[1]
Gordon, D.J.; Probstfield, J.L.; Garrison, R.J.; Neaton, J.D.; Castelli, W.P.; Knoke, J.D.; Jacobs, D.R., Jr; Bangdiwala, S.; Tyroler, H.A. High-density lipoprotein cholesterol and cardiovascular disease. Four prospective American studies. Circulation, 1989, 79(1), 8-15.
[2]
Di Angelantonio, E.; Sarwar, N.; Perry, P.; Kaptoge, S.; Ray, K.K.; Thompson, A.; Wood, A.M.; Lewington, S.; Sattar, N.; Packard, C.J.; Collins, R.; Thompson, S.G.; Danesh, J. Major lipids, apolipoproteins, and risk of vascular disease. JAMA, 2009, 302(18), 1993-2000.
[3]
Marz, W.; Kleber, M.E.; Scharnagl, H.; Speer, T.; Zewinger, S.; Ritsch, A.; Parhofer, K.G. von, Eckardstein A.; Landmesser, U.; Laufs, U. HDL cholesterol: reappraisal of its clinical relevance. Clin. Res. Cardiol., 2017, 106(9), 663-675.
[4]
Voight, B.F.; Peloso, G.M.; Orho-Melander, M.; Frikke-Schmidt, R.; Barbalic, M.; Jensen, M.K.; Hindy, G.; Holm, H.; Ding, E.L.; Johnson, T.; Schunkert, H.; Samani, N.J.; Clarke, R.; Hopewell, J.C.; Thompson, J.F.; Li, M.; Thorleifsson, G.; Newton-Cheh, C.; Musunuru, K.; Pirruccello, J.P.; Saleheen, D.; Chen, L.; Stewart, A.; Schillert, A.; Thorsteinsdottir, U.; Thorgeirsson, G.; Anand, S.; Engert, J.C.; Morgan, T.; Spertus, J.; Stoll, M.; Berger, K.; Martinelli, N.; Girelli, D.; McKeown, P.P.; Patterson, C.C.; Epstein, S.E.; Devaney, J.; Burnett, M.S.; Mooser, V.; Ripatti, S.; Surakka, I.; Nieminen, M.S.; Sinisalo, J.; Lokki, M.L.; Perola, M.; Havulinna, A. de, F.U.; Gigante, B.; Ingelsson, E.; Zeller, T.; Wild, P.; de Bakker, P.I.; Klungel, O.H.; Maitland-van der Zee AH; Peters, B.J.; de, B.A.; Grobbee, D.E.; Kamphuisen, P.W.; Deneer, V.H.; Elbers, C.C.; Onland-Moret, N.C.; Hofker, M.H.; Wijmenga, C.; Verschuren, W.M.; Boer, J.M.; van der Schouw, Y.T.; Rasheed, A.; Frossard, P.; Demissie, S.; Willer, C.; Do, R.; Ordovas, J.M.; Abecasis, G.R.; Boehnke, M.; Mohlke, K.L.; Daly, M.J.; Guiducci, C.; Burtt, N.P.; Surti, A.; Gonzalez, E.; Purcell, S.; Gabriel, S.; Marrugat, J.; Peden, J.; Erdmann, J.; Diemert, P.; Willenborg, C.; Konig, I.R.; Fischer, M.; Hengstenberg, C.; Ziegler, A.; Buysschaert, I.; Lambrechts, D.; Van de Werf, F.; Fox, K.A.; El Mokhtari, N.E.; Rubin, D.; Schrezenmeir, J.; Schreiber, S.; Schafer, A.; Danesh, J.; Blankenberg, S.; Roberts, R.; McPherson, R.; Watkins, H.; Hall, A.S.; Overvad, K.; Rimm, E.; Boerwinkle, E.; Tybjaerg-Hansen, A.; Cupples, L.A.; Reilly, M.P.; Melander, O.; Mannucci, P.M.; Ardissino, D.; Siscovick, D.; Elosua, R.; Stefansson, K.; O’Donnell, C.J.; Salomaa, V.; Rader, D.J.; Peltonen, L.; Schwartz, S.M.; Altshuler, D.; Kathiresan, S. Plasma HDL cholesterol and risk of myocardial infarction: A mendelian randomisation study. Lancet, 2012, 380(9841), 572-580.
[5]
Kontush, A.; Lindahl, M.; Lhomme, M.; Calabresi, L.; Chapman, M.J.; Davidson, W.S. Structure of HDL: Particle subclasses and molecular components. Handb. Exp. Pharmacol., 2015, 224, 3-51.
[6]
Cukier, A.M.O.; Therond, P.; Didichenko, S.A.; Guillas, I.; Chapman, M.J.; Wright, S.D.; Kontush, A. Structure-function relationships in reconstituted HDL: Focus on antioxidative activity and cholesterol efflux capacity. Biochim. Biophys. Acta, 2017, 1862(9), 890-900.
[7]
Duriez, P.; Fruchart, J.C. High-density lipoprotein subclasses and apolipoprotein A-I. Clin. Chim. Acta, 1999, 286(1-2), 97-114.
[8]
Santos, R.D.; Schaefer, E.J.; Asztalos, B.F.; Polisecki, E.; Wang, J.; Hegele, R.A.; Martinez, L.R.; Miname, M.H.; Rochitte, C.E.; Da Luz, P.L.; Maranhao, R.C. Characterization of high density lipoprotein particles in familial apolipoprotein A-I deficiency. J. Lipid Res., 2008, 49(2), 349-357.
[9]
Fielding, C.J.; Fielding, P.E. Molecular physiology of reverse cholesterol transport. J. Lipid Res., 1995, 36(2), 211-228.
[10]
Asztalos, B.F.; Collins, D.; Cupples, L.A.; Demissie, S.; Horvath, K.V.; Bloomfield, H.E.; Robins, S.J.; Schaefer, E.J. Value of high-density lipoprotein (HDL) subpopulations in predicting recurrent cardiovascular events in the Veterans Affairs HDL Intervention Trial. Arterioscler. Thromb. Vasc. Biol., 2005, 25(10), 2185-2191.
[11]
Asztalos, B.F.; Horvath, K.V.; Kajinami, K.; Nartsupha, C.; Cox, C.E.; Batista, M.; Schaefer, E.J.; Inazu, A.; Mabuchi, H. Apolipoprotein composition of HDL in cholesteryl ester transfer protein deficiency. J. Lipid Res., 2004, 45(3), 448-455.
[12]
Vickers, K.C.; Remaley, A.T. HDL and cholesterol: life after the divorce? J. Lipid Res., 2014, 55(1), 4-12.
[13]
Vaisar, T.; Pennathur, S.; Green, P.S.; Gharib, S.A.; Hoofnagle, A.N.; Cheung, M.C.; Byun, J.; Vuletic, S.; Kassim, S.; Singh, P.; Chea, H.; Knopp, R.H.; Brunzell, J.; Geary, R.; Chait, A.; Zhao, X.Q.; Elkon, K.; Marcovina, S.; Ridker, P.; Oram, J.F.; Heinecke, J.W. Shotgun proteomics implicates protease inhibition and complement activation in the antiinflammatory properties of HDL. J. Clin. Invest., 2007, 117(3), 746-756.
[14]
Shah, A.S.; Tan, L.; Lu, L.J.; Davidson, W.S. The proteomic diversity of high density lipoproteins: Our emerging understanding of its importance in lipid transport and beyond. J. Lipid Res., 2013, 54(10), 2575-2585.
[15]
Wiesner, P.; Leidl, K.; Boettcher, A.; Schmitz, G.; Liebisch, G. Lipid profiling of FPLC-separated lipoprotein fractions by electrospray ionization tandem mass spectrometry. J. Lipid Res., 2009, 50(3), 574-585.
[16]
Camont, L.; Lhomme, M.; Rached, F.; Le, G.W.; Negre-Salvayre, A.; Salvayre, R.; Calzada, C.; Lagarde, M.; Chapman, M.J.; Kontush, A. Small, dense high-density lipoprotein-3 particles are enriched in negatively charged phospholipids: relevance to cellular cholesterol efflux, antioxidative, antithrombotic, anti-inflammatory, and antiapoptotic functionalities. Arterioscler. Thromb. Vasc. Biol., 2013, 33(12), 2715-2723.
[17]
Hyotylainen, T.; Mattila, I.; Wiedmer, S.K.; Koivuniemi, A.; Taskinen, M.R.; Yki-Jarvinen, H.; Oresic, M. Metabolomic analysis of polar metabolites in lipoprotein fractions identifies lipoprotein-specific metabolic profiles and their association with insulin resistance. Mol. Biosyst., 2012, 8(10), 2559-2565.
[18]
Vickers, K.C.; Palmisano, B.T.; Shoucri, B.M.; Shamburek, R.D.; Remaley, A.T. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat. Cell Biol., 2011, 13(4), 423-433.
[19]
Alwaili, K.; Bailey, D.; Awan, Z.; Bailey, S.D.; Ruel, I.; Hafiane, A.; Krimbou, L.; Laboissiere, S.; Genest, J. The HDL proteome in acute coronary syndromes shifts to an inflammatory profile. Biochim. Biophys. Acta, 2012, 1821(3), 405-415.
[20]
Annema, W.; von Eckardstein, A. High-density lipoproteins. Multifunctional but vulnerable protections from atherosclerosis. Circ. J., 2013, 77(10), 2432-2448.
[21]
Zannis, V.I.; Fotakis, P.; Koukos, G.; Kardassis, D.; Ehnholm, C.; Jauhiainen, M.; Chroni, A. HDL biogenesis, remodeling, and catabolism. Handb. Exp. Pharmacol., 2015, 224, 53-111.
[22]
Zannis, V.I.; Cole, F.S.; Jackson, C.L.; Kurnit, D.M.; Karathanasis, S.K. Distribution of apolipoprotein A-I, C-II, C-III, and E mRNA in fetal human tissues. Time-dependent induction of apolipoprotein E mRNA by cultures of human monocyte-macrophages. Biochemistry, 1985, 24(16), 4450-4455.
[23]
Sorci-Thomas, M.G.; Thomas, M.J. The effects of altered apolipoprotein A-I structure on plasma HDL concentration. Trends Cardiovasc. Med., 2002, 12(3), 121-128.
[24]
von Eckardstein, A. Differential diagnosis of familial high density lipoprotein deficiency syndromes. Atherosclerosis, 2006, 186(2), 231-239.
[25]
Strang, A.C.; Hovingh, G.K.; Stroes, E.S.; Kastelein, J.J. The genetics of high-density lipoprotein metabolism: Clinical relevance for therapeutic approaches. Am. J. Cardiol., 2009, 104(10)(Suppl.), 22E-31E.
[26]
Mei, X.; Atkinson, D. Lipid-free apolipoprotein A-I structure: Insights into HDL formation and atherosclerosis development. Arch. Med. Res., 2015, 46(5), 351-360.
[27]
Kuivenhoven, J.A.; Pritchard, H.; Hill, J.; Frohlich, J.; Assmann, G.; Kastelein, J. The molecular pathology of lecithin:Cholesterol acyltransferase (LCAT) deficiency syndromes. J. Lipid Res., 1997, 38(2), 191-205.
[28]
Zannis, V.I.; Chroni, A.; Krieger, M. Role of apoA-I, ABCA1, LCAT, and SR-BI in the biogenesis of HDL. J. Mol. Med., 2006, 84(4), 276-294.
[29]
Hoekstra, M. SR-BI as target in atherosclerosis and cardiovascular disease - A comprehensive appraisal of the cellular functions of SR-BI in physiology and disease. Atherosclerosis, 2017, 258, 153-161.
[30]
Nakamura, K.; Kennedy, M.A.; Baldan, A.; Bojanic, D.D.; Lyons, K.; Edwards, P.A. Expression and regulation of multiple murine ATP-binding cassette transporter G1 mRNAs/isoforms that stimulate cellular cholesterol efflux to high density lipoprotein. J. Biol. Chem., 2004, 279(44), 45980-45989.
[31]
Vaughan, A.M.; Oram, J.F. ABCG1 redistributes cell cholesterol to domains removable by HDL but not by lipid-depleted apolipoproteins. J. Biol. Chem., 2005, 280, 30150-30157.
[32]
Maugeais, C.; Tietge, U.J.; Broedl, U.C.; Marchadier, D.; Cain, W.; McCoy, M.G.; Lund-Katz, S.; Glick, J.M.; Rader, D.J. Dose-dependent acceleration of high-density lipoprotein catabolism by endothelial lipase. Circulation, 2003, 108(17), 2121-2126.
[33]
Santamarina-Fojo, S.; Gonzalez-Navarro, H.; Freeman, L.; Wagner, E.; Nong, Z. Hepatic lipase, lipoprotein metabolism, and atherogenesis. Arterioscler. Thromb. Vasc. Biol., 2004, 24(10), 1750-1754.
[34]
Barter, P.J.; Brewer, H.B., Jr; Chapman, M.J.; Hennekens, C.H.; Rader, D.J.; Tall, A.R. Cholesteryl ester transfer protein: a novel target for raising HDL and inhibiting atherosclerosis. Arterioscler. Thromb. Vasc. Biol., 2003, 23(2), 160-167.
[35]
Albers, J.J.; Cheung, M.C. Emerging roles for phospholipid transfer protein in lipid and lipoprotein metabolism. Curr. Opin. Lipidol., 2004, 15(3), 255-260.
[36]
Siggins, S.; Rye, K.A.; Olkkonen, V.M.; Jauhiainen, M.; Ehnholm, C. Human plasma phospholipid transfer protein
(PLTP) - structural and functional features. In. High-
Density lipoproteins.From Basic Biology to Clinical Aspects, Fielding, C.J., Ed.; Wiley-VCH Verlag GmbH & Co.
KGaA: Weinheim, Germany, 2007; pp. 183-205
[37]
Brunzell, J.D. Familial lipoprotein lipase deficiency and other causes of the chylomicronemia syndrome.In The Metabolic and Molecular Basis of Inherited Disease; Scriver, C.R.; Beaudet, A.L.; Sly, W.S.; Valle, D., Eds.; McGraw-Hill: New York, 1995, pp. 1913-1932.
[38]
Zheng, C.; Murdoch, S.J.; Brunzell, J.D.; Sacks, F.M. Lipoprotein lipase bound to apolipoprotein B lipoproteins accelerates clearance of postprandial lipoproteins in humans. Arterioscler. Thromb. Vasc. Biol., 2006, 26(4), 891-896.
[39]
Weissglas-Volkov, D.; Pajukanta, P. Genetic causes of high and low serum HDL-cholesterol. J. Lipid Res., 2010, 51(8), 2032-2057.
[40]
Singaraja, R.R.; Sivapalaratnam, S.; Hovingh, K.; Dube, M.P.; Castro-Perez, J.; Collins, H.L.; Adelman, S.J.; Riwanto, M.; Manz, J.; Hubbard, B.; Tietjen, I.; Wong, K.; Mitnaul, L.J.; van Heek, M.; Lin, L.; Roddy, T.A.; McEwen, J.; Dallinge-Thie, G. van Vark-van der Zee; Verwoert, G.; Winther, M.; van Duijn, C.; Hofman, A.; Trip, M.D.; Marais, A.D.; Asztalos, B.; Landmesser, U.; Sijbrands, E.; Kastelein, J.J.; Hayden, M.R. The impact of partial and complete loss-of-function mutations in endothelial lipase on high-density lipoprotein levels and functionality in humans. Circ Cardiovasc Genet, 2013, 6(1), 54-62.
[41]
Trigatti, B.L., Sr -B1 and PDZK1: partners in HDL regulation. Curr. Opin. Lipidol., 2017, 28(2), 201-208.
[42]
Vergeer, M.; Korporaal, S.J.; Franssen, R.; Meurs, I.; Out, R.; Hovingh, G.K.; Hoekstra, M.; Sierts, J.A.; Dallinga-Thie, G.M.; Motazacker, M.M.; Holleboom, A.G.; van Berkel, T.J.; Kastelein, J.J.; Van Eck, M.; Kuivenhoven, J.A. Genetic variant of the scavenger receptor BI in humans. N. Engl. J. Med., 2011, 364(2), 136-145.
[43]
Zanoni, P.; Khetarpal, S.A.; Larach, D.B.; Hancock-Cerutti, W.F.; Millar, J.S.; Cuchel, M.; Derohannessian, S.; Kontush, A.; Surendran, P.; Saleheen, D.; Trompet, S.; Jukema, J.W.; De, C.A.; Deloukas, P.; Sattar, N.; Ford, I.; Packard, C.; Majumder, A.; Alam, D.S.; Di, A.E.; Abecasis, G.; Chowdhury, R.; Erdmann, J.; Nordestgaard, B.G.; Nielsen, S.F.; Tybjaerg-Hansen, A.; Schmidt, R.F.; Kuulasmaa, K.; Liu, D.J.; Perola, M.; Blankenberg, S.; Salomaa, V.; Mannisto, S.; Amouyel, P.; Arveiler, D.; Ferrieres, J.; Muller-Nurasyid, M.; Ferrario, M.; Kee, F.; Willer, C.J.; Samani, N.; Schunkert, H.; Butterworth, A.S.; Howson, J.M.; Peloso, G.M.; Stitziel, N.O.; Danesh, J.; Kathiresan, S.; Rader, D.J. Rare variant in scavenger receptor BI raises HDL cholesterol and increases risk of coronary heart disease. Science, 2016, 351(6278), 1166-1171.
[44]
Shimizugawa, T.; Ono, M.; Shimamura, M.; Yoshida, K.; Ando, Y.; Koishi, R.; Ueda, K.; Inaba, T.; Minekura, H.; Kohama, T.; Furukawa, H. ANGPTL3 decreases very low density lipoprotein triglyceride clearance by inhibition of lipoprotein lipase. J. Biol. Chem., 2002, 277(37), 33742-33748.
[45]
Shimamura, M.; Matsuda, M.; Yasumo, H.; Okazaki, M.; Fujimoto, K.; Kono, K.; Shimizugawa, T.; Ando, Y.; Koishi, R.; Kohama, T.; Sakai, N.; Kotani, K.; Komuro, R.; Ishida, T.; Hirata, K.; Yamashita, S.; Furukawa, H.; Shimomura, I. Angiopoietin-like protein3 regulates plasma HDL cholesterol through suppression of endothelial lipase. Arterioscler. Thromb. Vasc. Biol., 2007, 27(2), 366-372.
[46]
Musunuru, K.; Pirruccello, J.P.; Do, R.; Peloso, G.M.; Guiducci, C.; Sougnez, C.; Garimella, K.V.; Fisher, S.; Abreu, J.; Barry, A.J.; Fennell, T.; Banks, E.; Ambrogio, L.; Cibulskis, K.; Kernytsky, A.; Gonzalez, E.; Rudzicz, N.; Engert, J.C.; DePristo, M.A.; Daly, M.J.; Cohen, J.C.; Hobbs, H.H.; Altshuler, D.; Schonfeld, G.; Gabriel, S.B.; Yue, P.; Kathiresan, S. Exome sequencing, ANGPTL3 mutations, and familial combined hypolipidemia. N. Engl. J. Med., 2010, 363(23), 2220-2227.
[47]
Pisciotta, L.; Favari, E.; Magnolo, L.; Simonelli, S.; Adorni, M.P.; Sallo, R.; Fancello, T.; Zavaroni, I.; Ardigo, D.; Bernini, F.; Calabresi, L.; Franceschini, G.; Tarugi, P.; Calandra, S.; Bertolini, S. Characterization of three kindreds with familial combined hypolipidemia caused by loss-of-function mutations of ANGPTL3. Circ Cardiovasc Genet, 2012, 5(1), 42-50.
[48]
Herbert, P.N.; Assmann, G.; Gotto, A.M., Jr; Fredrickson, D.S. Familial lipoprotein deficiency: Alpha beta lipoproteinemia, hypobetalipoproteinemia, and Tangier disease.In The Metabolic Basis of Inherited Disease; Stanbury, J.B.; Wyngaarden, J.B.; Fredrickson, D.S.; Goldstein, J.L.; Brown, M.S., Eds.; McGraw-Hill: New York, 1982, pp. 589-651.
[49]
Krauss, R.M.; Herbert, P.N.; Levy, R.I.; Fredrickson, D.S. Further observations on the activation and inhibition of lipoprotein lipase by apolipoproteins. Circ. Res., 1973, 33(4), 403-411.
[50]
Teslovich, T.M.; Musunuru, K.; Smith, A.V.; Edmondson, A.C.; Stylianou, I.M.; Koseki, M.; Pirruccello, J.P.; Ripatti, S.; Chasman, D.I.; Willer, C.J.; Johansen, C.T.; Fouchier, S.W.; Isaacs, A.; Peloso, G.M.; Barbalic, M.; Ricketts, S.L.; Bis, J.C.; Aulchenko, Y.S.; Thorleifsson, G.; Feitosa, M.F.; Chambers, J.; Orho-Melander, M.; Melander, O.; Johnson, T.; Li, X.; Guo, X.; Li, M.; Shin, C.Y.; Jin, G.M.; Jin, K.Y.; Lee, J.Y.; Park, T.; Kim, K.; Sim, X.; Twee-Hee, O.R.; Croteau-Chonka, D.C.; Lange, L.A.; Smith, J.D.; Song, K.; Hua, Z.J.; Yuan, X.; Luan, J.; Lamina, C.; Ziegler, A.; Zhang, W.; Zee, R.Y.; Wright, A.F.; Witteman, J.C.; Wilson, J.F.; Willemsen, G.; Wichmann, H.E.; Whitfield, J.B.; Waterworth, D.M.; Wareham, N.J.; Waeber, G.; Vollenweider, P.; Voight, B.F.; Vitart, V.; Uitterlinden, A.G.; Uda, M.; Tuomilehto, J.; Thompson, J.R.; Tanaka, T.; Surakka, I.; Stringham, H.M.; Spector, T.D.; Soranzo, N.; Smit, J.H.; Sinisalo, J.; Silander, K.; Sijbrands, E.J.; Scuteri, A.; Scott, J.; Schlessinger, D.; Sanna, S.; Salomaa, V.; Saharinen, J.; Sabatti, C.; Ruokonen, A.; Rudan, I.; Rose, L.M.; Roberts, R.; Rieder, M.; Psaty, B.M.; Pramstaller, P.P.; Pichler, I.; Perola, M.; Penninx, B.W.; Pedersen, N.L.; Pattaro, C.; Parker, A.N.; Pare, G.; Oostra, B.A.; O’Donnell, C.J.; Nieminen, M.S.; Nickerson, D.A.; Montgomery, G.W.; Meitinger, T.; McPherson, R.; McCarthy, M.I.; McArdle, W.; Masson, D.; Martin, N.G.; Marroni, F.; Mangino, M.; Magnusson, P.K.; Lucas, G.; Luben, R.; Loos, R.J.; Lokki, M.L.; Lettre, G.; Langenberg, C.; Launer, L.J.; Lakatta, E.G.; Laaksonen, R.; Kyvik, K.O.; Kronenberg, F.; Konig, I.R.; Khaw, K.T.; Kaprio, J.; Kaplan, L.M.; Johansson, A.; Jarvelin, M.R.; Janssens, A.C.; Ingelsson, E.; Igl, W.; Kees, H.G.; Hottenga, J.J.; Hofman, A.; Hicks, A.A.; Hengstenberg, C.; Heid, I.M.; Hayward, C.; Havulinna, A.S.; Hastie, N.D.; Harris, T.B.; Haritunians, T.; Hall, A.S.; Gyllensten, U.; Guiducci, C.; Groop, L.C.; Gonzalez, E.; Gieger, C.; Freimer, N.B.; Ferrucci, L.; Erdmann, J.; Elliott, P.; Ejebe, K.G.; Doring, A.; Dominiczak, A.F.; Demissie, S.; Deloukas, P.; de Geus, E.J. de, F.U.; Crawford, G.; Collins, F.S.; Chen, Y.D.; Caulfield, M.J.; Campbell, H.; Burtt, N.P.; Bonnycastle, L.L.; Boomsma, D.I.; Boekholdt, S.M.; Bergman, R.N.; Barroso, I.; Bandinelli, S.; Ballantyne, C.M.; Assimes, T.L.; Quertermous, T.; Altshuler, D.; Seielstad, M.; Wong, T.Y.; Tai, E.S.; Feranil, A.B.; Kuzawa, C.W.; Adair, L.S.; Taylor, H.A., Jr.; Borecki, I.B.; Gabriel, S.B.; Wilson, J.G.; Holm, H.; Thorsteinsdottir, U.; Gudnason, V.; Krauss, R.M.; Mohlke, K.L.; Ordovas, J.M.; Munroe, P.B.; Kooner, J.S.; Tall, A.R.; Hegele, R.A.; Kastelein, J.J.; Schadt, E.E.; Rotter, J.I.; Boerwinkle, E.; Strachan, D.P.; Mooser, V.; Stefansson, K.; Reilly, M.P.; Samani, N.J.; Schunkert, H.; Cupples, L.A.; Sandhu, M.S.; Ridker, P.M.; Rader, D.J.; van Duijn, C.M.; Peltonen, L.; Abecasis, G.R.; Boehnke, M.; Kathiresan, S. Biological, clinical and population relevance of 95 loci for blood lipids. Nature, 2010, 466(7307), 707-713.
[51]
Martinez, L.O.; Jacquet, S.; Esteve, J.P.; Rolland, C.; Cabezon, E.; Champagne, E.; Pineau, T.; Georgeaud, V.; Walker, J.E.; Terce, F.; Collet, X.; Perret, B.; Barbaras, R. Ectopic beta-chain of ATP synthase is an apolipoprotein A-I receptor in hepatic HDL endocytosis. Nature, 2003, 421(6918), 75-79.
[52]
Martinez, L.O.; Najib, S.; Perret, B.; Cabou, C.; Lichtenstein, L. Ecto-F1-ATPase/P2Y pathways in metabolic and vascular functions of high density lipoproteins. Atherosclerosis, 2015, 238(1), 89-100.
[53]
Kozyraki, R.; Fyfe, J.; Kristiansen, M.; Gerdes, C.; Jacobsen, C.; Cui, S.; Christensen, E.I.; Aminoff, M. de la, C.A.; Krahe, R.; Verroust, P.J.; Moestrup, S.K. The intrinsic factor-vitamin B12 receptor, cubilin, is a high-affinity apolipoprotein A-I receptor facilitating endocytosis of high-density lipoprotein. Nat. Med., 1999, 5(6), 656-661.
[54]
von Eckardstein, A.; Rohrer, L. HDLs in crises. Curr. Opin. Lipidol., 2016, 27(3), 264-273.
[55]
Rosenson, R.S.; Brewer, H.B., Jr; Ansell, B.; Barter, P.; Chapman, M.J.; Heinecke, J.W.; Kontush, A.; Tall, A.R.; Webb, N.R. Translation of high-density lipoprotein function into clinical practice: Current prospects and future challenges. Circulation, 2013, 128(11), 1256-1267.
[56]
Rosenson, R.S.; Brewer, H.B., Jr; Ansell, B.J.; Barter, P.; Chapman, M.J.; Heinecke, J.W.; Kontush, A.; Tall, A.R.; Webb, N.R. Dysfunctional HDL and atherosclerotic cardiovascular disease. Nat. Rev. Cardiol., 2016, 13(1), 48-60.
[57]
Hutchins, P.M.; Heinecke, J.W. Cholesterol efflux capacity, macrophage reverse cholesterol transport and cardioprotective HDL. Curr. Opin. Lipidol., 2015, 26(5), 388-393.
[58]
Haghpassand, M.; Bourassa, P.A.; Francone, O.L.; Aiello, R.J. Monocyte/macrophage expression of ABCA1 has minimal contribution to plasma HDL levels. J. Clin. Invest., 2001, 108(9), 1315-1320.
[59]
Catapano, A.L.; Pirillo, A.; Bonacina, F.; Norata, G.D. HDL in innate and adaptive immunity. Cardiovasc. Res., 2014, 103(3), 372-383.
[60]
Chung, S.; Parks, J.S. Dietary cholesterol effects on adipose tissue inflammation. Curr. Opin. Lipidol., 2016, 27(1), 19-25.
[61]
Nofer, J.R. Signal transduction by HDL: Agonists, receptors, and signaling cascades. Handb. Exp. Pharmacol., 2015, 224, 229-256.
[62]
Mineo, C.; Shaul, P.W. Regulation of signal transduction by HDL. J. Lipid Res., 2013, 54(9), 2315-2324.
[63]
Riwanto, M.; Rohrer, L.; von Eckardstein, A.; Landmesser, U. Dysfunctional HDL: From structure-function-relationships to biomarkers. Handb. Exp. Pharmacol., 2015, 224, 337-366.
[64]
Vollenweider, P. von, E.A.; Widmann, C. HDLs, diabetes, and metabolic syndrome. Handb. Exp. Pharmacol., 2015, 224, 405-421.
[65]
Brunham, L.R.; Kruit, J.K.; Pape, T.D.; Timmins, J.M.; Reuwer, A.Q.; Vasanji, Z.; Marsh, B.J.; Rodrigues, B.; Johnson, J.D.; Parks, J.S.; Verchere, C.B.; Hayden, M.R. Beta-cell ABCA1 influences insulin secretion, glucose homeostasis and response to thiazolidinedione treatment. Nat. Med., 2007, 13(3), 340-347.
[66]
Borup, A.; Christensen, P.M.; Nielsen, L.B.; Christoffersen, C. Apolipoprotein M in lipid metabolism and cardiometabolic diseases. Curr. Opin. Lipidol., 2015, 26(1), 48-55.
[67]
Christoffersen, C.; Obinata, H.; Kumaraswamy, S.B.; Galvani, S.; Ahnstrom, J.; Sevvana, M.; Egerer-Sieber, C.; Muller, Y.A.; Hla, T.; Nielsen, L.B.; Dahlback, B. Endothelium-protective sphingosine-1-phosphate provided by HDL-associated apolipoprotein M. Proc. Natl. Acad. Sci. USA, 2011, 108(23), 9613-9618.
[68]
Poti, F.; Simoni, M.; Nofer, J.R. Atheroprotective role of high-density lipoprotein (HDL)-associated sphingosine-1-phosphate (S1P). Cardiovasc. Res., 2014, 103(3), 395-404.
[69]
Arora, S.; Patra, S.K.; Saini, R. HDL-A molecule with a multi-faceted role in coronary artery disease. Clin. Chim. Acta, 2016, 452, 66-81.
[70]
Mangaraj, M.; Nanda, R.; Panda, S. Apolipoprotein A-I: A molecule of diverse function. Indian J. Clin. Biochem., 2016, 31(3), 253-259.
[71]
Tiniakou, I.; Drakos, E.; Sinatkas, V.; Van Eck, M.; Zannis, V.I.; Boumpas, D.; Verginis, P.; Kardassis, D. High-density lipoprotein attenuates Th1 and th17 autoimmune responses by modulating dendritic cell maturation and function. J. Immunol., 2015, 194(10), 4676-4687.
[72]
Zamanian-Daryoush, M.; DiDonato, J.A. Apolipoprotein A-I and cancer. Front. Pharmacol., 2015, 6, 265.
[73]
Gkouskou, K.K.; Ioannou, M.; Pavlopoulos, G.A.; Georgila, K.; Siganou, A.; Nikolaidis, G.; Kanellis, D.C.; Moore, S.; Papadakis, K.A.; Kardassis, D.; Iliopoulos, I.; McDyer, F.A.; Drakos, E.; Eliopoulos, A.G. Apolipoprotein A-I inhibits experimental colitis and colitis-propelled carcinogenesis. Oncogene, 2016, 35(19), 2496-2505.
[74]
Vergeer, M.; Holleboom, A.G.; Kastelein, J.J.; Kuivenhoven, J.A. The HDL hypothesis: Does high-density lipoprotein protect from atherosclerosis? J. Lipid Res., 2010, 51(8), 2058-2073.
[75]
Rader, D.J.; Alexander, E.T.; Weibel, G.L.; Billheimer, J.; Rothblat, G.H. The role of reverse cholesterol transport in animals and humans and relationship to atherosclerosis. J. Lipid Res., 2009, (50)(Suppl.), S189-S194.
[76]
Escola-Gil, J.C.; Rotllan, N.; Julve, J.; Blanco-Vaca, F. In vivo macrophage-specific RCT and antioxidant and antiinflammatory HDL activity measurements: New tools for predicting HDL atheroprotection. Atherosclerosis, 2009, 206(2), 321-327.
[77]
van der Steeg, W.A.; Holme, I.; Boekholdt, S.M.; Larsen, M.L.; Lindahl, C.; Stroes, E.S.; Tikkanen, M.J.; Wareham, N.J.; Faergeman, O.; Olsson, A.G.; Pedersen, T.R.; Khaw, K.T.; Kastelein, J.J. High-density lipoprotein cholesterol, high-density lipoprotein particle size, and apolipoprotein A-I: Significance for cardiovascular risk: the IDEAL and EPIC-Norfolk studies. J. Am. Coll. Cardiol., 2008, 51(6), 634-642.
[78]
Madsen, C.M.; Varbo, A.; Nordestgaard, B.G. Extreme high high-density lipoprotein cholesterol is paradoxically associated with high mortality in men and women: Two prospective cohort studies. Eur. Heart J., 2017, 38(32), 2478-2486.
[79]
Calabresi, L.; Baldassarre, D.; Castelnuovo, S.; Conca, P.; Bocchi, L.; Candini, C.; Frigerio, B.; Amato, M.; Sirtori, C.R.; Alessandrini, P.; Arca, M.; Boscutti, G.; Cattin, L.; Gesualdo, L.; Sampietro, T.; Vaudo, G.; Veglia, F.; Calandra, S.; Franceschini, G. Functional lecithin: Cholesterol acyltransferase is not required for efficient atheroprotection in humans. Circulation, 2009, 120(7), 628-635.
[80]
Haase, C.L.; Tybjaerg-Hansen, A.; Grande, P.; Frikke-Schmidt, R. Genetically elevated apolipoprotein A-I, high-density lipoprotein cholesterol levels, and risk of ischemic heart disease. J. Clin. Endocrinol. Metab., 2010, 95(12), E500-E510.
[81]
Frikke-Schmidt, R. Genetic variation in the ABCA1 gene, HDL cholesterol, and risk of ischemic heart disease in the general population. Atherosclerosis, 2010, 208(2), 305-316.
[82]
Jansen, H.; Samani, N.J.; Schunkert, H. Mendelian randomization studies in coronary artery disease. Eur. Heart J., 2014, 35(29), 1917-1924.
[83]
Barter, P.J.; Rye, K.A. HDL cholesterol concentration or HDL function: Which matters? Eur. Heart J., 2017, 38(32), 2487-2489.
[84]
Bowman, L.; Hopewell, J.C.; Chen, F.; Wallendszus, K.; Stevens, W.; Collins, R.; Wiviott, S.D.; Cannon, C.P.; Braunwald, E.; Sammons, E.; Landray, M.J. Effects of anacetrapib in patients with atherosclerotic vascular disease. N. Engl. J. Med., 2017, 377(13), 1217-1227.
[85]
Gkolfinopoulou, C.; Stratikos, E.; Theofilatos, D.; Kardassis, D.; Voulgari, P.V.; Drosos, A.A.; Chroni, A. Impaired antiatherogenic functions of high-density lipoprotein in patients with ankylosing spondylitis. J. Rheumatol., 2015, 42(9), 1652-1660.
[86]
Hoekstra, M.; Van Eck, M. Mouse models of disturbed HDL metabolism. Handb. Exp. Pharmacol., 2015, 224, 301-336.
[87]
Paszty, C.; Maeda, N.; Verstuyft, J.; Rubin, E.M. Apolipoprotein AI transgene corrects apolipoprotein E deficiency-induced atherosclerosis in mice. J. Clin. Invest., 1994, 94(2), 899-903.
[88]
Van Eck, M.; Twisk, J.; Hoekstra, M.; Van Rij, B.T.; Van der Lans, C.A.; Bos, I.S.; Kruijt, J.K.; Kuipers, F.; van Berkel, T.J. Differential effects of scavenger receptor BI deficiency on lipid metabolism in cells of the arterial wall and in the liver. J. Biol. Chem., 2003, 278(26), 23699-23705.
[89]
Hovingh, G.K.; Brownlie, A.; Bisoendial, R.J.; Dube, M.P.; Levels, J.H.; Petersen, W.; Dullaart, R.P.; Stroes, E.S.; Zwinderman, A.H.; de Groot, E.; Hayden, M.R.; Kuivenhoven, J.A.; Kastelein, J.J. A novel apoA-I mutation (L178P) leads to endothelial dysfunction, increased arterial wall thickness, and premature coronary artery disease. J. Am. Coll. Cardiol., 2004, 44(7), 1429-1435.
[90]
Navab, M.; Hama, S.Y.; Hough, G.P.; Subbanagounder, G.; Reddy, S.T.; Fogelman, A.M. A cell-free assay for detecting HDL that is dysfunctional in preventing the formation of or inactivating oxidized phospholipids. J. Lipid Res., 2001, 42(8), 1308-1317.
[91]
Daniil, G.; Phedonos, A.A.; Holleboom, A.G.; Motazacker, M.M.; Argyri, L.; Kuivenhoven, J.A.; Chroni, A. Characterization of antioxidant/anti-inflammatory properties and apoA-I-containing subpopulations of HDL from family subjects with monogenic low HDL disorders. Clin. Chim. Acta, 2011, 412(13-14), 1213-1220.
[92]
Holleboom, A.G.; Daniil, G.; Fu, X.; Zhang, R.; Hovingh, G.K.; Schimmel, A.W.; Kastelein, J.J.; Stroes, E.S.; Witztum, J.L.; Hutten, B.A.; Tsimikas, S.; Hazen, S.L.; Chroni, A.; Kuivenhoven, J.A. Lipid oxidation in carriers of lecithin:Cholesterol acyltransferase gene mutations. Arterioscler. Thromb. Vasc. Biol., 2012, 32(12), 3066-3075.
[93]
Ljunggren, S.; Levels, J.H.; Turkina, M.V.; Sundberg, S.; Bochem, A.E.; Hovingh, K.; Holleboom, A.G.; Lindahl, M.; Kuivenhoven, J.A.; Karlsson, H. ApoA-I mutations, L202P and K131del, in HDL from heterozygotes with low HDL-C. Proteomics Clin. Appl., 2014, 8(3-4), 241-250.
[94]
Hassan, M.I.; Waheed, A.; Yadav, S.; Singh, T.P.; Ahmad, F. Zinc alpha 2-glycoprotein: A multidisciplinary protein. Mol. Cancer Res., 2008, 6(6), 892-906.
[95]
Yeung, D.C.; Lam, K.S.; Wang, Y.; Tso, A.W.; Xu, A. Serum zinc-alpha2-glycoprotein correlates with adiposity, triglycerides, and the key components of the metabolic syndrome in Chinese subjects. J. Clin. Endocrinol. Metab., 2009, 94(7), 2531-2536.
[96]
Karuna, R.; Park, R.; Othman, A.; Holleboom, A.G.; Motazacker, M.M.; Sutter, I.; Kuivenhoven, J.A.; Rohrer, L.; Matile, H.; Hornemann, T.; Stoffel, M.; Rentsch, K.M. von, E.A. Plasma levels of sphingosine-1-phosphate and apolipoprotein M in patients with monogenic disorders of HDL metabolism. Atherosclerosis, 2011, 219(2), 855-863.
[97]
Rached, F.; Santos, R.D.; Camont, L.; Miname, M.H.; Lhomme, M.; Dauteuille, C.; Lecocq, S.; Serrano, C.V., Jr; Chapman, M.J.; Kontush, A. Defective functionality of HDL particles in familial apoA-I deficiency: relevance of alterations in HDL lipidome and proteome. J. Lipid Res., 2014, 55(12), 2509-2520.
[98]
Anthanont, P.; Polisecki, E.; Asztalos, B.F.; Diffenderfer, M.R.; Barrett, P.H.; Millar, J.S.; Billheimer, J.; Cuchel, M.; Rader, D.J.; Schaefer, E.J. A novel ApoA-I truncation (ApoA-IMytilene) associated with decreased ApoA-I production. Atherosclerosis, 2014, 235(2), 470-476.
[99]
Anthanont, P.; Asztalos, B.F.; Polisecki, E.; Zachariah, B.; Schaefer, E.J. Case report: A novel apolipoprotein A-I missense mutation apoA-I (Arg149Ser)Boston associated with decreased lecithin-cholesterol acyltransferase activation and cellular cholesterol efflux. J. Clin. Lipidol., 2015, 9(3), 390-395.
[100]
Lee, E.Y.; Klementowicz, P.T.; Hegele, R.A.; Asztalos, B.F.; Schaefer, E.J. HDL deficiency due to a new insertion mutation (ApoA-INashua) and review of the literature. J. Clin. Lipidol., 2013, 7(2), 169-173.
[101]
Miccoli, R.; Zhu, Y.; Daum, U.; Wessling, J.; Huang, Y.; Navalesi, R.; Assmann, G.; von Eckardstein, A. A natural apolipoprotein A-I variant, apoA-I (L141R)Pisa, interferes with the formation of alpha-high density lipoproteins (HDL) but not with the formation of pre beta 1-HDL and influences efflux of cholesterol into plasma. J. Lipid Res., 1997, 38(6), 1242-1253.
[102]
Utermann, G.; Haas, J.; Steinmetz, A.; Paetzold, R.; Rall, S.C., Jr; Weisgraber, K.H.; Mahley, R.W. Apolipoprotein A-IGiessen (Pro143----Arg). A mutant that is defective in activating lecithin:cholesterol acyltransferase. Eur. J. Biochem., 1984, 144(2), 325-331.
[103]
Bruckert, E.; von Eckardstein, A.; Funke, H.; Beucler, I.; Wiebusch, H.; Turpin, G.; Assmann, G. The replacement of arginine by cysteine at residue 151 in apolipoprotein A-I produces a phenotype similar to that of apolipoprotein A-IMilano. Atherosclerosis, 1997, 128(1), 121-128.
[104]
Daum, U.; Langer, C.; Duverger, N.; Emmanuel, F.; Benoit, P.; Denefle, P.; Chirazi, A.; Cullen, P.; Pritchard, P.H.; Bruckert, E.; Assmann, G.; von Eckardstein, A. Apolipoprotein A-I (R151C)Paris is defective in activation of lecithin: cholesterol acyltransferase but not in initial lipid binding, formation of reconstituted lipoproteins, or promotion of cholesterol efflux. J. Mol. Med., 1999, 77(8), 614-622.
[105]
Huang, W.; Sasaki, J.; Matsunaga, A.; Nanimatsu, H.; Moriyama, K.; Han, H.; Kugi, M.; Koga, T.; Yamaguchi, K.; Arakawa, K. A novel homozygous missense mutation in the apo A-I gene with apo A-I deficiency. Arterioscler. Thromb. Vasc. Biol., 1998, 18(3), 389-396.
[106]
von Eckardstein, A.; Funke, H.; Henke, A.; Altland, K.; Benninghoven, A.; Assmann, G. Apolipoprotein A-I variants. Naturally occurring substitutions of proline residues affect plasma concentration of apolipoprotein A-I. J. Clin. Invest., 1989, 84(6), 1722-1730.
[107]
Daum, U.; Leren, T.P.; Langer, C.; Chirazi, A.; Cullen, P.; Pritchard, P.H.; Assmann, G.; von Eckardstein, A. Multiple dysfunctions of two apolipoprotein A-I variants, apoA- I(R160L)Oslo and apoA-I(P165R), that are associated with hypoalphalipoproteinemia in heterozygous carriers. J. Lipid Res., 1999, 40(3), 486-494.
[108]
Leren, T.P.; Bakken, K.S.; Daum, U.; Ose, L.; Berg, K.; Assmann, G.; von Eckardstein, A. Heterozygosity for apolipoprotein A-I(R160L)Oslo is associated with low levels of high density lipoprotein cholesterol and HDL-subclass LpA-I/A- II but normal levels of HDL-subclass LpA-I. J. Lipid Res., 1997, 38(1), 121-131.
[109]
Miettinen, H.E.; Jauhiainen, M.; Gylling, H.; Ehnholm, S.; Palomaki, A.; Miettinen, T.A.; Kontula, K. Apolipoprotein A-IFIN (Leu159-->Arg) mutation affects lecithin cholesterol acyltransferase activation and subclass distribution of HDL but not cholesterol efflux from fibroblasts. Arterioscler. Thromb. Vasc. Biol., 1997, 17(11), 3021-3032.
[110]
Miettinen, H.E.; Gylling, H.; Miettinen, T.A.; Viikari, J.; Paulin, L.; Kontula, K. Apolipoprotein A-IFin. Dominantly inherited hypoalphalipoproteinemia due to a single base substitution in the apolipoprotein A-I gene. Arterioscler. Thromb. Vasc. Biol., 1997, 17(1), 83-90.
[111]
Martin-Campos, J.M.; Julve, J.; Escola, J.C.; Ordonez-Llanos, J.; Gomez, J.; Binimelis, J.; Gonzalez-Sastre, F.; Blanco-Vaca, F. ApoA-I(MALLORCA) impairs LCAT activation and induces dominant familial hypoalphalipoproteinemia. J. Lipid Res., 2002, 43(1), 115-123.
[112]
Deeb, S.S.; Cheung, M.C.; Peng, R.L.; Wolf, A.C.; Stern, R.; Albers, J.J.; Knopp, R.H. A mutation in the human apolipoprotein A-I gene. Dominant effect on the level and characteristics of plasma high density lipoproteins. J. Biol. Chem., 1991, 266(21), 13654-13660.
[113]
Lindholm, E.M.; Bielicki, J.K.; Curtiss, L.K.; Rubin, E.M.; Forte, T.M. Deletion of amino acids Glu146-->Arg160 in human apolipoprotein A-I (ApoA-ISeattle) alters lecithin: Cholesterol acyltransferase activity and recruitment of cell phospholipid. Biochemistry, 1998, 37(14), 4863-4868.
[114]
Han, H.; Sasaki, J.; Matsunaga, A.; Hakamata, H.; Huang, W.; Ageta, M.; Taguchi, T.; Koga, T.; Kugi, M.; Horiuchi, S.; Arakawa, K. A novel mutant, ApoA-I nichinan (Glu235-->0), is associated with low HDL cholesterol levels and decreased cholesterol efflux from cells. Arterioscler. Thromb. Vasc. Biol., 1999, 19(6), 1447-1455.
[115]
Huang, W.; Matsunaga, A.; Li, W.; Han, H.; Hoang, A.; Kugi, M.; Koga, T.; Sviridov, D.; Fidge, N.; Sasaki, J. Recombinant proapoA-I(Lys107del) shows impaired lipid binding associated with reduced binding to plasma high density lipoprotein. Atherosclerosis, 2001, 159(1), 85-91.
[116]
Weisgraber, K.H.; Bersot, T.P.; Mahley, R.W.; Franceschini, G.; Sirtori, C.R. A-Imilano apoprotein. Isolation and characterization of a cysteine-containing variant of the A-I apoprotein from human high density lipoproteins. J. Clin. Invest., 1980, 66(5), 901-907.
[117]
Franceschini, G.; Sirtori, C.R.; Capurso, A.; Weisgraber, K.H.; Mahley, R.W. A-IMilano apoprotein. Decreased high density lipoprotein cholesterol levels with significant lipoprotein modifications and without clinical atherosclerosis in an Italian family. J. Clin. Invest., 1980, 66(5), 892-900.
[118]
Sirtori, C.R.; Calabresi, L.; Franceschini, G.; Baldassarre, D.; Amato, M.; Johansson, J.; Salvetti, M.; Monteduro, C.; Zulli, R.; Muiesan, M.L.; Agabiti-Rosei, E. Cardiovascular status of carriers of the apolipoprotein A-I(Milano) mutant: the Limone sul Garda study. Circulation, 2001, 103(15), 1949-1954.
[119]
Franceschini, G.; Frosi, T.G.; Manzoni, C.; Gianfranceschi, G.; Sirtori, C.R. High density lipoprotein-3 heterogeneity in subjects with the apo-AIMilano variant. J. Biol. Chem., 1982, 257(17), 9926-9930.
[120]
Clee, S.M.; Kastelein, J.J.; van Dam, M.; Marcil, M.; Roomp, K.; Zwarts, K.Y.; Collins, J.A.; Roelants, R.; Tamasawa, N.; Stulc, T.; Suda, T.; Ceska, R.; Boucher, B.; Rondeau, C.; DeSouich, C.; Brooks-Wilson, A.; Molhuizen, H.O.; Frohlich, J.; Genest, J., Jr; Hayden, M.R. Age and residual cholesterol efflux affect HDL cholesterol levels and coronary artery disease in ABCA1 heterozygotes. J. Clin. Invest., 2000, 106(10), 1263-1270.
[121]
Candini, C.; Schimmel, A.W.; Peter, J.; Bochem, A.E.; Holleboom, A.G.; Vergeer, M.; Dullaart, R.P.; Dallinga-Thie, G.M.; Hovingh, G.K.; Khoo, K.L.; Fasano, T.; Bocchi, L.; Calandra, S.; Kuivenhoven, J.A.; Motazacker, M.M. Identification and characterization of novel loss of function mutations in ATP-binding cassette transporter A1 in patients with low plasma high-density lipoprotein cholesterol. Atherosclerosis, 2010, 213(2), 492-498.
[122]
Asztalos, B.F.; Brousseau, M.E.; McNamara, J.R.; Horvath, K.V.; Roheim, P.S.; Schaefer, E.J. Subpopulations of high density lipoproteins in homozygous and heterozygous Tangier disease. Atherosclerosis, 2001, 156(1), 217-225.
[123]
Dimick, S.M.; Sallee, B.; Asztalos, B.F.; Pritchard, P.H.; Frohlich, J.; Schaefer, E.J. A kindred with fish eye disease, corneal opacities, marked high-density lipoprotein deficiency, and statin therapy. J. Clin. Lipidol., 2014, 8(2), 223-230.
[124]
Asztalos, B.F.; Schaefer, E.J.; Horvath, K.V.; Yamashita, S.; Miller, M.; Franceschini, G.; Calabresi, L. Role of LCAT in HDL remodeling: investigation of LCAT deficiency states. J. Lipid Res., 2007, 48(3), 592-599.
[125]
Ljunggren, S.A.; Levels, J.H.; Hovingh, K.; Holleboom, A.G.; Vergeer, M.; Argyri, L.; Gkolfinopoulou, C.; Chroni, A.; Sierts, J.A.; Kastelein, J.J.; Kuivenhoven, J.A.; Lindahl, M.; Karlsson, H. Lipoprotein profiles in human heterozygote carriers of a functional mutation P297S in scavenger receptor class B1. Biochim. Biophys. Acta, 2015, 1851(12), 1587-1595.
[126]
Vanhollebeke, B.; Pays, E. The function of apolipoproteins L. Cell. Mol. Life Sci., 2006, 63(17), 1937-1944.
[127]
Ito, K.; Bick, A.G.; Flannick, J.; Friedman, D.J.; Genovese, G.; Parfenov, M.G.; Depalma, S.R.; Gupta, N.; Gabriel, S.B.; Taylor, H.A., Jr; Fox, E.R.; Newton-Cheh, C.; Kathiresan, S.; Hirschhorn, J.N.; Altshuler, D.M.; Pollak, M.R.; Wilson, J.G.; Seidman, J.G.; Seidman, C. Increased burden of cardiovascular disease in carriers of APOL1 genetic variants. Circ. Res., 2014, 114(5), 845-850.
[128]
Chantepie, S.; Bochem, A.E.; Chapman, M.J.; Hovingh, G.K.; Kontush, A. High-density lipoprotein (HDL) particle subpopulations in heterozygous cholesteryl ester transfer protein (CETP) deficiency: maintenance of antioxidative activity. PLoS One, 2012, 7(11), e49336.
[129]
Ishigami, M.; Yamashita, S.; Sakai, N.; Arai, T.; Hirano, K.; Hiraoka, H.; Kameda-Takemura, K.; Matsuzawa, Y. Large and cholesteryl ester-rich high-density lipoproteins in cholesteryl ester transfer protein (CETP) deficiency can not protect macrophages from cholesterol accumulation induced by acetylated low-density lipoproteins. J. Biochem., 1994, 116(2), 257-262.
[130]
Ohta, T.; Nakamura, R.; Takata, K.; Saito, Y.; Yamashita, S.; Horiuchi, S.; Matsuda, I. Structural and functional differences of subspecies of apoA-I-containing lipoprotein in patients with plasma cholesteryl ester transfer protein deficiency. J. Lipid Res., 1995, 36(4), 696-704.
[131]
Matsuura, F.; Wang, N.; Chen, W.; Jiang, X.C.; Tall, A.R. HDL from CETP-deficient subjects shows enhanced ability to promote cholesterol efflux from macrophages in an apoE- and ABCG1-dependent pathway. J. Clin. Invest., 2006, 116(5), 1435-1442.
[132]
Miwa, K.; Inazu, A.; Kawashiri, M.; Nohara, A.; Higashikata, T.; Kobayashi, J.; Koizumi, J.; Nakajima, K.; Nakano, T.; Niimi, M.; Mabuchi, H.; Yamagishi, M. Cholesterol efflux from J774 macrophages and Fu5AH hepatoma cells to serum is preserved in CETP-deficient patients. Clin. Chim. Acta, 2009, 402(1-2), 19-24.
[133]
Plengpanich, W.; Le, G.W.; Poolsuk, S.; Julia, Z.; Guerin, M.; Khovidhunkit, W. CETP deficiency due to a novel mutation in the CETP gene promoter and its effect on cholesterol efflux and selective uptake into hepatocytes. Atherosclerosis, 2011, 216(2), 370-373.
[134]
Tani, M.; Horvath, K.V.; Lamarche, B.; Couture, P.; Burnett, J.R.; Schaefer, E.J.; Asztalos, B.F. High-density lipoprotein subpopulation profiles in lipoprotein lipase and hepatic lipase deficiency. Atherosclerosis, 2016, 253, 7-14.
[135]
von Eckardstein, A.; Holz, H.; Sandkamp, M.; Weng, W.; Funke, H.; Assmann, G. Apolipoprotein C-III(Lys58----Glu). Identification of an apolipoprotein C-III variant in a family with hyperalphalipoproteinemia. J. Clin. Invest., 1991, 87(5), 1724-1731.
[136]
Bochem, A.E.; van Capelleveen, J.C.; Dallinga-Thie, G.M.; Schimmel, A.W.; Motazacker, M.M.; Tietjen, I.; Singaraja, R.R.; Hayden, M.R.; Kastelein, J.J.; Stroes, E.S.; Hovingh, G.K. Two novel mutations in apolipoprotein C3 underlie atheroprotective lipid profiles in families. Clin. Genet., 2014, 85(5), 433-440.
[137]
Zannis, V.I.; Chroni, A.; Kypreos, K.E.; Kan, H.Y.; Cesar, T.B.; Zanni, E.E.; Kardassis, D. Probing the pathways of chylomicron and HDL metabolism using adenovirus-mediated gene transfer. Curr. Opin. Lipidol., 2004, 15(2), 151-166.
[138]
Koukos, G.; Chroni, A.; Duka, A.; Kardassis, D.; Zannis, V.I. LCAT can rescue the abnormal phenotype produced by the natural ApoA-I mutations (Leu141Arg)Pisa and (Leu159Arg)FIN. Biochemistry, 2007, 46(37), 10713-10721.
[139]
McManus, D.C.; Scott, B.R.; Franklin, V.; Sparks, D.L.; Marcel, Y.L. Proteolytic degradation and impaired secretion of an apolipoprotein A-I mutant associated with dominantly inherited hypoalphalipoproteinemia. J. Biol. Chem., 2001, 276(24), 21292-21302.
[140]
Tiniakou, I.; Kanaki, Z.; Georgopoulos, S.; Chroni, A.; Van Eck, M.; Fotakis, P.; Zannis, V.I.; Kardassis, D. Natural human apoA-I mutations L141RPisa and L159RFIN alter HDL structure and functionality and promote atherosclerosis development in mice. Atherosclerosis, 2015, 243(1), 77-85.
[141]
Sorci-Thomas, M.G.; Zabalawi, M.; Bharadwaj, M.S.; Wilhelm, A.J.; Owen, J.S.; Asztalos, B.F.; Bhat, S.; Thomas, M.J. Dysfunctional HDL containing L159R ApoA-I leads to exacerbation of atherosclerosis in hyperlipidemic mice. Biochim. Biophys. Acta, 2012, 1821(3), 502-512.
[142]
Koukos, G.; Chroni, A.; Duka, A.; Kardassis, D.; Zannis, V.I. Naturally occurring and bioengineered apoA-I mutations that inhibit the conversion of discoidal to spherical HDL: The abnormal HDL phenotypes can be corrected by treatment with LCAT. Biochem. J., 2007, 406(1), 167-174.
[143]
Haase, C.L.; Frikke-Schmidt, R.; Nordestgaard, B.G.; Kateifides, A.K.; Kardassis, D.; Nielsen, L.B.; Andersen, C.B.; Kober, L.; Johnsen, A.H.; Grande, P.; Zannis, V.I.; Tybjaerg-Hansen, A. Mutation in APOA1 predicts increased risk of ischaemic heart disease and total mortality without low HDL cholesterol levels. J. Intern. Med., 2011, 270(2), 136-146.
[144]
Bielicki, J.K.; Forte, T.M.; McCall, M.R.; Stoltzfus, L.J.; Chiesa, G.; Sirtori, C.R.; Franceschini, G.; Rubin, E.M. High density lipoprotein particle size restriction in apolipoprotein A-I(Milano) transgenic mice. J. Lipid Res., 1997, 38(11), 2314-2321.
[145]
Parolini, C.; Chiesa, G.; Zhu, Y.; Forte, T.; Caligari, S.; Gianazza, E.; Sacco, M.G.; Sirtori, C.R.; Rubin, E.M. Targeted replacement of mouse apolipoprotein A-I with human ApoA-I or the mutant ApoA-IMilano. Evidence of APOA-IM impaired hepatic secretion. J. Biol. Chem., 2003, 278(7), 4740-4746.
[146]
Franceschini, G.; Calabresi, L.; Chiesa, G.; Parolini, C.; Sirtori, C.R.; Canavesi, M.; Bernini, F. Increased cholesterol efflux potential of sera from ApoA-IMilano carriers and transgenic mice. Arterioscler. Thromb. Vasc. Biol., 1999, 19(5), 1257-1262.
[147]
Weibel, G.L.; Alexander, E.T.; Joshi, M.R.; Rader, D.J.; Lund-Katz, S.; Phillips, M.C.; Rothblat, G.H. Wild-type ApoA-I and the Milano variant have similar abilities to stimulate cellular lipid mobilization and efflux. Arterioscler. Thromb. Vasc. Biol., 2007, 27(9), 2022-2029.
[148]
Cimmino, G.; Ibanez, B.; Vilahur, G.; Speidl, W.S.; Fuster, V.; Badimon, L.; Badimon, J.J. Up-regulation of reverse cholesterol transport key players and rescue from global inflammation by ApoA-I(Milano). J. Cell. Mol. Med., 2009, 13(9B), 3226-3235.
[149]
Kempen, H.J.; Asztalos, B.F.; Moerland, M.; Jeyarajah, E.; Otvos, J.; Kallend, D.G.; Bellibas, S.E.; Wijngaard, P.L. High-density lipoprotein subfractions and cholesterol efflux capacities after infusion of MDCO-216 (apolipoprotein a-imilano/palmitoyl-oleoyl-phosphatidylcholine) in healthy volunteers and stable coronary artery disease patients. Arterioscler. Thromb. Vasc. Biol., 2016, 36(4), 736-742.
[150]
Fotakis, P.; Kuivenhoven, J.A.; Dafnis, E.; Kardassis, D.; Zannis, V.I. The effect of natural LCAT mutations on the biogenesis of HDL. Biochemistry, 2015, 54(21), 3348-3359.
[151]
Rall, S.C., Jr; Weisgraber, K.H.; Mahley, R.W.; Ogawa, Y.; Fielding, C.J.; Utermann, G.; Haas, J.; Steinmetz, A.; Menzel, H.J.; Assmann, G. Abnormal lecithin:cholesterol acyltransferase activation by a human apolipoprotein A-I variant in which a single lysine residue is deleted. J. Biol. Chem., 1984, 259(16), 10063-10070.
[152]
Nofer, J.R.; von Eckardstein, A.; Wiebusch, H.; Weng, W.; Funke, H.; Schulte, H.; Kohler, E.; Assmann, G. Screening for naturally occurring apolipoprotein A-I variants: apo A-I(delta K107) is associated with low HDL-cholesterol levels in men but not in women. Hum. Genet., 1995, 96(2), 177-182.
[153]
Tilly-Kiesi, M.; Zhang, Q.; Ehnholm, S.; Kahri, J.; Lahdenpera, S.; Ehnholm, C.; Taskinen, M.R. ApoA-IHelsinki (Lys107-->0) associated with reduced HDL cholesterol and LpA-I:A-II deficiency. Arterioscler. Thromb. Vasc. Biol., 1995, 15(9), 1294-1306.
[154]
Tilly-Kiesi, M.; Lichtenstein, A.H.; Ordovas, J.M.; Dolnikowski, G.; Malmstrom, R.; Taskinen, M.R.; Schaefer, E.J. Subjects with ApoA-I(Lys107-->0) exhibit enhanced fractional catabolic rate of ApoA-I in Lp(AI) and ApoA-II in Lp(AI with AII). Arterioscler. Thromb. Vasc. Biol., 1997, 17(5), 873-880.
[155]
Tilly-Kiesi, M.; Packard, C.J.; Kahri, J.; Ehnholm, C.; Shepherd, J.; Taskinen, M.R. In vivo metabolism of apo A-I and apo A-II in subjects with apo A-I(Lys107-->0) associated with reduced HDL cholesterol and Lp(AI w AII) deficiency. Atherosclerosis, 1997, 128(2), 213-222.
[156]
Franceschini, G.; Sirtori, C.R.; Bosisio, E.; Gualandri, V.; Orsini, G.B.; Mogavero, A.M.; Capurso, A. Relationship of the phenotypic expression of the A-IMilano apoprotein with plasma lipid and lipoprotein patterns. Atherosclerosis, 1985, 58(1-3), 159-174.
[157]
Hovingh, G.K.; Hutten, B.A.; Holleboom, A.G.; Petersen, W.; Rol, P.; Stalenhoef, A.; Zwinderman, A.H.; de Groot, E.; Kastelein, J.J.; Kuivenhoven, J.A. Compromised LCAT function is associated with increased atherosclerosis. Circulation, 2005, 112(6), 879-884.
[158]
Kuivenhoven, J.A. van Voorst tot Voorst EJ; Wiebusch, H.; Marcovina, S.M.; Funke, H.; Assmann, G.; Pritchard, P.H.; Kastelein, J.J. A unique genetic and biochemical presentation of fish-eye disease. J. Clin. Invest., 1995, 96(6), 2783-2791.
[159]
van der Steeg, W.A.; Hovingh, G.K.; Klerkx, A.H.; Hutten, B.A.; Nootenboom, I.C.; Levels, J.H. van, Tol A.; Dallinga-Thie, G.M.; Zwinderman, A.H.; Kastelein, J.J.; Kuivenhoven, J.A. Cholesteryl ester transfer protein and hyperalphalipoproteinemia in Caucasians. J. Lipid Res., 2007, 48(3), 674-682.
[160]
Yamashita, S.; Hui, D.Y.; Sprecher, D.L.; Matsuzawa, Y.; Sakai, N.; Tarui, S.; Kaplan, D.; Wetterau, J.R.; Harmony, J.A. Total deficiency of plasma cholesteryl ester transfer protein in subjects homozygous and heterozygous for the intron 14 splicing defect. Biochem. Biophys. Res. Commun., 1990, 170(3), 1346-1351.
[161]
Brown, M.L.; Inazu, A.; Hesler, C.B.; Agellon, L.B.; Mann, C.; Whitlock, M.E.; Marcel, Y.L.; Milne, R.W.; Koizumi, J.; Mabuchi, H.; Takeda, R.; Tall, A.R. Molecular basis of lipid transfer protein deficiency in a family with increased high-density lipoproteins. Nature, 1989, 342(6248), 448-451.
[162]
Peterson, J.; Ayyobi, A.F.; Ma, Y.; Henderson, H.; Reina, M.; Deeb, S.S.; Santamarina-Fojo, S.; Hayden, M.R.; Brunzell, J.D. Structural and functional consequences of missense mutations in exon 5 of the lipoprotein lipase gene. J. Lipid Res., 2002, 43(3), 398-406.
[163]
Hooper, A.J.; Crawford, G.M.; Brisbane, J.M.; Robertson, K.; Watts, G.F.; van Bockxmeer, F.M.; Burnett, J.R. Familial lipoprotein lipase deficiency caused by known (G188E) and novel (W394X) LPL gene mutations. Ann. Clin. Biochem., 2008, 45(Pt 1), 102-105.
[164]
Parolini, C.; Chiesa, G.; Gong, E.; Caligari, S.; Cortese, M.M.; Koga, T.; Forte, T.M.; Rubin, E.M. Apolipoprotein A-I and the molecular variant apoA-I(Milano): Evaluation of the antiatherogenic effects in knock-in mouse model. Atherosclerosis, 2005, 183(2), 222-229.