara, D.; Hase, Y.; Inada, H.; Tashiro, F.; Miyazaki, J.; Yamano, T. Unregulated insulin secretion by pancreatic beta cells in hyperinsulinism/hyperammonemia syndrome: role of glutamate dehydrogenase, ATP-sensitive potassium channel, and nonselective cation channel. Pediatr. Res., 2006, 59(3), 359-364.
[http://dx.doi.org/10.1203/01.pdr.0000198775.22719.46] [PMID: 16492972]
[http://dx.doi.org/10.1203/01.pdr.0000198775.22719.46] [PMID: 16492972]
[57]
Vetterli, L.; Carobbio, S.; Pournourmohammadi, S.; Martin-Del-Rio, R.; Skytt, D.M.; Waagepetersen, H.S.; Tamarit-Rodriguez, J.; Maechler, P. Delineation of glutamate pathways and secretory responses in pancreatic islets with β-cell-specific abrogation of the glutamate dehydrogenase. Mol. Biol. Cell, 2012, 23(19), 3851-3862.
[http://dx.doi.org/10.1091/mbc.e11-08-0676] [PMID: 22875990]
[http://dx.doi.org/10.1091/mbc.e11-08-0676] [PMID: 22875990]
[58]
Li, C.; Matter, A.; Kelly, A.; Petty, T.J.; Najafi, H.; MacMullen, C.; Daikhin, Y.; Nissim, I.; Lazarow, A.; Kwagh, J.; Collins, H.W.; Hsu, B.Y.; Nissim, I.; Yudkoff, M.; Matschinsky, F.M.; Stanley, C.A. Effects of a GTP-insensitive mutation of glutamate dehydrogenase on insulin secretion in transgenic mice. J. Biol. Chem., 2006, 281(22), 15064-15072.
[http://dx.doi.org/10.1074/jbc.M600994200] [PMID: 16574664]
[http://dx.doi.org/10.1074/jbc.M600994200] [PMID: 16574664]
[59]
Jia, G.; Sowers, J.R. Interaction of islet α-cell and β-cell in the regulation of glucose homeostasis in HI/HA syndrome patients with the GDH(H454Y) mutation. Diabetes, 2014, 63(12), 4008-4010.
[http://dx.doi.org/10.2337/db14-1243] [PMID: 25414017]
[http://dx.doi.org/10.2337/db14-1243] [PMID: 25414017]
[60]
Tanizawa, Y.; Nakai, K.; Sasaki, T.; Anno, T.; Ohta, Y.; Inoue, H.; Matsuo, K.; Koga, M.; Furukawa, S.; Oka, Y. Unregulated elevation of glutamate dehydrogenase activity induces glutamine-stimulated insulin secretion: identification and characterization of a GLUD1 gene mutation and insulin secretion studies with MIN6 cells overexpressing the mutant glutamate dehydrogenase. Diabetes, 2002, 51(3), 712-717.
[http://dx.doi.org/10.2337/diabetes.51.3.712] [PMID: 11872671]
[http://dx.doi.org/10.2337/diabetes.51.3.712] [PMID: 11872671]
[61]
Wilson, D.F.; Cember, A.T.J.; Matschinsky, F.M. Glutamate dehydrogenase: role in regulating metabolism and insulin release in pancreatic β-cells. J. Appl. Physiol., 2018, 125(2), 419-428.
[http://dx.doi.org/10.1152/japplphysiol.01077.2017] [PMID: 29648519]
[http://dx.doi.org/10.1152/japplphysiol.01077.2017] [PMID: 29648519]
[62]
Xu, G.; Tang, Y.; Ma, Y.; Xu, A.; Lin, W. A new aggregation-induced emission fluorescent probe for rapid detection of nitroreductase and its application in living cells. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2018, 188, 197-201.
[http://dx.doi.org/10.1016/j.saa.2017.06.065] [PMID: 28715686]
[http://dx.doi.org/10.1016/j.saa.2017.06.065] [PMID: 28715686]
[63]
O’Neil, R.G.; Wu, L.; Mullani, N. Uptake of a fluorescent deoxyglucose analog (2-NBDG) in tumor cells. Mol. Imaging Biol., 2005, 7(6), 388-392.
[http://dx.doi.org/10.1007/s11307-005-0011-6] [PMID: 16284704]
[http://dx.doi.org/10.1007/s11307-005-0011-6] [PMID: 16284704]
[64]
Yamamoto, T.; Tanaka, S.; Suga, S.; Watanabe, S.; Nagatomo, K.; Sasaki, A.; Nishiuchi, Y.; Teshima, T.; Yamada, K. Syntheses of 2-NBDG analogues for monitoring stereoselective uptake of D-glucose. Bioorg. Med. Chem. Lett., 2011, 21(13), 4088-4096.
[http://dx.doi.org/10.1016/j.bmcl.2011.04.148] [PMID: 21636274]
[http://dx.doi.org/10.1016/j.bmcl.2011.04.148] [PMID: 21636274]
[65]
Xu, H.; Liu, X.; Yang, J.; Liu, R.; Li, T.; Shi, Y.; Zhao, H.; Gao, Q. Cyanine-based 1-amino-1-deoxyglucose as fluorescent probes for glucose transporter mediated bioimaging. Biochem. Biophys. Res. Commun., 2016, 474(2), 240-246.
[http://dx.doi.org/10.1016/j.bbrc.2016.03.133] [PMID: 27033602]
[http://dx.doi.org/10.1016/j.bbrc.2016.03.133] [PMID: 27033602]
[66]
Su, L.; Wu, R.; Chen, X.; Hou, W.; Ruan, B.H. FITC-labeled d-glucose analog is suitable as a probe for detecting insulin-dependent glucose uptake. Bioorg. Med. Chem. Lett., 2018, 28(22), 3560-3563.
[http://dx.doi.org/10.1016/j.bmcl.2018.09.027] [PMID: 30293953]
[http://dx.doi.org/10.1016/j.bmcl.2018.09.027] [PMID: 30293953]
[67]
Smith, H.Q.; Smith, T.J. Identification of a novel activator of mammalian glutamate dehydrogenase. Biochemistry, 2016, 55(47), 6568-6576.
[http://dx.doi.org/10.1021/acs.biochem.6b00979] [PMID: 27808506]
[http://dx.doi.org/10.1021/acs.biochem.6b00979] [PMID: 27808506]
[68]
Plaitakis, A.; Kalef-Ezra, E.; Kotzamani, D.; Zaganas, I.; Spanaki, C. The glutamate dehydrogenase pathway and its roles in cell and tissue biology in health and disease. Biology (Basel), 2017, 6(1), 11.
[http://dx.doi.org/10.3390/biology6010011] [PMID: 28208702]
[http://dx.doi.org/10.3390/biology6010011] [PMID: 28208702]
[69]
Ponti, V.; Dianzani, M.U.; Cheeseman, K.; Slater, T.F. Studies on the reduction of nitroblue tetrazolium chloride mediated through the action of NADH and phenazine methosulphate. Chem. Biol. Interact., 1978, 23(3), 281-291.
[http://dx.doi.org/10.1016/0009-2797(78)90090-X] [PMID: 214250]
[http://dx.doi.org/10.1016/0009-2797(78)90090-X] [PMID: 214250]
[70]
Vodenicarovova, M.; Skalska, H.; Holecek, M. Deproteinization is necessary for the accurate determination of ammonia levels by glutamate dehydrogenase assay in blood plasma from subjects with liver injury. Lab. Med., 2017, 48(4), 339-345.
[http://dx.doi.org/10.1093/labmed/lmx053] [PMID: 29126300]
[http://dx.doi.org/10.1093/labmed/lmx053] [PMID: 29126300]
[71]
Zaganas, I.; Spanaki, C.; Karpusas, M.; Plaitakis, A. Substitution of Ser for Arg-443 in the regulatory domain of human housekeeping (GLUD1) glutamate dehydrogenase virtually abolishes basal activity and markedly alters the activation of the enzyme by ADP and L-leucine. J. Biol. Chem., 2002, 277(48), 46552-46558.
[http://dx.doi.org/10.1074/jbc.M208596200] [PMID: 12324473]
[http://dx.doi.org/10.1074/jbc.M208596200] [PMID: 12324473]
[72]
Zhang, W.; Zhu, M.; Wang, F.; Cao, D.; Ruan, J.J.; Su, W.; Ruan, B.H. Mono-sulfonated tetrazolium salt based NAD(P)H detection reagents suitable for dehydrogenase and real-time cell viability assays. Anal. Biochem., 2016, 509, 33-40.
[http://dx.doi.org/10.1016/j.ab.2016.06.026] [PMID: 27387057]
[http://dx.doi.org/10.1016/j.ab.2016.06.026] [PMID: 27387057]
[73]
Li, M.; Li, C.; Allen, A.; Stanley, C.A.; Smith, T.J. The structure and allosteric regulation of glutamate dehydrogenase. Neurochem. Int., 2011, 59(4), 445-455.
[http://dx.doi.org/10.1016/j.neuint.2010.10.017] [PMID: 21070828]
[http://dx.doi.org/10.1016/j.neuint.2010.10.017] [PMID: 21070828]
[74]
Zhu, M.; Fang, J.; Zhang, J.; Zhang, Z.; Xie, J.; Yu, Y.; Ruan, J.J.; Chen, Z.; Hou, W.; Yang, G.; Su, W.; Ruan, B.H. Biomolecular interaction assays identified dual inhibitors of glutaminase and glutamate dehydrogenase that disrupt mitochondrial function and prevent growth of cancer cells. Anal. Chem., 2017, 89(3), 1689-1696.
[http://dx.doi.org/10.1021/acs.analchem.6b03849] [PMID: 28208301]
[http://dx.doi.org/10.1021/acs.analchem.6b03849] [PMID: 28208301]
[75]
Yu, Y.; Jin, Y.; Zhou, J.; Ruan, H.; Zhao, H.; Lu, S.; Zhang, Y.; Li, D.; Ji, X.; Ruan, B.H. Ebselen: mechanisms of glutamate dehydrogenase and glutaminase enzyme inhibition. ACS Chem. Biol., 2017, 12(12), 3003-3011.
[http://dx.doi.org/10.1021/acschembio.7b00728] [PMID: 29072450]
[http://dx.doi.org/10.1021/acschembio.7b00728] [PMID: 29072450]
[76]
Jin, Y.; Li, D.; Lu, S.; Zhao, H.; Chen, Z.; Hou, W.; Ruan, B.H. Ebselen reversibly inhibits human glutamate dehydrogenase at the catalytic site. Assay Drug Dev. Technol., 2018, 16(2), 115-122.
[http://dx.doi.org/10.1089/adt.2017.822] [PMID: 29470101]
[http://dx.doi.org/10.1089/adt.2017.822] [PMID: 29470101]
[77]
Hou, W.; Lu, S.; Zhao, H.; Yu, Y.; Xu, H.; Yu, B.; Su, L.; Lin, C.; Ruan, B.H. Propylselen inhibits cancer cell growth by targeting glutamate dehydrogenase at the NADP+ binding site. Biochem. Biophys. Res. Commun., 2019, 509(1), 262-267.
[http://dx.doi.org/10.1016/j.bbrc.2018.12.117] [PMID: 30583861]
[http://dx.doi.org/10.1016/j.bbrc.2018.12.117] [PMID: 30583861]
[78]
Ferruz, N.; De Fabritiis, G. Binding kinetics in drug discovery. Mol. Inform., 2016, 35(6-7), 216-226.
[http://dx.doi.org/10.1002/minf.201501018] [PMID: 27492236]
[http://dx.doi.org/10.1002/minf.201501018] [PMID: 27492236]
[79]
Li, M.; Allen, A.; Smith, T.J. High throughput screening reveals several new classes of glutamate dehydrogenase inhibitors. Biochemistry, 2007, 46(51), 15089-15102.
[http://dx.doi.org/10.1021/bi7018783] [PMID: 18044977]
[http://dx.doi.org/10.1021/bi7018783] [PMID: 18044977]
[80]
Baranauskiene, L.; Kuo, T.C.; Chen, W.Y.; Matulis, D. Isothermal titration calorimetry for characterization of recombinant proteins. Curr. Opin. Biotechnol., 2019, 55, 9-15.
[http://dx.doi.org/10.1016/j.copbio.2018.06.003] [PMID: 30031160]
[http://dx.doi.org/10.1016/j.copbio.2018.06.003] [PMID: 30031160]
[81]
Jin, L.; Li, D.; Alesi, G.N.; Fan, J.; Kang, H.B.; Lu, Z.; Boggon, T.J.; Jin, P.; Yi, H.; Wright, E.R.; Duong, D.; Seyfried, N.T.; Egnatchik, R.; DeBerardinis, R.J.; Magliocca, K.R.; He, C.; Arellano, M.L.; Khoury, H.J.; Shin, D.M.; Khuri, F.R.; Kang, S. Glutamate dehydrogenase 1 signals through antioxidant glutathione peroxidase 1 to regulate redox homeostasis and tumor growth. Cancer Cell, 2015, 27(2), 257-270.
[http://dx.doi.org/10.1016/j.ccell.2014.12.006] [PMID: 25670081]
[http://dx.doi.org/10.1016/j.ccell.2014.12.006] [PMID: 25670081]
[82]
Burke, T.J.; Loniello, K.R.; Beebe, J.A.; Ervin, K.M. Development and application of fluorescence polarization assays in drug discovery. Comb. Chem. High Throughput Screen., 2003, 6(3), 183-194.
[http://dx.doi.org/10.2174/138620703106298365] [PMID: 12678697]
[http://dx.doi.org/10.2174/138620703106298365] [PMID: 12678697]
[83]
Wartchow, C.A.; Podlaski, F.; Li, S.; Rowan, K.; Zhang, X.; Mark, D.; Huang, K.S. Biosensor-based small molecule fragment screening with biolayer interferometry. J. Comput. Aided Mol. Des., 2011, 25(7), 669-676.
[http://dx.doi.org/10.1007/s10822-011-9439-8] [PMID: 21660516]
[http://dx.doi.org/10.1007/s10822-011-9439-8] [PMID: 21660516]
[84]
Kaminski, T.; Gunnarsson, A.; Geschwindner, S. Harnessing the versatility of optical biosensors for target-based small-molecule drug discovery. ACS Sens., 2017, 2(1), 10-15.
[http://dx.doi.org/10.1021/acssensors.6b00735] [PMID: 28722441]
[http://dx.doi.org/10.1021/acssensors.6b00735] [PMID: 28722441]
[85]
Gunnarsson, K. Affinity-based biosensors for biomolecular interaction analysis. Curr. Protoc. Immunol., 2001, Chapter 18(1), 6.
[PMID: 18432748]
[PMID: 18432748]
[86]
Stalnecker, C.A.; Erickson, J.W.; Cerione, R.A. Conformational changes in the activation loop of mitochondrial glutaminase C: A direct fluorescence readout that distinguishes the binding of allosteric inhibitors from activators. J. Biol. Chem., 2017, 292(15), 6095-6107.
[http://dx.doi.org/10.1074/jbc.M116.758219] [PMID: 28196863]
[http://dx.doi.org/10.1074/jbc.M116.758219] [PMID: 28196863]
[87]
Cheng, L.; Wu, C.R.; Zhu, L.H.; Li, H.; Chen, L.X. Physapubescin, a natural withanolide as a kidney-type glutaminase (KGA) inhibitor. Bioorg. Med. Chem. Lett., 2017, 27(5), 1243-1246.
[http://dx.doi.org/10.1016/j.bmcl.2017.01.057] [PMID: 28174105]
[http://dx.doi.org/10.1016/j.bmcl.2017.01.057] [PMID: 28174105]
[88]
Koch, H.; Eisen, K.; Werblinski, T.; Perlitz, J.; Prihoda, F.; Lee, G.; Will, S. High-speed, inline measurement of protein activity and inactivation processes by supercontinuum attenuation spectroscopy. Analyst (Lond.), 2019, 144(23), 7041-7048.
[http://dx.doi.org/10.1039/C9AN00893D] [PMID: 31656968]
[http://dx.doi.org/10.1039/C9AN00893D] [PMID: 31656968]
[89]
Li, C.; Allen, A.; Kwagh, J.; Doliba, N.M.; Qin, W.; Najafi, H.; Collins, H.W.; Matschinsky, F.M.; Stanley, C.A.; Smith, T.J. Green tea polyphenols modulate insulin secretion by inhibiting glutamate dehydrogenase. J. Biol. Chem., 2006, 281(15), 10214-10221.
[http://dx.doi.org/10.1074/jbc.M512792200] [PMID: 16476731]
[http://dx.doi.org/10.1074/jbc.M512792200] [PMID: 16476731]
[90]
Li, C.; Li, M.; Chen, P.; Narayan, S.; Matschinsky, F.M.; Bennett, M.J.; Stanley, C.A.; Smith, T.J. Green tea polyphenols control dysregulated glutamate dehydrogenase in transgenic mice by hijacking the ADP activation site. J. Biol. Chem., 2011, 286(39), 34164-34174.
[http://dx.doi.org/10.1074/jbc.M111.268599] [PMID: 21813650]
[http://dx.doi.org/10.1074/jbc.M111.268599] [PMID: 21813650]
[91]
Li, M.; Li, C.; Allen, A.; Stanley, C.A.; Smith, T.J. Glutamate dehydrogenase: structure, allosteric regulation, and role in insulin homeostasis. Neurochem. Res., 2014, 39(3), 433-445.
[http://dx.doi.org/10.1007/s11064-013-1173-2] [PMID: 24122080]
[http://dx.doi.org/10.1007/s11064-013-1173-2] [PMID: 24122080]
[92]
Pournourmohammadi, S.; Grimaldi, M.; Stridh, M.H.; Lavallard, V.; Waagepetersen, H.S.; Wollheim, C.B.; Maechler, P. Epigallocatechin-3-gallate (EGCG) activates AMPK through the inhibition of glutamate dehydrogenase in muscle and pancreatic ß-cells: A potential beneficial effect in the pre-diabetic state? Int. J. Biochem. Cell Biol., 2017, 88, 220-225.
[http://dx.doi.org/10.1016/j.biocel.2017.01.012] [PMID: 28137482]
[http://dx.doi.org/10.1016/j.biocel.2017.01.012] [PMID: 28137482]
[93]
Peeters, T.H.; Lenting, K.; Breukels, V.; van Lith, S.A.M.; van den Heuvel, C.N.A.M.; Molenaar, R.; van Rooij, A.; Wevers, R.; Span, P.N.; Heerschap, A.; Leenders, W.P.J. Isocitrate dehydrogenase 1-mutated cancers are sensitive to the green tea polyphenol epigallocatechin-3-gallate. Cancer Metab., 2019, 7, 4.
[http://dx.doi.org/10.1186/s40170-019-0198-7] [PMID: 31139406]
[http://dx.doi.org/10.1186/s40170-019-0198-7] [PMID: 31139406]
[94]
Li, M.; Li, C.; Allen, A.; Stanley, C.A.; Smith, T.J. The structure and allosteric regulation of mammalian glutamate dehydrogenase. Arch. Biochem. Biophys., 2012, 519(2), 69-80.
[http://dx.doi.org/10.1016/j.abb.2011.10.015] [PMID: 22079166]
[http://dx.doi.org/10.1016/j.abb.2011.10.015] [PMID: 22079166]
[95]
Domith, I.; Duarte-Silva, A.T.; Garcia, C.G.; Calaza, K.D.C.; Paes-de-Carvalho, R.; Cossenza, M. Chlorogenic acids inhibit glutamate dehydrogenase and decrease intracellular ATP levels in cultures of chick embryo retina cells. Biochem. Pharmacol., 2018, 155, 393-402.
[http://dx.doi.org/10.1016/j.bcp.2018.07.023] [PMID: 30031809]
[http://dx.doi.org/10.1016/j.bcp.2018.07.023] [PMID: 30031809]
[96]
Tomita, T.; Kuzuyama, T.; Nishiyama, M. Structural basis for leucine-induced allosteric activation of glutamate dehydrogenase. J. Biol. Chem., 2011, 286(43), 37406-37413.
[http://dx.doi.org/10.1074/jbc.M111.260265] [PMID: 21900230]
[http://dx.doi.org/10.1074/jbc.M111.260265] [PMID: 21900230]
[97]
Jarzyna, R.; Lenarcik, E.; Bryła, J. Chloroquine is a potent inhibitor of glutamate dehydrogenase in liver and kidney-cortex of rabbit. Pharmacol. Res., 1997, 35(1), 79-84.
[http://dx.doi.org/10.1006/phrs.1996.0108] [PMID: 9149320]
[http://dx.doi.org/10.1006/phrs.1996.0108] [PMID: 9149320]
[98]
Jarzyna, R.; Kiersztan, A.; Lisowa, O.; Bryła, J. The inhibition of gluconeogenesis by chloroquine contributes to its hypoglycaemic action. Eur. J. Pharmacol., 2001, 428(3), 381-388.
[http://dx.doi.org/10.1016/S0014-2999(01)01221-3] [PMID: 11689198]
[http://dx.doi.org/10.1016/S0014-2999(01)01221-3] [PMID: 11689198]
[99]
Choi, M.M.; Kim, E.A.; Choi, S.Y.; Kim, T.U.; Cho, S.W.; Yang, S.J. Inhibitory properties of nerve-specific human glutamate dehydrogenase isozyme by chloroquine. J. Biochem. Mol. Biol., 2007, 40(6), 1077-1082.
[PMID: 18047806]
[PMID: 18047806]
[100]
Yielding, K.L.; Tomkins, G.M.; Munday, J.S.; Curran, J.F. The effects of steroid hormones on the glutamic dehydrogenase reaction. Biochem. Biophys. Res. Commun., 1960, 2(4), 303-306.
[http://dx.doi.org/10.1016/0006-291X(60)90189-3]
[http://dx.doi.org/10.1016/0006-291X(60)90189-3]
[101]
Pinkerton, J.V.; Conner, E.A. Beyond estrogen: advances in tissue selective estrogen complexes and selective estrogen receptor modulators. Climacteric, 2019, 22(2), 140-147.
[http://dx.doi.org/10.1080/13697137.2019.1568403] [PMID: 30895900]
[http://dx.doi.org/10.1080/13697137.2019.1568403] [PMID: 30895900]
[102]
Banerjee, S.; Schmidt, T.; Fang, J.; Stanley, C.A.; Smith, T.J. Structural studies on ADP activation of mammalian glutamate dehydrogenase and the evolution of regulation. Biochemistry, 2003, 42(12), 3446-3456.
[http://dx.doi.org/10.1021/bi0206917] [PMID: 12653548]
[http://dx.doi.org/10.1021/bi0206917] [PMID: 12653548]
[103]
Chen, Z.; Jiang, Z.; Chen, N.; Shi, Q.; Tong, L.; Kong, F.; Cheng, X.; Chen, H.; Wang, C.; Tang, B. Target discovery of ebselen with a biotinylated probe. Chem. Commun. (Camb.), 2018, 54(68), 9506-9509.
[http://dx.doi.org/10.1039/C8CC04258F] [PMID: 30091742]
[http://dx.doi.org/10.1039/C8CC04258F] [PMID: 30091742]
[104]
Rosenfeld, E.; Li, C.; Leon-Crutchlow, D.D. OR05-2 targeted inhibition of glutamate dehydrogenase by alpha-tocopherol: a potential novel treatment for hyperinsulinism hyperammonemia syndrome. J. Endocr. Soc., 2019, 3
[http://dx.doi.org/10.1210/js.2019-OR05-2]
[http://dx.doi.org/10.1210/js.2019-OR05-2]
[105]
Yang, S.J.; Hahn, H.G.; Choi, S.Y.; Cho, S.W. Inhibitory effects of KHG26377 on glutamate dehydrogenase activity in cultured islets. BMB Rep., 2010, 43(4), 245-249.
[http://dx.doi.org/10.5483/BMBRep.2010.43.4.245] [PMID: 20423608]
[http://dx.doi.org/10.5483/BMBRep.2010.43.4.245] [PMID: 20423608]
[106]
Secker, P.F.; Beneke, S.; Schlichenmaier, N.; Delp, J.; Gutbier, S.; Leist, M.; Dietrich, D.R. Canagliflozin mediated dual inhibition of mitochondrial glutamate dehydrogenase and complex I: an off-target adverse effect. Cell Death Dis., 2018, 9(2), 226.
[http://dx.doi.org/10.1038/s41419-018-0273-y] [PMID: 29445145]
[http://dx.doi.org/10.1038/s41419-018-0273-y] [PMID: 29445145]
[107]
Lin, Y.; Nan, J.; Shen, J.; Lv, X.; Chen, X.; Lu, X.; Zhang, C.; Xiang, P.; Wang, Z.; Li, Z. Canagliflozin impairs blood reperfusion of ischaemic lower limb partially by inhibiting the retention and paracrine function of bone marrow derived mesenchymal stem cells. EBioMedicine, 2020, 52, 102637.
[http://dx.doi.org/10.1016/j.ebiom.2020.102637] [PMID: 31981975]
[http://dx.doi.org/10.1016/j.ebiom.2020.102637] [PMID: 31981975]
[108]
Li, Y.; Zhao, S.; Zhang, W.; Zhao, P.; He, B.; Wu, N.; Han, P. Epigallocatechin-3-O-gallate (EGCG) attenuates FFAs-induced peripheral insulin resistance through AMPK pathway and insulin signaling pathway in vivo. Diabetes Res. Clin. Pract., 2011, 93(2), 205-214.
[http://dx.doi.org/10.1016/j.diabres.2011.03.036] [PMID: 21514684]
[http://dx.doi.org/10.1016/j.diabres.2011.03.036] [PMID: 21514684]
[109]
Borompokas, N.; Papachatzaki, M.M.; Kanavouras, K.; Mastorodemos, V.; Zaganas, I.; Spanaki, C.; Plaitakis, A. Estrogen modification of human glutamate dehydrogenases is linked to enzyme activation state. J. Biol. Chem., 2010, 285(41), 31380-31387.
[http://dx.doi.org/10.1074/jbc.M110.146084] [PMID: 20628048]
[http://dx.doi.org/10.1074/jbc.M110.146084] [PMID: 20628048]
[110]
Pons, M.; Michel, F.; Descomps, B.; Crastes de Paulet, A. Structural requirements for maximal inhibitory allosteric effect of estrogens and estrogen analogues on glutamate dehydrogenase. Eur. J. Biochem., 1978, 84(1), 257-266.
[http://dx.doi.org/10.1111/j.1432-1033.1978.tb12164.x] [PMID: 565713]
[http://dx.doi.org/10.1111/j.1432-1033.1978.tb12164.x] [PMID: 565713]
[111]
Spinelli, J.B.; Yoon, H.; Ringel, A.E.; Jeanfavre, S.; Clish, C.B.; Haigis, M.C. Metabolic recycling of ammonia via glutamate dehydrogenase supports breast cancer biomass. Science, 2017, 358(6365), 941-946.
[http://dx.doi.org/10.1126/science.aam9305] [PMID: 29025995]
[http://dx.doi.org/10.1126/science.aam9305] [PMID: 29025995]
[112]
Liu, G.; Zhu, J.; Yu, M.; Cai, C.; Zhou, Y.; Yu, M.; Fu, Z.; Gong, Y.; Yang, B.; Li, Y.; Zhou, Q.; Lin, Q.; Ye, H.; Ye, L.; Zhao, X.; Li, Z.; Chen, R.; Han, F.; Tang, C.; Zeng, B. Glutamate dehydrogenase is a novel prognostic marker and predicts metastases in colorectal cancer patients. J. Transl. Med., 2015, 13, 144.
[http://dx.doi.org/10.1186/s12967-015-0500-6] [PMID: 25947346]
[http://dx.doi.org/10.1186/s12967-015-0500-6] [PMID: 25947346]
[113]
Ju, H.Q.; Lin, J.F.; Tian, T.; Xie, D.; Xu, R.H. NADPH homeostasis in cancer: functions, mechanisms and therapeutic implications. Signal Transduct. Target. Ther., 2020, 5(1), 231.
[http://dx.doi.org/10.1038/s41392-020-00326-0] [PMID: 33028807]
[http://dx.doi.org/10.1038/s41392-020-00326-0] [PMID: 33028807]
[114]
Mulder, H. Transcribing β-cell mitochondria in health and disease. Mol. Metab., 2017, 6(9), 1040-1051.
[http://dx.doi.org/10.1016/j.molmet.2017.05.014] [PMID: 28951827]
[http://dx.doi.org/10.1016/j.molmet.2017.05.014] [PMID: 28951827]
[115]
Han, S.J.; Choi, S.E.; Yi, S.A.; Lee, S.J.; Kim, H.J.; Kim, D.J.; Lee, H.C.; Lee, K.W.; Kang, Y. β-Cell-protective effect of 2-aminobicyclo-(2,2,1)-heptane-2-carboxylic acid as a glutamate dehydrogenase activator in db/db mice. J. Endocrinol., 2012, 212(3), 307-315.
[http://dx.doi.org/10.1530/JOE-11-0340] [PMID: 22131441]
[http://dx.doi.org/10.1530/JOE-11-0340] [PMID: 22131441]