Abstract
Mammalian STE20-like kinase-1 (Mst1) is a generally expressed apoptosis-promoting kinase and a key bridgebuilder of apoptotic signaling in the etiology of tissue injury. Despite the fact that the biological function of Mst1 and its role in the cell's signalling network have yet to be determined, however, there is a lot of evidence that Mst1 plays an important role in cell death which results from tissue injury. Previous studies have shown that Mst1 is not only a target for some apoptosis- related molecules such as caspase 3 and P53, but also act as an activator of these proteinases to magnify apoptosis signal pathways. This article reviews the role of Mst1 in the signaling pathways which is related with the neuronal cell apoptosis or microglia activation following myocardial and brain injury. Therefore, this work contributes to better understanding of the pathological process of myocardial and brain injury.
Keywords: Ischemia-reperfusion injury, ischemic stroke, oxidative stress, Mst1, apopotosis, microglia.
Graphical Abstract
Current Neuropharmacology
Title:Mst1: Function and Mechanism in Brain and Myocardial Ischemia Reperfusion Injury
Volume: 16 Issue: 9
Author(s): Di Li, Haibo Ni, Qin Rui, Rong Gao*Gang Chen
Affiliation:
- Department of Neurosurgery, The First People `s Hospital of Zhangjiagang, Soochow University, Suzhou,China
Keywords: Ischemia-reperfusion injury, ischemic stroke, oxidative stress, Mst1, apopotosis, microglia.
Abstract: Mammalian STE20-like kinase-1 (Mst1) is a generally expressed apoptosis-promoting kinase and a key bridgebuilder of apoptotic signaling in the etiology of tissue injury. Despite the fact that the biological function of Mst1 and its role in the cell's signalling network have yet to be determined, however, there is a lot of evidence that Mst1 plays an important role in cell death which results from tissue injury. Previous studies have shown that Mst1 is not only a target for some apoptosis- related molecules such as caspase 3 and P53, but also act as an activator of these proteinases to magnify apoptosis signal pathways. This article reviews the role of Mst1 in the signaling pathways which is related with the neuronal cell apoptosis or microglia activation following myocardial and brain injury. Therefore, this work contributes to better understanding of the pathological process of myocardial and brain injury.
Export Options
About this article
Cite this article as:
Li Di , Ni Haibo , Rui Qin , Gao Rong *, Chen Gang , Mst1: Function and Mechanism in Brain and Myocardial Ischemia Reperfusion Injury, Current Neuropharmacology 2018; 16 (9) . https://dx.doi.org/10.2174/1570159X16666180516095949
DOI https://dx.doi.org/10.2174/1570159X16666180516095949 |
Print ISSN 1570-159X |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-6190 |
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
- Forthcoming Thematic Issues
Related Articles
-
Poly(ADP-Ribose)Polymerase 1 (PARP-1) Activation and Ca<sup>2+</sup> Permeable α-Amino-3-Hydroxy-5-Methyl-4-Isoxazolepropionic Acid (AMPA) Channels in Post-Ischemic Brain Damage: New Therapeutic Opportunities?
CNS & Neurological Disorders - Drug Targets Genomics and the Prospects of Existing and Emerging Therapeutics for Cardiovascular Diseases
Current Pharmaceutical Design Endothelin-Converting Enzyme Inhibitors
Current Enzyme Inhibition The Molecular Concept of Atheromatous Plaques
Current Drug Targets The Renin-Angiotensin System: Emerging Concepts
Current Hypertension Reviews Thrombomodulin Links Coagulation to Inflammation and Immunity
Current Drug Targets Regulation and Function of Rankl in Arterial Calcification
Current Pharmaceutical Design Beta-adrenergic Signaling: Complexities and Therapeutic Relevance to Heart Failure
Current Signal Transduction Therapy Heat Shock Protein 70 kDa as a Target for Diagnostics and Therapy of Cardiovascular and Cerebrovascular Diseases
Current Pharmaceutical Design Acute Stroke Therapy: Combination Drugs and Multifunctional Neuroprotectants
Current Neuropharmacology By Discontinuing Beta-Blockers Before an Exercise Test, We may Precipitate a Rebound Phenomenon
Current Vascular Pharmacology Heterocyclic Compounds as Anti-Inflammatory Agents
Current Bioactive Compounds Strategies for Enhancing Progenitor Cell Mobilization and Function in Diabetes
Current Vascular Pharmacology Regulation of Hemostasis by Singlet-Oxygen (1ΔO2*)
Current Vascular Pharmacology Principles and Therapeutic Relevance for Targeting Mitochondria in Aging and Neurodegenerative Diseases
Current Pharmaceutical Design Na+-H+ Exchanger, pH Regulation and Cancer
Recent Patents on Anti-Cancer Drug Discovery Editorial (Hot Topic: No Reflow: What’s in a Name?)
Current Pharmaceutical Design Silencing of MiRNA-126 in Kidney Ischemia Reperfusion is Associated with Elevated SDF-1 Levels and Mobilization of Sca-1+/Lin- Progenitor Cells
MicroRNA Augmentation of Creatine in the Heart
Mini-Reviews in Medicinal Chemistry Therapeutic Applications of Calcium Metabolism Modulation in Heart Disease
Medicinal Chemistry