Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

The Role of Kallikrein 7 in Tumorigenesis

Author(s): Fengyi Xiang, Yueqing Wang, Chunyu Cao, Qingyun Li, Hao Deng, Jun Zheng, Xiaowen Liu* and Xiao Tan*

Volume 29, Issue 15, 2022

Published on: 07 January, 2022

Page: [2617 - 2631] Pages: 15

DOI: 10.2174/0929867328666210915104537

Price: $65

Abstract

Kallikrein 7 (KLK7) is a secreted serine protease with chymotrypsic protease activity. Abnormally high expression of KLK7 is closely related to the occurrence and development of various types of cancer. Therefore, KLK7 has been identified as a potential target for cancer drug development design in recent years. KLK7 mediates various biological and pathological processes in tumorigenesis, including cell proliferation, migration, invasion, angiogenesis, and cell metabolism, by hydrolyzing a series of substrates such as membrane proteins, extracellular matrix proteins, and cytokines. This review mainly introduces the downstream cell signaling pathways involved in the activation of KLK7 and its substrate-related proteins. This review will not only help us to better understand the mechanisms of KLK7 in regulating biological and pathological processes of cancer cells but also lay a solid foundation for the design of inhibitors targeting KLK7.

Keywords: Kallikrein 7, therapeutic target, tumour development, cell signal pathway, Inhibitors, cancer treatment.

[1]
Egelrud, T. Purification and preliminary characterization of stratum corneum chymotryptic enzyme: a proteinase that may be involved in desquamation. J. Invest. Dermatol., 1993, 101(2), 200-204.
[http://dx.doi.org/10.1111/1523-1747.ep12363804] [PMID: 8393902]
[2]
Clements, J.; Hooper, J.; Dong, Y.; Harvey, T. The expanded human kallikrein (KLK) gene family: genomic organisation, tissue-specific expression and potential functions. Biol. Chem., 2001, 382(1), 5-14.
[http://dx.doi.org/10.1515/BC.2001.002] [PMID: 11258672]
[3]
Avgeris, M.; Mavridis, K.; Scorilas, A. Kallikrein-related peptidase genes as promising biomarkers for prognosis and monitoring of human malignancies. Biol. Chem., 2010, 391(5), 505-511.
[http://dx.doi.org/10.1515/bc.2010.056] [PMID: 20302518]
[4]
Filippou, P.S.; Karagiannis, G.S.; Musrap, N.; Diamandis, E.P. Kallikrein-related peptidases (KLKs) and the hallmarks of cancer. Crit. Rev. Clin. Lab. Sci., 2016, 53(4), 277-291.
[http://dx.doi.org/10.3109/10408363.2016.1154643] [PMID: 26886390]
[5]
Kishibe, M. Physiological and pathological roles of kallikrein-related peptidases in the epidermis. J. Dermatol. Sci., 2019, 95(2), 50-55.
[http://dx.doi.org/10.1016/j.jdermsci.2019.06.007] [PMID: 31279501]
[6]
Shaw, J.L.; Diamandis, E.P. Distribution of 15 human kallikreins in tissues and biological fluids. Clin. Chem., 2007, 53(8), 1423-1432.
[http://dx.doi.org/10.1373/clinchem.2007.088104] [PMID: 17573418]
[7]
Brattsand, M.; Stefansson, K.; Lundh, C.; Haasum, Y.; Egelrud, T. A proteolytic cascade of kallikreins in the stratum corneum. J. Invest. Dermatol., 2005, 124(1), 198-203.
[http://dx.doi.org/10.1111/j.0022-202X.2004.23547.x] [PMID: 15654974]
[8]
Borgoño, C.A.; Michael, I.P.; Komatsu, N.; Jayakumar, A.; Kapadia, R.; Clayman, G.L.; Sotiropoulou, G.; Diamandis, E.P. A potential role for multiple tissue kallikrein serine proteases in epidermal desquamation. J. Biol. Chem., 2007, 282(6), 3640-3652.
[http://dx.doi.org/10.1074/jbc.M607567200] [PMID: 17158887]
[9]
Miyai, M.; Matsumoto, Y.; Yamanishi, H.; Yamamoto-Tanaka, M.; Tsuboi, R.; Hibino, T. Keratinocyte-specific mesotrypsin contributes to the desquamation process via kallikrein activation and LEKTI degradation. J. Invest. Dermatol., 2014, 134(6), 1665-1674.
[http://dx.doi.org/10.1038/jid.2014.3] [PMID: 24390132]
[10]
Talieri, M.; Mathioudaki, K.; Prezas, P.; Alexopoulou, D.K.; Diamandis, E.P.; Xynopoulos, D.; Ardavanis, A.; Arnogiannaki, N.; Scorilas, A. Clinical significance of kallikrein-related peptidase 7 (KLK7) in colorectal cancer. Thromb. Haemost., 2009, 101(4), 741-747.
[http://dx.doi.org/10.1160/TH08-07-0471] [PMID: 19350120]
[11]
Reyes, I.; Reyes, N.; Suriano, R.; Iacob, C.; Suslina, N.; Policastro, A.; Moscatello, A.; Schantz, S.; Tiwari, R.K.; Geliebter, J. Gene expression profiling identifies potential molecular markers of papillary thyroid carcinoma. Cancer Biomark., 2019, 24(1), 71-83.
[http://dx.doi.org/10.3233/CBM-181758] [PMID: 30614796]
[12]
Psyrri, A.; Kountourakis, P.; Scorilas, A.; Markakis, S.; Camp, R.; Diamandis, E.P.; Dimopoulos, M.A.; Kowalski, D. Human tissue kallikrein 7, a novel biomarker for advanced ovarian carcinoma using a novel in situ quantitative method of protein expression. Ann. Oncol., 2008, 19(7), 1271-1277.
[http://dx.doi.org/10.1093/annonc/mdn035] [PMID: 18325919]
[13]
Du, J.P.; Li, L.; Zheng, J.; Zhang, D.; Liu, W.; Zheng, W.H.; Li, X.S.; Yao, R.C.; Wang, F.; Liu, S.; Tan, X. Kallikrein-related peptidase 7 is a potential target for the treatment of pancreatic cancer. Oncotarget, 2018, 9(16), 12894-12906.
[http://dx.doi.org/10.18632/oncotarget.24132] [PMID: 29560118]
[14]
Zhang, C.Y.; Zhu, Y.; Rui, W.B.; Dai, J.; Shen, Z.J. Expression of kallikrein-related peptidase 7 is decreased in prostate cancer. Asian J. Androl., 2015, 17(1), 106-110.
[http://dx.doi.org/10.1002/asia.201402962] [PMID: 25219913]
[15]
Geng, X.; Babayeva, L.; Walch, A.; Aubele, M.; Groß, E.; Kiechle, M.; Bronger, H.; Dreyer, T.; Magdolen, V.; Dorn, J. High levels of KLK7 protein expression are related to a favorable prognosis in triple-negative breast cancer patients. Am. J. Cancer Res., 2020, 10(6), 1785-1792.
[PMID: 32642290]
[16]
Tailor, P.D.; Kodeboyina, S.K.; Bai, S.; Patel, N.; Sharma, S.; Ratnani, A.; Copland, J.A.; She, J.X.; Sharma, A. Diagnostic and prognostic biomarker potential of kallikrein family genes in different cancer types. Oncotarget, 2018, 9(25), 17876-17888.
[http://dx.doi.org/10.18632/oncotarget.24947] [PMID: 29707153]
[17]
Shan, S.J.; Scorilas, A.; Katsaros, D.; Rigault de la Longrais, I.; Massobrio, M.; Diamandis, E.P. Unfavorable prognostic value of human kallikrein 7 quantified by ELISA in ovarian cancer cytosols. Clin. Chem., 2006, 52(10), 1879-1886.
[http://dx.doi.org/10.1373/clinchem.2006.071456] [PMID: 16916986]
[18]
Zheng, Y.; Katsaros, D.; Shan, S.J.; de la Longrais, I.R.; Porpiglia, M.; Scorilas, A.; Kim, N.W.; Wolfert, R.L.; Simon, I.; Li, L.; Feng, Z.; Diamandis, E.P. A multiparametric panel for ovarian cancer diagnosis, prognosis, and response to chemotherapy. Clin. Cancer Res., 2007, 13(23), 6984-6992.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-1409] [PMID: 18056174]
[19]
Dorn, J.; Bronger, H.; Kates, R.; Slotta-Huspenina, J.; Schmalfeldt, B.; Kiechle, M.; Diamandis, E.P.; Soosaipillai, A.; Schmitt, M.; Harbeck, N. OVSCORE - a validated score to identify ovarian cancer patients not suitable for primary surgery. Oncol. Lett., 2015, 9(1), 418-424.
[http://dx.doi.org/10.3892/ol.2014.2630] [PMID: 25436002]
[20]
Zheng, S.L.; Feng, M.Y.; Yang, G.; Xiong, G.B.; Zheng, L.F.; Zhang, T.P.; Zhao, Y.P. The expression of KLK7 in pancreatic cancer and the effects on the biological behavior of pancreatic cancer cells. Zhonghua Wai Ke Za Zhi, 2018, 56(5), 391-397.
[PMID: 29779317]
[21]
Iakovlev, V.; Siegel, E.R.; Tsao, M.S.; Haun, R.S. Expression of kallikrein-related peptidase 7 predicts poor prognosis in patients with unresectable pancreatic ductal adenocarcinoma. Cancer Epidemiol. Biomarkers Prev., 2012, 21(7), 1135-1142.
[http://dx.doi.org/10.1158/1055-9965.EPI-11-1079] [PMID: 22573795]
[22]
Tian, X.; Shigemasa, K.; Hirata, E.; Gu, L.; Uebaba, Y.; Nagai, N.; O’Brien, T.J.; Ohama, K. Expression of human kallikrein 7 (hK7/SCCE) and its inhibitor antileukoprotease (ALP/SLPI) in uterine endocervical glands and in cervical adenocarcinomas. Oncol. Rep., 2004, 12(5), 1001-1006.
[http://dx.doi.org/10.3892/or.12.5.1001] [PMID: 15492784]
[23]
Li, W.; Zhao, Y.; Ren, L.; Wu, X. Serum human kallikrein 7 represents a new marker for cervical cancer. Med. Oncol., 2014, 31(10), 208.
[http://dx.doi.org/10.1007/s12032-014-0208-0] [PMID: 25182706]
[24]
Talieri, M.; Li, L.; Zheng, Y.; Alexopoulou, D.K.; Soosaipillai, A.; Scorilas, A.; Xynopoulos, D.; Diamandis, E.P. The use of kallikrein-related peptidases as adjuvant prognostic markers in colorectal cancer. Br. J. Cancer, 2009, 100(10), 1659-1665.
[http://dx.doi.org/10.1038/sj.bjc.6605033] [PMID: 19367279]
[25]
Inoue, Y.; Yokobori, T.; Yokoe, T.; Toiyama, Y.; Miki, C.; Mimori, K.; Mori, M.; Kusunoki, M. Clinical significance of human kallikrein7 gene expression in colorectal cancer. Ann. Surg. Oncol., 2010, 17(11), 3037-3042.
[http://dx.doi.org/10.1245/s10434-010-1132-y] [PMID: 20544292]
[26]
Jamaspishvili, T.; Scorilas, A.; Kral, M.; Khomeriki, I.; Kurfurstova, D.; Kolar, Z.; Bouchal, J. Immunohistochemical localization and analysis of kallikrein-related peptidase 7 and 11 expression in paired cancer and benign foci in prostate cancer patients. Neoplasma, 2011, 58(4), 298-303.
[PMID: 21520985]
[27]
Devetzi, M.; Trangas, T.; Scorilas, A.; Xynopoulos, D.; Talieri, M. Parallel overexpression and clinical significance of kallikrein-related peptidases 7 and 14 (KLK7KLK14) in colon cancer. Thromb. Haemost., 2013, 109(4), 716-725.
[http://dx.doi.org/10.1160/TH12-07-0518] [PMID: 23224034]
[28]
Termini, L.; Maciag, P.C.; Soares, F.A.; Nonogaki, S.; Pereira, S.M.; Alves, V.A.; Longatto-Filho, A.; Villa, L.L. Analysis of human kallikrein 7 expression as a potential biomarker in cervical neoplasia. Int. J. Cancer, 2010, 127(2), 485-490.
[http://dx.doi.org/10.1002/ijc.25046] [PMID: 19921697]
[29]
Kyriakopoulou, L.G.; Yousef, G.M.; Scorilas, A.; Katsaros, D.; Massobrio, M.; Fracchioli, S.; Diamandis, E.P. Prognostic value of quantitatively assessed KLK7 expression in ovarian cancer. Clin. Biochem., 2003, 36(2), 135-143.
[http://dx.doi.org/10.1016/S0009-9120(02)00446-0] [PMID: 12633763]
[30]
Talieri, M.; Diamandis, E.P.; Gourgiotis, D.; Mathioudaki, K.; Scorilas, A. Expression analysis of the human kallikrein 7 (KLK7) in breast tumors: a new potential biomarker for prognosis of breast carcinoma. Thromb. Haemost., 2004, 91(1), 180-186.
[http://dx.doi.org/10.1160/TH03-05-0261] [PMID: 14691584]
[31]
Wang, P.; Magdolen, V.; Seidl, C.; Dorn, J.; Drecoll, E.; Kotzsch, M.; Yang, F.; Schmitt, M.; Schilling, O.; Rockstroh, A.; Clements, J.A.; Loessner, D. Kallikrein-related peptidases 4, 5, 6 and 7 regulate tumour-associated factors in serous ovarian cancer. Br. J. Cancer, 2018, 119(7), 1-9.
[http://dx.doi.org/10.1038/s41416-018-0260-1] [PMID: 30287916]
[32]
Walker, F.; Nicole, P.; Jallane, A.; Soosaipillai, A.; Mosbach, V.; Oikonomopoulou, K.; Diamandis, E.P.; Magdolen, V.; Darmoul, D. Kallikrein-related peptidase 7 (KLK7) is a proliferative factor that is aberrantly expressed in human colon cancer. Biol. Chem., 2014, 395(9), 1075-1086.
[http://dx.doi.org/10.1515/hsz-2014-0142] [PMID: 25153388]
[33]
Silva, L.M.; Kryza, T.; Stoll, T.; Hoogland, C.; Dong, Y.; Stephens, C.R.; Hastie, M.L.; Magdolen, V.; Kleifeld, O.; Gorman, J.J.; Clements, J.A. Integration of two in-depth quantitative proteomics approaches determines the kallikrein-related peptidase 7 (KLK7) degradome in ovarian cancer cell secretome. Mol. Cell. Proteomics, 2019, 18(5), 818-836.
[http://dx.doi.org/10.1074/mcp.RA118.001304] [PMID: 30705123]
[34]
Short, S.M.; Derrien, A.; Narsimhan, R.P.; Lawler, J.; Ingber, D.E.; Zetter, B.R. Inhibition of endothelial cell migration by thrombospondin-1 type-1 repeats is mediated by beta1 integrins. J. Cell Biol., 2005, 168(4), 643-653.
[http://dx.doi.org/10.1083/jcb.200407060] [PMID: 15716381]
[35]
Lawler, P.R.; Lawler, J. Molecular basis for the regulation of angiogenesis by thrombospondin-1 and -2. Cold Spring Harb. Perspect. Med., 2012, 2(5)a006627
[http://dx.doi.org/10.1101/cshperspect.a006627] [PMID: 22553494]
[36]
Jiménez, B.; Volpert, O.V.; Crawford, S.E.; Febbraio, M.; Silverstein, R.L.; Bouck, N. Signals leading to apoptosis-dependent inhibition of neovascularization by thrombospondin-1. Nat. Med., 2000, 6(1), 41-48.
[http://dx.doi.org/10.1038/71517] [PMID: 10613822]
[37]
Nylander-Lundqvist, E.; Egelrud, T. Formation of active IL-1 beta from pro-IL-1 beta catalyzed by stratum corneum chymotryptic enzyme in vitro. Acta Derm. Venereol., 1997, 77(3), 203-206.
[PMID: 9188871]
[38]
Apte, R.N.; Dotan, S.; Elkabets, M.; White, M.R.; Reich, E.; Carmi, Y.; Song, X.; Dvozkin, T.; Krelin, Y.; Voronov, E. The involvement of IL-1 in tumorigenesis, tumor invasiveness, metastasis and tumor-host interactions. Cancer Metastasis Rev., 2006, 25(3), 387-408.
[http://dx.doi.org/10.1007/s10555-006-9004-4] [PMID: 17043764]
[39]
Tosato, G.; Jones, K.D. Interleukin-1 induces interleukin-6 production in peripheral blood monocytes. Blood, 1990, 75(6), 1305-1310.
[http://dx.doi.org/10.1182/blood.V75.6.1305.1305] [PMID: 2310829]
[40]
Ikejima, T.; Okusawa, S.; Ghezzi, P.; van der Meer, J.W.; Dinarello, C.A. Interleukin-1 induces tumor necrosis factor (TNF) in human peripheral blood mononuclear cells in vitro and a circulating TNF-like activity in rabbits. J. Infect. Dis., 1990, 162(1), 215-223.
[http://dx.doi.org/10.1093/infdis/162.1.215] [PMID: 2113076]
[41]
Flores, M.B.S.; Rocha, G.Z.; Damas-Souza, D.M.; Osório-Costa, F.; Dias, M.M.; Ropelle, E.R.; Camargo, J.A.; de Carvalho, R.B.; Carvalho, H.F.; Saad, M.J.A.; Carvalheira, J.B.C. RETRACTED: Obesity-induced increase in tumor necrosis factor-α leads to development of colon cancer in mice. Gastroenterology, 2012, 143(3), 741-753.e4.
[http://dx.doi.org/10.1053/j.gastro.2012.05.045] [PMID: 22677195]
[42]
De Simone, V.; Pallone, F.; Monteleone, G.; Stolfi, C. Role of TH17 cytokines in the control of colorectal cancer. OncoImmunology, 2013, 2(12)e26617
[http://dx.doi.org/10.4161/onci.26617] [PMID: 24498548]
[43]
Kim, E.K.; Choi, E.J. Compromised MAPK signaling in human diseases: an update. Arch. Toxicol., 2015, 89(6), 867-882.
[http://dx.doi.org/10.1007/s00204-015-1472-2] [PMID: 25690731]
[44]
Ozeki, N.; Hase, N.; Hiyama, T.; Yamaguchi, H.; Kawai, R.; Kondo, A.; Nakata, K.; Mogi, M. IL-1β-induced, matrix metalloproteinase-3-regulated proliferation of embryonic stem cell-derived odontoblastic cells is mediated by the Wnt5 signaling pathway. Exp. Cell Res., 2014, 328(1), 69-86.
[http://dx.doi.org/10.1016/j.yexcr.2014.05.006] [PMID: 24851717]
[45]
Ozeki, N.; Mogi, M.; Hase, N.; Hiyama, T.; Yamaguchi, H.; Kawai, R.; Kondo, A.; Nakata, K. Wnt16 Signaling is required for IL-1β-induced matrix metalloproteinase-13-regulated proliferation of human stem cell-derived osteoblastic cells. Int. J. Mol. Sci., 2016, 17(2), 221.
[http://dx.doi.org/10.3390/ijms17020221] [PMID: 26861315]
[46]
Jimi, E.; Fei, H.; Nakatomi, C. NF-κB signaling regulates physiological and pathological chondrogenesis. Int. J. Mol. Sci., 2019, 20(24), 20.
[http://dx.doi.org/10.3390/ijms20246275] [PMID: 31842396]
[47]
Sitar, T.; Popowicz, G.M.; Siwanowicz, I.; Huber, R.; Holak, T.A. Structural basis for the inhibition of insulin-like growth factors by insulin-like growth factor-binding proteins. Proc. Natl. Acad. Sci. USA, 2006, 103(35), 13028-13033.
[http://dx.doi.org/10.1073/pnas.0605652103] [PMID: 16924115]
[48]
Yang, Y.; Sheng, M.; Huang, F.; Bu, D.; Liu, X.; Yao, Y.; Dai, C.; Sun, B.; Zhu, J.; Jiao, Y.; Wei, Z.; Zhu, H.; Lu, L.; Zhao, Y.; Jiang, C.; Wang, R. Downregulation of Insulin-like growth factor binding protein 6 is associated with ACTH-secreting pituitary adenoma growth. Pituitary, 2014, 17(6), 505-513.
[http://dx.doi.org/10.1007/s11102-013-0535-8] [PMID: 24379119]
[49]
Zinn, R.L.; Gardner, E.E.; Marchionni, L.; Murphy, S.C.; Dobromilskaya, I.; Hann, C.L.; Rudin, C.M. ERK phosphorylation is predictive of resistance to IGF-1R inhibition in small cell lung cancer. Mol. Cancer Ther., 2013, 12(6), 1131-1139.
[http://dx.doi.org/10.1158/1535-7163.MCT-12-0618] [PMID: 23515613]
[50]
Bach, L.A. What Happened to the IGF binding proteins? Endocrinology, 2018, 159(2), 570-578.
[http://dx.doi.org/10.1210/en.2017-00908] [PMID: 29165552]
[51]
Bach, L.A. Current ideas on the biology of IGFBP-6: More than an IGF-II inhibitor? Growth Horm. IGF Res., 2016, 30-31, 81-86.
[http://dx.doi.org/10.1016/j.ghir.2016.09.004] [PMID: 27681092]
[52]
Yamasaki, K.; Schauber, J.; Coda, A.; Lin, H.; Dorschner, R.A.; Schechter, N.M.; Bonnart, C.; Descargues, P.; Hovnanian, A.; Gallo, R.L. Kallikrein-mediated proteolysis regulates the antimicrobial effects of cathelicidins in skin. FASEB J., 2006, 20(12), 2068-2080.
[http://dx.doi.org/10.1096/fj.06-6075com] [PMID: 17012259]
[53]
Chen, X.; Zou, X.; Qi, G.; Tang, Y.; Guo, Y.; Si, J.; Liang, L. Roles and mechanisms of human cathelicidin LL-37 in cancer. Cell. Physiol. Biochem., 2018, 47(3), 1060-1073.
[http://dx.doi.org/10.1159/000490183] [PMID: 29843147]
[54]
von Haussen, J.; Koczulla, R.; Shaykhiev, R.; Herr, C.; Pinkenburg, O.; Reimer, D.; Wiewrodt, R.; Biesterfeld, S.; Aigner, A.; Czubayko, F.; Bals, R. The host defence peptide LL-37/hCAP-18 is a growth factor for lung cancer cells. Lung Cancer, 2008, 59(1), 12-23.
[http://dx.doi.org/10.1016/j.lungcan.2007.07.014] [PMID: 17764778]
[55]
Ji, P.; Zhou, Y.; Yang, Y.; Wu, J.; Zhou, H.; Quan, W.; Sun, J.; Yao, Y.; Shang, A.; Gu, C.; Zeng, B.; Firrman, J.; Xiao, W.; Bals, R.; Sun, Z.; Li, D. Myeloid cell-derived LL-37 promotes lung cancer growth by activating Wnt/β-catenin signaling. Theranostics, 2019, 9(8), 2209-2223.
[http://dx.doi.org/10.7150/thno.30726] [PMID: 31149039]
[56]
Hensel, J.A.; Chanda, D.; Kumar, S.; Sawant, A.; Grizzle, W.E.; Siegal, G.P.; Ponnazhagan, S. LL-37 as a therapeutic target for late stage prostate cancer. Prostate, 2011, 71(6), 659-670.
[http://dx.doi.org/10.1002/pros.21282] [PMID: 20957672]
[57]
Wong, S.H.M.; Fang, C.M.; Chuah, L.H.; Leong, C.O.; Ngai, S.C. E-cadherin: Its dysregulation in carcinogenesis and clinical implications. Crit. Rev. Oncol. Hematol., 2018, 121, 11-22.
[http://dx.doi.org/10.1016/j.critrevonc.2017.11.010] [PMID: 29279096]
[58]
Johnson, S.K.; Ramani, V.C.; Hennings, L.; Haun, R.S. Kallikrein 7 enhances pancreatic cancer cell invasion by shedding E-cadherin. Cancer, 2007, 109(9), 1811-1820.
[http://dx.doi.org/10.1002/cncr.22606] [PMID: 17354228]
[59]
Mendonsa, A.M.; Na, T.Y.; Gumbiner, B.M. E-cadherin in contact inhibition and cancer. Oncogene, 2018, 37(35), 4769-4780.
[http://dx.doi.org/10.1038/s41388-018-0304-2] [PMID: 29780167]
[60]
Gayrard, C.; Bernaudin, C.; Déjardin, T.; Seiler, C.; Borghi, N. Src- and confinement-dependent FAK activation causes E-cadherin relaxation and β-catenin activity. J. Cell Biol., 2018, 217(3), 1063-1077.
[http://dx.doi.org/10.1083/jcb.201706013] [PMID: 29311227]
[61]
Hu, Q.P.; Kuang, J.Y.; Yang, Q.K.; Bian, X.W.; Yu, S.C. Beyond a tumor suppressor: Soluble E-cadherin promotes the progression of cancer. Int. J. Cancer, 2016, 138(12), 2804-2812.
[http://dx.doi.org/10.1002/ijc.29982] [PMID: 26704932]
[62]
Inge, L.J.; Barwe, S.P.; D’Ambrosio, J.; Gopal, J.; Lu, K.; Ryazantsev, S.; Rajasekaran, S.A.; Rajasekaran, A.K. Soluble E-cadherin promotes cell survival by activating epidermal growth factor receptor. Exp. Cell Res., 2011, 317(6), 838-848.
[http://dx.doi.org/10.1016/j.yexcr.2010.12.025] [PMID: 21211535]
[63]
Brouxhon, S.M.; Kyrkanides, S.; Teng, X.; Athar, M.; Ghazizadeh, S.; Simon, M.; O’Banion, M.K.; Ma, L. Soluble E-cadherin: a critical oncogene modulating receptor tyrosine kinases, MAPK and PI3K/Akt/mTOR signaling. Oncogene, 2014, 33(2), 225-235.
[http://dx.doi.org/10.1038/onc.2012.563] [PMID: 23318419]
[64]
Ungewiß, H.; Rötzer, V.; Meir, M.; Fey, C.; Diefenbacher, M.; Schlegel, N.; Waschke, J. Dsg2 via Src-mediated transactivation shapes EGFR signaling towards cell adhesion. Cell. Mol. Life Sci., 2018, 75(22), 4251-4268.
[http://dx.doi.org/10.1007/s00018-018-2869-x] [PMID: 29980799]
[65]
Wee, P.; Wang, Z. Epidermal growth factor receptor cell proliferation signaling pathways. Cancers (Basel), 2017, 9(5), 9.
[http://dx.doi.org/10.3390/cancers9050052] [PMID: 28513565]
[66]
Aoki, M.; Fujishita, T. Oncogenic Roles of the PI3K/AKT/mTOR Axis. Curr. Top. Microbiol. Immunol., 2017, 407, 153-189.
[http://dx.doi.org/10.1007/82_2017_6] [PMID: 28550454]
[67]
Fang, K.C.; Raymond, W.W.; Blount, J.L.; Caughey, G.H. Dog mast cell alpha-chymase activates progelatinase B by cleaving the Phe88-Gln89 and Phe91-Glu92 bonds of the catalytic domain. J. Biol. Chem., 1997, 272(41), 25628-25635.
[http://dx.doi.org/10.1074/jbc.272.41.25628] [PMID: 9325284]
[68]
Ramani, V.C.; Kaushal, G.P.; Haun, R.S. Proteolytic action of kallikrein-related peptidase 7 produces unique active matrix metalloproteinase-9 lacking the C-terminal hemopexin domains. Biochim. Biophys. Acta, 2011, 1813(8), 1525-1531.
[http://dx.doi.org/10.1016/j.bbamcr.2011.05.007] [PMID: 21616098]
[69]
Symowicz, J.; Adley, B.P.; Gleason, K.J.; Johnson, J.J.; Ghosh, S.; Fishman, D.A.; Hudson, L.G.; Stack, M.S. Engagement of collagen-binding integrins promotes matrix metalloproteinase-9-dependent E-cadherin ectodomain shedding in ovarian carcinoma cells. Cancer Res., 2007, 67(5), 2030-2039.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-2808] [PMID: 17332331]
[70]
Mariya, T.; Hirohashi, Y.; Torigoe, T.; Tabuchi, Y.; Asano, T.; Saijo, H.; Kuroda, T.; Yasuda, K.; Mizuuchi, M.; Saito, T.; Sato, N. Matrix metalloproteinase-10 regulates stemness of ovarian cancer stem-like cells by activation of canonical Wnt signaling and can be a target of chemotherapy-resistant ovarian cancer. Oncotarget, 2016, 7(18), 26806-26822.
[http://dx.doi.org/10.18632/oncotarget.8645] [PMID: 27072580]
[71]
Guo, D.; Zhang, D.; Ren, M.; Lu, G.; Zhang, X.; He, S.; Li, Y. THBS4 promotes HCC progression by regulating ITGB1 via FAK/PI3K/AKT pathway. FASEB J., 2020, 34(8), 10668-10681.
[http://dx.doi.org/10.1096/fj.202000043R] [PMID: 32567740]
[72]
David, J.M.; Rajasekaran, A.K. Dishonorable discharge: the oncogenic roles of cleaved E-cadherin fragments. Cancer Res., 2012, 72(12), 2917-2923.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-3498] [PMID: 22659456]
[73]
Grabowska, M.M.; Day, M.L. Soluble E-cadherin: more than a symptom of disease. Front. Biosci., 2012, 17, 1948-1964.
[http://dx.doi.org/10.2741/4031] [PMID: 22201848]
[74]
Huang, H. Matrix metalloproteinase-9 (MMP-9) as a cancer biomarker and MMP-9 biosensors: recent advances. Sensors (Basel), 2018, 18(10), 18.
[http://dx.doi.org/10.3390/s18103249] [PMID: 30262739]
[75]
Schultz, S.; Saalbach, A.; Heiker, J.T.; Meier, R.; Zellmann, T.; Simon, J.C.; Beck-Sickinger, A.G. Proteolytic activation of prochemerin by kallikrein 7 breaks an ionic linkage and results in C-terminal rearrangement. Biochem. J., 2013, 452(2), 271-280.
[http://dx.doi.org/10.1042/BJ20121880] [PMID: 23495698]
[76]
Farsam, V.; Basu, A.; Gatzka, M.; Treiber, N.; Schneider, L.A.; Mulaw, M.A.; Lucas, T.; Kochanek, S.; Dummer, R.; Levesque, M.P.; Wlaschek, M.; Scharffetter-Kochanek, K. Senescent fibroblast-derived chemerin promotes squamous cell carcinoma migration. Oncotarget, 2016, 7(50), 83554-83569.
[http://dx.doi.org/10.18632/oncotarget.13446] [PMID: 27907906]
[77]
Kumar, J.D.; Kandola, S.; Tiszlavicz, L.; Reisz, Z.; Dockray, G.J.; Varro, A. The role of chemerin and ChemR23 in stimulating the invasion of squamous oesophageal cancer cells. Br. J. Cancer, 2016, 114(10), 1152-1159.
[http://dx.doi.org/10.1038/bjc.2016.93] [PMID: 27092781]
[78]
Ramani, V.C.; Hennings, L.; Haun, R.S. Desmoglein 2 is a substrate of kallikrein 7 in pancreatic cancer. BMC Cancer, 2008, 8, 373.
[http://dx.doi.org/10.1186/1471-2407-8-373] [PMID: 19091121]
[79]
Folkman, J. Role of angiogenesis in tumor growth and metastasis. Semin. Oncol., 2002, 29(6)(Suppl. 16), 15-18.
[http://dx.doi.org/10.1016/S0093-7754(02)70065-1] [PMID: 12516034]
[80]
Carmeliet, P.; Ferreira, V.; Breier, G.; Pollefeyt, S.; Kieckens, L.; Gertsenstein, M.; Fahrig, M.; Vandenhoeck, A.; Harpal, K.; Eberhardt, C.; Declercq, C.; Pawling, J.; Moons, L.; Collen, D.; Risau, W.; Nagy, A. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature, 1996, 380(6573), 435-439.
[http://dx.doi.org/10.1038/380435a0] [PMID: 8602241]
[81]
Hoeben, A.; Landuyt, B.; Highley, M.S.; Wildiers, H.; Van Oosterom, A.T.; De Bruijn, E.A. Vascular endothelial growth factor and angiogenesis. Pharmacol. Rev., 2004, 56(4), 549-580.
[http://dx.doi.org/10.1124/pr.56.4.3] [PMID: 15602010]
[82]
Gupta, K.; Gupta, P.; Wild, R.; Ramakrishnan, S.; Hebbel, R.P. Binding and displacement of vascular endothelial growth factor (VEGF) by thrombospondin: effect on human microvascular endothelial cell proliferation and angiogenesis. Angiogenesis, 1999, 3(2), 147-158.
[http://dx.doi.org/10.1023/A:1009018702832] [PMID: 14517432]
[83]
Dawson, D.W.; Pearce, S.F.; Zhong, R.; Silverstein, R.L.; Frazier, W.A.; Bouck, N.P. CD36 mediates the in vitro inhibitory effects of thrombospondin-1 on endothelial cells. J. Cell Biol., 1997, 138(3), 707-717.
[http://dx.doi.org/10.1083/jcb.138.3.707] [PMID: 9245797]
[84]
Wu, Q.; Finley, S.D. Mathematical model predicts effective strategies to inhibit VEGF-eNOS signaling. J. Clin. Med., 2020, 9(5), 9.
[http://dx.doi.org/10.3390/jcm9051255] [PMID: 32357492]
[85]
Tang, M.K.S.; Yue, P.Y.K.; Ip, P.P.; Huang, R.L.; Lai, H.C.; Cheung, A.N.Y.; Tse, K.Y.; Ngan, H.Y.S.; Wong, A.S.T. Soluble E-cadherin promotes tumor angiogenesis and localizes to exosome surface. Nat. Commun., 2018, 9(1), 2270.
[http://dx.doi.org/10.1038/s41467-018-04695-7] [PMID: 29891938]
[86]
Carrer, A.; Trefely, S.; Zhao, S.; Campbell, S.L.; Norgard, R.J.; Schultz, K.C.; Sidoli, S.; Parris, J.L.D.; Affronti, H.C.; Sivanand, S.; Egolf, S.; Sela, Y.; Trizzino, M.; Gardini, A.; Garcia, B.A.; Snyder, N.W.; Stanger, B.Z.; Wellen, K.E. Acetyl-CoA metabolism supports multistep pancreatic tumorigenesis. Cancer Discov., 2019, 9(3), 416-435.
[http://dx.doi.org/10.1158/2159-8290.CD-18-0567] [PMID: 30626590]
[87]
Liu, G.Y.; Sabatini, D.M. mTOR at the nexus of nutrition, growth, ageing and disease. Nat. Rev. Mol. Cell Biol., 2020, 21(4), 183-203.
[http://dx.doi.org/10.1038/s41580-019-0199-y] [PMID: 31937935]
[88]
Oda, K.; Matsuoka, Y.; Funahashi, A.; Kitano, H. A comprehensive pathway map of epidermal growth factor receptor signaling. Mol. Syst. Biol., 2005, 1, 10.
[http://dx.doi.org/10.1038/msb4100014] [PMID: 16729045]
[89]
Herzig, S.; Shaw, R.J. AMPK: guardian of metabolism and mitochondrial homeostasis. Nat. Rev. Mol. Cell Biol., 2018, 19(2), 121-135.
[http://dx.doi.org/10.1038/nrm.2017.95] [PMID: 28974774]
[90]
Kim, J.W.; Gao, P.; Liu, Y.C.; Semenza, G.L.; Dang, C.V. Hypoxia-inducible factor 1 and dysregulated c-Myc cooperatively induce vascular endothelial growth factor and metabolic switches hexokinase 2 and pyruvate dehydrogenase kinase 1. Mol. Cell. Biol., 2007, 27(21), 7381-7393.
[http://dx.doi.org/10.1128/MCB.00440-07] [PMID: 17785433]
[91]
Le, A.; Cooper, C.R.; Gouw, A.M.; Dinavahi, R.; Maitra, A.; Deck, L.M.; Royer, R.E.; Vander Jagt, D.L.; Semenza, G.L.; Dang, C.V. Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proc. Natl. Acad. Sci. USA, 2010, 107(5), 2037-2042.
[http://dx.doi.org/10.1073/pnas.0914433107] [PMID: 20133848]
[92]
Dang, C.V.; Kim, J.W.; Gao, P.; Yustein, J. The interplay between MYC and HIF in cancer. Nat. Rev. Cancer, 2008, 8(1), 51-56.
[http://dx.doi.org/10.1038/nrc2274] [PMID: 18046334]
[93]
Yang, W.; Zheng, Y.; Xia, Y.; Ji, H.; Chen, X.; Guo, F.; Lyssiotis, C.A.; Aldape, K.; Cantley, L.C.; Lu, Z. ERK1/2-dependent phosphorylation and nuclear translocation of PKM2 promotes the Warburg effect. Nat. Cell Biol., 2012, 14(12), 1295-1304.
[http://dx.doi.org/10.1038/ncb2629] [PMID: 23178880]
[94]
Rouger, L.; Denis, G.R.; Luangsay, S.; Parmentier, M. ChemR23 knockout mice display mild obesity but no deficit in adipocyte differentiation. J. Endocrinol., 2013, 219(3), 279-289.
[http://dx.doi.org/10.1530/JOE-13-0106] [PMID: 24084834]
[95]
Goettig, P.; Magdolen, V.; Brandstetter, H. Natural and synthetic inhibitors of kallikrein-related peptidases (KLKs). Biochimie, 2010, 92(11), 1546-1567.
[http://dx.doi.org/10.1016/j.biochi.2010.06.022] [PMID: 20615447]
[96]
Potempa, J.; Korzus, E.; Travis, J. The serpin superfamily of proteinase inhibitors: structure, function, and regulation. J. Biol. Chem., 1994, 269(23), 15957-15960.
[http://dx.doi.org/10.1016/S0021-9258(17)33954-6] [PMID: 8206889]
[97]
Luo, L.Y.; Jiang, W. Inhibition profiles of human tissue kallikreins by serine protease inhibitors. Biol. Chem., 2006, 387(6), 813-816.
[http://dx.doi.org/10.1515/BC.2006.103] [PMID: 16800745]
[98]
Mägert, H.J.; Ständker, L.; Kreutzmann, P.; Zucht, H.D.; Reinecke, M.; Sommerhoff, C.P.; Fritz, H.; Forssmann, W.G. LEKTI, a novel 15-domain type of human serine proteinase inhibitor. J. Biol. Chem., 1999, 274(31), 21499-21502.
[http://dx.doi.org/10.1074/jbc.274.31.21499] [PMID: 10419450]
[99]
Deraison, C.; Bonnart, C.; Lopez, F.; Besson, C.; Robinson, R.; Jayakumar, A.; Wagberg, F.; Brattsand, M.; Hachem, J.P.; Leonardsson, G.; Hovnanian, A. LEKTI fragments specifically inhibit KLK5, KLK7, and KLK14 and control desquamation through a pH-dependent interaction. Mol. Biol. Cell, 2007, 18(9), 3607-3619.
[http://dx.doi.org/10.1091/mbc.e07-02-0124] [PMID: 17596512]
[100]
Egelrud, T.; Brattsand, M.; Kreutzmann, P.; Walden, M.; Vitzithum, K.; Marx, U.C.; Forssmann, W.G.; Mägert, H.J. hK5 and hK7, two serine proteinases abundant in human skin, are inhibited by LEKTI domain 6. Br. J. Dermatol., 2005, 153(6), 1200-1203.
[http://dx.doi.org/10.1111/j.1365-2133.2005.06834.x] [PMID: 16307658]
[101]
Luckett, S.; Garcia, R.S.; Barker, J.J.; Konarev, A.V.; Shewry, P.R.; Clarke, A.R.; Brady, R.L. High-resolution structure of a potent, cyclic proteinase inhibitor from sunflower seeds. J. Mol. Biol., 1999, 290(2), 525-533.
[http://dx.doi.org/10.1006/jmbi.1999.2891] [PMID: 10390350]
[102]
Chen, W.; Kinsler, V.A.; Macmillan, D.; Di, W.L. Tissue kallikrein inhibitors based on the sunflower trypsin inhibitor scaffold - a potential therapeutic intervention for skin diseases. PLoS One, 2016, 11(11)e0166268
[http://dx.doi.org/10.1371/journal.pone.0166268] [PMID: 27824929]
[103]
Jendrny, C.; Beck-Sickinger, A.G. Inhibition of kallikrein-related peptidases 7 and 5 by grafting serpin reactive-center loop sequences onto sunflower trypsin inhibitor-1 (SFTI-1). ChemBioChem, 2016, 17(8), 719-726.
[http://dx.doi.org/10.1002/cbic.201500539] [PMID: 26574674]
[104]
de Veer, S.J.; Ukolova, S.S.; Munro, C.A.; Swedberg, J.E.; Buckle, A.M.; Harris, J.M. Mechanism-based selection of a potent kallikrein-related peptidase 7 inhibitor from a versatile library based on the sunflower trypsin inhibitor SFTI-1. Biopolymers, 2013, 100(5), 510-518.
[http://dx.doi.org/10.1002/bip.22231] [PMID: 24078181]
[105]
Debela, M.; Hess, P.; Magdolen, V.; Schechter, N.M.; Steiner, T.; Huber, R.; Bode, W.; Goettig, P. Chymotryptic specificity determinants in the 1.0 A structure of the zinc-inhibited human tissue kallikrein 7. Proc. Natl. Acad. Sci. USA, 2007, 104(41), 16086-16091.
[http://dx.doi.org/10.1073/pnas.0707811104] [PMID: 17909180]
[106]
Pochet, L.; Doucet, C.; Dive, G.; Wouters, J.; Masereel, B.; Reboud-Ravaux, M.; Pirotte, B. Coumarinic derivatives as mechanism-based inhibitors of alpha-chymotrypsin and human leukocyte elastase. Bioorg. Med. Chem., 2000, 8(6), 1489-1501.
[http://dx.doi.org/10.1016/S0968-0896(00)00071-7] [PMID: 10896125]
[107]
Tan, X.; Soualmia, F.; Furio, L.; Renard, J.F.; Kempen, I.; Qin, L.; Pagano, M.; Pirotte, B.; El Amri, C.; Hovnanian, A.; Reboud-Ravaux, M. Toward the first class of suicide inhibitors of kallikreins involved in skin diseases. J. Med. Chem., 2015, 58(2), 598-612.
[http://dx.doi.org/10.1021/jm500988d] [PMID: 25489658]
[108]
Sztanke, K.; Tuzimski, T.; Rzymowska, J.; Pasternak, K.; Kandefer-Szerszeń, M. Synthesis, determination of the lipophilicity, anticancer and antimicrobial properties of some fused 1,2,4-triazole derivatives. Eur. J. Med. Chem., 2008, 43(2), 404-419.
[http://dx.doi.org/10.1016/j.ejmech.2007.03.033] [PMID: 17531354]
[109]
Tan, X.; Furio, L.; Reboud-Ravaux, M.; Villoutreix, B.O.; Hovnanian, A.; El Amri, C. 1,2,4-Triazole derivatives as transient inactivators of kallikreins involved in skin diseases. Bioorg. Med. Chem. Lett., 2013, 23(16), 4547-4551.
[http://dx.doi.org/10.1016/j.bmcl.2013.06.039] [PMID: 23849879]
[110]
Freitas, R.F.; Teixeira, T.S.; Barros, T.G.; Santos, J.A.; Kondo, M.Y.; Juliano, M.A.; Juliano, L.; Blaber, M.; Antunes, O.A.; Abrahão, O., Jr; Pinheiro, S.; Muri, E.M.; Puzer, L. Isomannide derivatives as new class of inhibitors for human kallikrein 7. Bioorg. Med. Chem. Lett., 2012, 22(19), 6072-6075.
[http://dx.doi.org/10.1016/j.bmcl.2012.08.047] [PMID: 22959247]
[111]
Oliveira, J.P.; Freitas, R.F.; Melo, L.S.; Barros, T.G.; Santos, J.A.; Juliano, M.A.; Pinheiro, S.; Blaber, M.; Juliano, L.; Muri, E.M.; Puzer, L. Isomannide-based peptidomimetics as inhibitors for human tissue kallikreins 5 and 7. ACS Med. Chem. Lett., 2013, 5(2), 128-132.
[http://dx.doi.org/10.1021/ml4003698] [PMID: 24900785]
[112]
Arama, D.P.; Soualmia, F.; Lisowski, V.; Longevial, J.F.; Bosc, E.; Maillard, L.T.; Martinez, J.; Masurier, N.; El Amri, C. Pyrido-imidazodiazepinones as a new class of reversible inhibitors of human kallikrein 7. Eur. J. Med. Chem., 2015, 93, 202-213.
[http://dx.doi.org/10.1016/j.ejmech.2015.02.008] [PMID: 25682203]
[113]
Hanke, S.; Tindall, C.A.; Pippel, J.; Ulbricht, D.; Pirotte, B.; Reboud-Ravaux, M.; Heiker, J.T.; Sträter, N. Structural studies on the inhibitory binding mode of aromatic coumarinic esters to human kallikrein-related peptidase 7. J. Med. Chem., 2020, 63(11), 5723-5733.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01806] [PMID: 32374603]
[114]
Teixeira, T.S.; Freitas, R.F.; Abrahão, O., Jr; Devienne, K.F.; de Souza, L.R.; Blaber, S.I.; Blaber, M.; Kondo, M.Y.; Juliano, M.A.; Juliano, L.; Puzer, L. Biological evaluation and docking studies of natural isocoumarins as inhibitors for human kallikrein 5 and 7. Bioorg. Med. Chem. Lett., 2011, 21(20), 6112-6115.
[http://dx.doi.org/10.1016/j.bmcl.2011.08.044] [PMID: 21903387]
[115]
Murafuji, H.; Sakai, H.; Goto, M.; Imajo, S.; Sugawara, H.; Muto, T. Discovery and structure-activity relationship study of 1,3,6-trisubstituted 1,4-diazepane-7-ones as novel human kallikrein 7 inhibitors. Bioorg. Med. Chem. Lett., 2017, 27(23), 5272-5276.
[http://dx.doi.org/10.1016/j.bmcl.2017.10.030] [PMID: 29102227]
[116]
Murafuji, H.; Sakai, H.; Goto, M.; Oyama, Y.; Imajo, S.; Sugawara, H.; Tomoo, T.; Muto, T. Structure-based drug design of 1,3,6-trisubstituted 1,4-diazepan-7-ones as selective human kallikrein 7 inhibitors. Bioorg. Med. Chem. Lett., 2018, 28(8), 1371-1375.
[http://dx.doi.org/10.1016/j.bmcl.2018.03.011] [PMID: 29550094]
[117]
Murafuji, H.; Muto, T.; Goto, M.; Imajo, S.; Sugawara, H.; Oyama, Y.; Minamitsuji, Y.; Miyazaki, S.; Murai, K.; Fujioka, H. Discovery and structure-activity relationship of imidazolinylindole derivatives as kallikrein 7 inhibitors. Bioorg. Med. Chem. Lett., 2019, 29(2), 334-338.
[http://dx.doi.org/10.1016/j.bmcl.2018.11.011] [PMID: 30522951]
[118]
Dorn, J.; Gkazepis, A.; Kotzsch, M.; Kremer, M.; Propping, C.; Mayer, K.; Mengele, K.; Diamandis, E.P.; Kiechle, M.; Magdolen, V.; Schmitt, M. Clinical value of protein expression of kallikrein-related peptidase 7 (KLK7) in ovarian cancer. Biol. Chem., 2014, 395(1), 95-107.
[http://dx.doi.org/10.1515/hsz-2013-0172] [PMID: 23999494]
[119]
Holzscheiter, L.; Biermann, J.C.; Kotzsch, M.; Prezas, P.; Farthmann, J.; Baretton, G.; Luther, T.; Tjan-Heijnen, V.C.; Talieri, M.; Schmitt, M.; Sweep, F.C.; Span, P.N.; Magdolen, V. Quantitative reverse transcription-PCR assay for detection of mRNA encoding full-length human tissue kallikrein 7: prognostic relevance of KLK7 mRNA expression in breast cancer. Clin. Chem., 2006, 52(6), 1070-1079.
[http://dx.doi.org/10.1373/clinchem.2005.065599] [PMID: 16627559]
[120]
Li, X.; Liu, J.; Wang, Y.; Zhang, L.; Ning, L.; Feng, Y. Parallel underexpression of kallikrein 5 and kallikrein 7 mRNA in breast malignancies. Cancer Sci., 2009, 100(4), 601-607.
[http://dx.doi.org/10.1111/j.1349-7006.2009.01090.x] [PMID: 19453546]
[121]
Ejaz, S.; Nasim, F.U.; Ashraf, M.; Ahmad, G. Down-regulation of hK7 in the sera of breast cancer and benign breast disease patients. Heliyon, 2017, 3(7)e00356
[http://dx.doi.org/10.1016/j.heliyon.2017.e00356] [PMID: 28761938]
[122]
Sun, Y.; Zhao, C.; Ye, Y.; Wang, Z.; He, Y.; Li, Y.; Mao, H. High expression of fibronectin 1 indicates poor prognosis in gastric cancer. Oncol. Lett., 2020, 19(1), 93-102.
[PMID: 31897119]
[123]
Qian, S.; Tan, X.; Liu, X.; Liu, P.; Wu, Y. Exosomal Tenascin-c induces proliferation and invasion of pancreatic cancer cells by WNT signaling. OncoTargets Ther., 2019, 12, 3197-3205.
[http://dx.doi.org/10.2147/OTT.S192218] [PMID: 31118672]
[124]
Sarkar, S.; Mirzaei, R.; Zemp, F.J.; Wei, W.; Senger, D.L.; Robbins, S.M.; Yong, V.W. Activation of NOTCH signaling by tenascin-C promotes growth of human brain tumor-initiating cells. Cancer Res., 2017, 77(12), 3231-3243.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-2171] [PMID: 28416488]
[125]
Wang, G.; Yang, Q.; Li, M.; Zhang, Y.; Cai, Y.; Liang, X.; Fu, Y.; Xiao, Z.; Zhou, M.; Xie, Z.; Huang, H.; Huang, Y.; Chen, Y.; He, Q.; Peng, F.; Chen, Z. Quantitative proteomic profiling of tumor-associated vascular endothelial cells in colorectal cancer. Biol. Open, 2019, 8(5), 8.
[http://dx.doi.org/10.1242/bio.042838] [PMID: 31036754]
[126]
Yu, Y.; Prassas, I.; Dimitromanolakis, A.; Diamandis, E.P. Novel biological substrates of human kallikrein 7 identified through degradomics. J. Biol. Chem., 2015, 290(29), 17762-17775.
[http://dx.doi.org/10.1074/jbc.M115.643551] [PMID: 26032414]
[127]
Ramani, V.C.; Haun, R.S. The extracellular matrix protein fibronectin is a substrate for kallikrein 7. Biochem. Biophys. Res. Commun., 2008, 369(4), 1169-1173.
[http://dx.doi.org/10.1016/j.bbrc.2008.03.021] [PMID: 18343220]
[128]
Nowicki, T.S.; Zhao, H.; Darzynkiewicz, Z.; Moscatello, A.; Shin, E.; Schantz, S.; Tiwari, R.K.; Geliebter, J. Downregulation of uPAR inhibits migration, invasion, proliferation, FAK/PI3K/Akt signaling and induces senescence in papillary thyroid carcinoma cells. Cell Cycle, 2011, 10(1), 100-107.
[http://dx.doi.org/10.4161/cc.10.1.14362] [PMID: 21191179]
[129]
Xue, A.; Xue, M.; Jackson, C.; Smith, R.C. Suppression of urokinase plasminogen activator receptor inhibits proliferation and migration of pancreatic adenocarcinoma cells via regulation of ERK/p38 signaling. Int. J. Biochem. Cell Biol., 2009, 41(8-9), 1731-1738.
[http://dx.doi.org/10.1016/j.biocel.2009.03.004] [PMID: 19433314]
[130]
Erdogan, S.; Turkekul, K.; Dibirdik, I.; Doganlar, O.; Doganlar, Z.B.; Bilir, A.; Oktem, G. Midkine downregulation increases the efficacy of quercetin on prostate cancer stem cell survival and migration through PI3K/AKT and MAPK/ERK pathway. Biomed. Pharmacother., 2018, 107, 793-805.
[http://dx.doi.org/10.1016/j.biopha.2018.08.061] [PMID: 30142541]
[131]
Fridlender, Z.G.; Sun, J.; Kim, S.; Kapoor, V.; Cheng, G.; Ling, L.; Worthen, G.S.; Albelda, S.M. Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN. Cancer Cell, 2009, 16(3), 183-194.
[http://dx.doi.org/10.1016/j.ccr.2009.06.017] [PMID: 19732719]
[132]
Mantovani, A.; Locati, M. Tumor-associated macrophages as a paradigm of macrophage plasticity, diversity, and polarization: lessons and open questions. Arterioscler. Thromb. Vasc. Biol., 2013, 33(7), 1478-1483.
[http://dx.doi.org/10.1161/ATVBAHA.113.300168] [PMID: 23766387]
[133]
Dai, E.; Han, L.; Liu, J.; Xie, Y.; Kroemer, G.; Klionsky, D.J.; Zeh, H.J.; Kang, R.; Wang, J.; Tang, D. Autophagy-dependent ferroptosis drives tumor-associated macrophage polarization via release and uptake of oncogenic KRAS protein. Autophagy, 2020, 16(11), 2069-2083.
[http://dx.doi.org/10.1080/15548627.2020.1714209] [PMID: 31920150]
[134]
Augsten, M. Cancer-associated fibroblasts as another polarized cell type of the tumor microenvironment. Front. Oncol., 2014, 4, 62.
[http://dx.doi.org/10.3389/fonc.2014.00062] [PMID: 24734219]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy