Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

HDL Dysfunction Caused by Mutations in apoA-I and Other Genes that are Critical for HDL Biogenesis and Remodeling

Author(s): Angeliki Chroni* and Dimitris Kardassis*

Volume 26, Issue 9, 2019

Page: [1544 - 1575] Pages: 32

DOI: 10.2174/0929867325666180313114950

Price: $65

Abstract

The “HDL hypothesis” which suggested that an elevation in HDL cholesterol (HDL-C) levels by drugs or by life style changes should be paralleled by a decrease in the risk for Cardiovascular Disease (CVD) has been challenged by recent epidemiological and clinical studies using HDL-raising drugs. HDL components such as proteins, lipids or small RNA molecules, but not cholesterol itself, possess various atheroprotective functions in different cell types and accumulating evidence supports the new hypothesis that HDL functionality is more important than HDL-C levels for CVD risk prediction. Thus, the detailed characterization of changes in HDL composition and functions in various pathogenic conditions is critically important in order to identify new biomarkers for diagnosis, prognosis and therapy monitoring of CVD. Here we provide an overview of how HDL composition, size and functionality are affected in patients with monogenic disorders of HDL metabolism due to mutations in genes that participate in the biogenesis and the remodeling of HDL. We also review the findings from various mouse models with genetic disturbances in the HDL biogenesis pathway that have been generated for the validation of the data obtained in human patients and how these models could be utilized for the evaluation of novel therapeutic strategies such as the use of adenovirus-mediated gene transfer technology that aim to correct HDL abnormalities.

Keywords: apoA-I, ABCA1, LCAT, HDL, atherosclerosis, mutations, HDL-based therapies.

[1]
Gordon, D.J.; Probstfield, J.L.; Garrison, R.J.; Neaton, J.D.; Castelli, W.P.; Knoke, J.D.; Jacobs, D.R., Jr; Bangdiwala, S.; Tyroler, H.A. High-density lipoprotein cholesterol and cardiovascular disease. Four prospective American studies. Circulation, 1989, 79(1), 8-15.
[2]
Di Angelantonio, E.; Sarwar, N.; Perry, P.; Kaptoge, S.; Ray, K.K.; Thompson, A.; Wood, A.M.; Lewington, S.; Sattar, N.; Packard, C.J.; Collins, R.; Thompson, S.G.; Danesh, J. Major lipids, apolipoproteins, and risk of vascular disease. JAMA, 2009, 302(18), 1993-2000.
[3]
Marz, W.; Kleber, M.E.; Scharnagl, H.; Speer, T.; Zewinger, S.; Ritsch, A.; Parhofer, K.G. von, Eckardstein A.; Landmesser, U.; Laufs, U. HDL cholesterol: reappraisal of its clinical relevance. Clin. Res. Cardiol., 2017, 106(9), 663-675.
[4]
Voight, B.F.; Peloso, G.M.; Orho-Melander, M.; Frikke-Schmidt, R.; Barbalic, M.; Jensen, M.K.; Hindy, G.; Holm, H.; Ding, E.L.; Johnson, T.; Schunkert, H.; Samani, N.J.; Clarke, R.; Hopewell, J.C.; Thompson, J.F.; Li, M.; Thorleifsson, G.; Newton-Cheh, C.; Musunuru, K.; Pirruccello, J.P.; Saleheen, D.; Chen, L.; Stewart, A.; Schillert, A.; Thorsteinsdottir, U.; Thorgeirsson, G.; Anand, S.; Engert, J.C.; Morgan, T.; Spertus, J.; Stoll, M.; Berger, K.; Martinelli, N.; Girelli, D.; McKeown, P.P.; Patterson, C.C.; Epstein, S.E.; Devaney, J.; Burnett, M.S.; Mooser, V.; Ripatti, S.; Surakka, I.; Nieminen, M.S.; Sinisalo, J.; Lokki, M.L.; Perola, M.; Havulinna, A. de, F.U.; Gigante, B.; Ingelsson, E.; Zeller, T.; Wild, P.; de Bakker, P.I.; Klungel, O.H.; Maitland-van der Zee AH; Peters, B.J.; de, B.A.; Grobbee, D.E.; Kamphuisen, P.W.; Deneer, V.H.; Elbers, C.C.; Onland-Moret, N.C.; Hofker, M.H.; Wijmenga, C.; Verschuren, W.M.; Boer, J.M.; van der Schouw, Y.T.; Rasheed, A.; Frossard, P.; Demissie, S.; Willer, C.; Do, R.; Ordovas, J.M.; Abecasis, G.R.; Boehnke, M.; Mohlke, K.L.; Daly, M.J.; Guiducci, C.; Burtt, N.P.; Surti, A.; Gonzalez, E.; Purcell, S.; Gabriel, S.; Marrugat, J.; Peden, J.; Erdmann, J.; Diemert, P.; Willenborg, C.; Konig, I.R.; Fischer, M.; Hengstenberg, C.; Ziegler, A.; Buysschaert, I.; Lambrechts, D.; Van de Werf, F.; Fox, K.A.; El Mokhtari, N.E.; Rubin, D.; Schrezenmeir, J.; Schreiber, S.; Schafer, A.; Danesh, J.; Blankenberg, S.; Roberts, R.; McPherson, R.; Watkins, H.; Hall, A.S.; Overvad, K.; Rimm, E.; Boerwinkle, E.; Tybjaerg-Hansen, A.; Cupples, L.A.; Reilly, M.P.; Melander, O.; Mannucci, P.M.; Ardissino, D.; Siscovick, D.; Elosua, R.; Stefansson, K.; O’Donnell, C.J.; Salomaa, V.; Rader, D.J.; Peltonen, L.; Schwartz, S.M.; Altshuler, D.; Kathiresan, S. Plasma HDL cholesterol and risk of myocardial infarction: A mendelian randomisation study. Lancet, 2012, 380(9841), 572-580.
[5]
Kontush, A.; Lindahl, M.; Lhomme, M.; Calabresi, L.; Chapman, M.J.; Davidson, W.S. Structure of HDL: Particle subclasses and molecular components. Handb. Exp. Pharmacol., 2015, 224, 3-51.
[6]
Cukier, A.M.O.; Therond, P.; Didichenko, S.A.; Guillas, I.; Chapman, M.J.; Wright, S.D.; Kontush, A. Structure-function relationships in reconstituted HDL: Focus on antioxidative activity and cholesterol efflux capacity. Biochim. Biophys. Acta, 2017, 1862(9), 890-900.
[7]
Duriez, P.; Fruchart, J.C. High-density lipoprotein subclasses and apolipoprotein A-I. Clin. Chim. Acta, 1999, 286(1-2), 97-114.
[8]
Santos, R.D.; Schaefer, E.J.; Asztalos, B.F.; Polisecki, E.; Wang, J.; Hegele, R.A.; Martinez, L.R.; Miname, M.H.; Rochitte, C.E.; Da Luz, P.L.; Maranhao, R.C. Characterization of high density lipoprotein particles in familial apolipoprotein A-I deficiency. J. Lipid Res., 2008, 49(2), 349-357.
[9]
Fielding, C.J.; Fielding, P.E. Molecular physiology of reverse cholesterol transport. J. Lipid Res., 1995, 36(2), 211-228.
[10]
Asztalos, B.F.; Collins, D.; Cupples, L.A.; Demissie, S.; Horvath, K.V.; Bloomfield, H.E.; Robins, S.J.; Schaefer, E.J. Value of high-density lipoprotein (HDL) subpopulations in predicting recurrent cardiovascular events in the Veterans Affairs HDL Intervention Trial. Arterioscler. Thromb. Vasc. Biol., 2005, 25(10), 2185-2191.
[11]
Asztalos, B.F.; Horvath, K.V.; Kajinami, K.; Nartsupha, C.; Cox, C.E.; Batista, M.; Schaefer, E.J.; Inazu, A.; Mabuchi, H. Apolipoprotein composition of HDL in cholesteryl ester transfer protein deficiency. J. Lipid Res., 2004, 45(3), 448-455.
[12]
Vickers, K.C.; Remaley, A.T. HDL and cholesterol: life after the divorce? J. Lipid Res., 2014, 55(1), 4-12.
[13]
Vaisar, T.; Pennathur, S.; Green, P.S.; Gharib, S.A.; Hoofnagle, A.N.; Cheung, M.C.; Byun, J.; Vuletic, S.; Kassim, S.; Singh, P.; Chea, H.; Knopp, R.H.; Brunzell, J.; Geary, R.; Chait, A.; Zhao, X.Q.; Elkon, K.; Marcovina, S.; Ridker, P.; Oram, J.F.; Heinecke, J.W. Shotgun proteomics implicates protease inhibition and complement activation in the antiinflammatory properties of HDL. J. Clin. Invest., 2007, 117(3), 746-756.
[14]
Shah, A.S.; Tan, L.; Lu, L.J.; Davidson, W.S. The proteomic diversity of high density lipoproteins: Our emerging understanding of its importance in lipid transport and beyond. J. Lipid Res., 2013, 54(10), 2575-2585.
[15]
Wiesner, P.; Leidl, K.; Boettcher, A.; Schmitz, G.; Liebisch, G. Lipid profiling of FPLC-separated lipoprotein fractions by electrospray ionization tandem mass spectrometry. J. Lipid Res., 2009, 50(3), 574-585.
[16]
Camont, L.; Lhomme, M.; Rached, F.; Le, G.W.; Negre-Salvayre, A.; Salvayre, R.; Calzada, C.; Lagarde, M.; Chapman, M.J.; Kontush, A. Small, dense high-density lipoprotein-3 particles are enriched in negatively charged phospholipids: relevance to cellular cholesterol efflux, antioxidative, antithrombotic, anti-inflammatory, and antiapoptotic functionalities. Arterioscler. Thromb. Vasc. Biol., 2013, 33(12), 2715-2723.
[17]
Hyotylainen, T.; Mattila, I.; Wiedmer, S.K.; Koivuniemi, A.; Taskinen, M.R.; Yki-Jarvinen, H.; Oresic, M. Metabolomic analysis of polar metabolites in lipoprotein fractions identifies lipoprotein-specific metabolic profiles and their association with insulin resistance. Mol. Biosyst., 2012, 8(10), 2559-2565.
[18]
Vickers, K.C.; Palmisano, B.T.; Shoucri, B.M.; Shamburek, R.D.; Remaley, A.T. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat. Cell Biol., 2011, 13(4), 423-433.
[19]
Alwaili, K.; Bailey, D.; Awan, Z.; Bailey, S.D.; Ruel, I.; Hafiane, A.; Krimbou, L.; Laboissiere, S.; Genest, J. The HDL proteome in acute coronary syndromes shifts to an inflammatory profile. Biochim. Biophys. Acta, 2012, 1821(3), 405-415.
[20]
Annema, W.; von Eckardstein, A. High-density lipoproteins. Multifunctional but vulnerable protections from atherosclerosis. Circ. J., 2013, 77(10), 2432-2448.
[21]
Zannis, V.I.; Fotakis, P.; Koukos, G.; Kardassis, D.; Ehnholm, C.; Jauhiainen, M.; Chroni, A. HDL biogenesis, remodeling, and catabolism. Handb. Exp. Pharmacol., 2015, 224, 53-111.
[22]
Zannis, V.I.; Cole, F.S.; Jackson, C.L.; Kurnit, D.M.; Karathanasis, S.K. Distribution of apolipoprotein A-I, C-II, C-III, and E mRNA in fetal human tissues. Time-dependent induction of apolipoprotein E mRNA by cultures of human monocyte-macrophages. Biochemistry, 1985, 24(16), 4450-4455.
[23]
Sorci-Thomas, M.G.; Thomas, M.J. The effects of altered apolipoprotein A-I structure on plasma HDL concentration. Trends Cardiovasc. Med., 2002, 12(3), 121-128.
[24]
von Eckardstein, A. Differential diagnosis of familial high density lipoprotein deficiency syndromes. Atherosclerosis, 2006, 186(2), 231-239.
[25]
Strang, A.C.; Hovingh, G.K.; Stroes, E.S.; Kastelein, J.J. The genetics of high-density lipoprotein metabolism: Clinical relevance for therapeutic approaches. Am. J. Cardiol., 2009, 104(10)(Suppl.), 22E-31E.
[26]
Mei, X.; Atkinson, D. Lipid-free apolipoprotein A-I structure: Insights into HDL formation and atherosclerosis development. Arch. Med. Res., 2015, 46(5), 351-360.
[27]
Kuivenhoven, J.A.; Pritchard, H.; Hill, J.; Frohlich, J.; Assmann, G.; Kastelein, J. The molecular pathology of lecithin:Cholesterol acyltransferase (LCAT) deficiency syndromes. J. Lipid Res., 1997, 38(2), 191-205.
[28]
Zannis, V.I.; Chroni, A.; Krieger, M. Role of apoA-I, ABCA1, LCAT, and SR-BI in the biogenesis of HDL. J. Mol. Med., 2006, 84(4), 276-294.
[29]
Hoekstra, M. SR-BI as target in atherosclerosis and cardiovascular disease - A comprehensive appraisal of the cellular functions of SR-BI in physiology and disease. Atherosclerosis, 2017, 258, 153-161.
[30]
Nakamura, K.; Kennedy, M.A.; Baldan, A.; Bojanic, D.D.; Lyons, K.; Edwards, P.A. Expression and regulation of multiple murine ATP-binding cassette transporter G1 mRNAs/isoforms that stimulate cellular cholesterol efflux to high density lipoprotein. J. Biol. Chem., 2004, 279(44), 45980-45989.
[31]
Vaughan, A.M.; Oram, J.F. ABCG1 redistributes cell cholesterol to domains removable by HDL but not by lipid-depleted apolipoproteins. J. Biol. Chem., 2005, 280, 30150-30157.
[32]
Maugeais, C.; Tietge, U.J.; Broedl, U.C.; Marchadier, D.; Cain, W.; McCoy, M.G.; Lund-Katz, S.; Glick, J.M.; Rader, D.J. Dose-dependent acceleration of high-density lipoprotein catabolism by endothelial lipase. Circulation, 2003, 108(17), 2121-2126.
[33]
Santamarina-Fojo, S.; Gonzalez-Navarro, H.; Freeman, L.; Wagner, E.; Nong, Z. Hepatic lipase, lipoprotein metabolism, and atherogenesis. Arterioscler. Thromb. Vasc. Biol., 2004, 24(10), 1750-1754.
[34]
Barter, P.J.; Brewer, H.B., Jr; Chapman, M.J.; Hennekens, C.H.; Rader, D.J.; Tall, A.R. Cholesteryl ester transfer protein: a novel target for raising HDL and inhibiting atherosclerosis. Arterioscler. Thromb. Vasc. Biol., 2003, 23(2), 160-167.
[35]
Albers, J.J.; Cheung, M.C. Emerging roles for phospholipid transfer protein in lipid and lipoprotein metabolism. Curr. Opin. Lipidol., 2004, 15(3), 255-260.
[36]
Siggins, S.; Rye, K.A.; Olkkonen, V.M.; Jauhiainen, M.; Ehnholm, C. Human plasma phospholipid transfer protein (PLTP) - structural and functional features. In. High- Density lipoproteins.From Basic Biology to Clinical Aspects, Fielding, C.J., Ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2007; pp. 183-205
[37]
Brunzell, J.D. Familial lipoprotein lipase deficiency and other causes of the chylomicronemia syndrome.In The Metabolic and Molecular Basis of Inherited Disease; Scriver, C.R.; Beaudet, A.L.; Sly, W.S.; Valle, D., Eds.; McGraw-Hill: New York, 1995, pp. 1913-1932.
[38]
Zheng, C.; Murdoch, S.J.; Brunzell, J.D.; Sacks, F.M. Lipoprotein lipase bound to apolipoprotein B lipoproteins accelerates clearance of postprandial lipoproteins in humans. Arterioscler. Thromb. Vasc. Biol., 2006, 26(4), 891-896.
[39]
Weissglas-Volkov, D.; Pajukanta, P. Genetic causes of high and low serum HDL-cholesterol. J. Lipid Res., 2010, 51(8), 2032-2057.
[40]
Singaraja, R.R.; Sivapalaratnam, S.; Hovingh, K.; Dube, M.P.; Castro-Perez, J.; Collins, H.L.; Adelman, S.J.; Riwanto, M.; Manz, J.; Hubbard, B.; Tietjen, I.; Wong, K.; Mitnaul, L.J.; van Heek, M.; Lin, L.; Roddy, T.A.; McEwen, J.; Dallinge-Thie, G. van Vark-van der Zee; Verwoert, G.; Winther, M.; van Duijn, C.; Hofman, A.; Trip, M.D.; Marais, A.D.; Asztalos, B.; Landmesser, U.; Sijbrands, E.; Kastelein, J.J.; Hayden, M.R. The impact of partial and complete loss-of-function mutations in endothelial lipase on high-density lipoprotein levels and functionality in humans. Circ Cardiovasc Genet, 2013, 6(1), 54-62.
[41]
Trigatti, B.L., Sr -B1 and PDZK1: partners in HDL regulation. Curr. Opin. Lipidol., 2017, 28(2), 201-208.
[42]
Vergeer, M.; Korporaal, S.J.; Franssen, R.; Meurs, I.; Out, R.; Hovingh, G.K.; Hoekstra, M.; Sierts, J.A.; Dallinga-Thie, G.M.; Motazacker, M.M.; Holleboom, A.G.; van Berkel, T.J.; Kastelein, J.J.; Van Eck, M.; Kuivenhoven, J.A. Genetic variant of the scavenger receptor BI in humans. N. Engl. J. Med., 2011, 364(2), 136-145.
[43]
Zanoni, P.; Khetarpal, S.A.; Larach, D.B.; Hancock-Cerutti, W.F.; Millar, J.S.; Cuchel, M.; Derohannessian, S.; Kontush, A.; Surendran, P.; Saleheen, D.; Trompet, S.; Jukema, J.W.; De, C.A.; Deloukas, P.; Sattar, N.; Ford, I.; Packard, C.; Majumder, A.; Alam, D.S.; Di, A.E.; Abecasis, G.; Chowdhury, R.; Erdmann, J.; Nordestgaard, B.G.; Nielsen, S.F.; Tybjaerg-Hansen, A.; Schmidt, R.F.; Kuulasmaa, K.; Liu, D.J.; Perola, M.; Blankenberg, S.; Salomaa, V.; Mannisto, S.; Amouyel, P.; Arveiler, D.; Ferrieres, J.; Muller-Nurasyid, M.; Ferrario, M.; Kee, F.; Willer, C.J.; Samani, N.; Schunkert, H.; Butterworth, A.S.; Howson, J.M.; Peloso, G.M.; Stitziel, N.O.; Danesh, J.; Kathiresan, S.; Rader, D.J. Rare variant in scavenger receptor BI raises HDL cholesterol and increases risk of coronary heart disease. Science, 2016, 351(6278), 1166-1171.
[44]
Shimizugawa, T.; Ono, M.; Shimamura, M.; Yoshida, K.; Ando, Y.; Koishi, R.; Ueda, K.; Inaba, T.; Minekura, H.; Kohama, T.; Furukawa, H. ANGPTL3 decreases very low density lipoprotein triglyceride clearance by inhibition of lipoprotein lipase. J. Biol. Chem., 2002, 277(37), 33742-33748.
[45]
Shimamura, M.; Matsuda, M.; Yasumo, H.; Okazaki, M.; Fujimoto, K.; Kono, K.; Shimizugawa, T.; Ando, Y.; Koishi, R.; Kohama, T.; Sakai, N.; Kotani, K.; Komuro, R.; Ishida, T.; Hirata, K.; Yamashita, S.; Furukawa, H.; Shimomura, I. Angiopoietin-like protein3 regulates plasma HDL cholesterol through suppression of endothelial lipase. Arterioscler. Thromb. Vasc. Biol., 2007, 27(2), 366-372.
[46]
Musunuru, K.; Pirruccello, J.P.; Do, R.; Peloso, G.M.; Guiducci, C.; Sougnez, C.; Garimella, K.V.; Fisher, S.; Abreu, J.; Barry, A.J.; Fennell, T.; Banks, E.; Ambrogio, L.; Cibulskis, K.; Kernytsky, A.; Gonzalez, E.; Rudzicz, N.; Engert, J.C.; DePristo, M.A.; Daly, M.J.; Cohen, J.C.; Hobbs, H.H.; Altshuler, D.; Schonfeld, G.; Gabriel, S.B.; Yue, P.; Kathiresan, S. Exome sequencing, ANGPTL3 mutations, and familial combined hypolipidemia. N. Engl. J. Med., 2010, 363(23), 2220-2227.
[47]
Pisciotta, L.; Favari, E.; Magnolo, L.; Simonelli, S.; Adorni, M.P.; Sallo, R.; Fancello, T.; Zavaroni, I.; Ardigo, D.; Bernini, F.; Calabresi, L.; Franceschini, G.; Tarugi, P.; Calandra, S.; Bertolini, S. Characterization of three kindreds with familial combined hypolipidemia caused by loss-of-function mutations of ANGPTL3. Circ Cardiovasc Genet, 2012, 5(1), 42-50.
[48]
Herbert, P.N.; Assmann, G.; Gotto, A.M., Jr; Fredrickson, D.S. Familial lipoprotein deficiency: Alpha beta lipoproteinemia, hypobetalipoproteinemia, and Tangier disease.In The Metabolic Basis of Inherited Disease; Stanbury, J.B.; Wyngaarden, J.B.; Fredrickson, D.S.; Goldstein, J.L.; Brown, M.S., Eds.; McGraw-Hill: New York, 1982, pp. 589-651.
[49]
Krauss, R.M.; Herbert, P.N.; Levy, R.I.; Fredrickson, D.S. Further observations on the activation and inhibition of lipoprotein lipase by apolipoproteins. Circ. Res., 1973, 33(4), 403-411.
[50]
Teslovich, T.M.; Musunuru, K.; Smith, A.V.; Edmondson, A.C.; Stylianou, I.M.; Koseki, M.; Pirruccello, J.P.; Ripatti, S.; Chasman, D.I.; Willer, C.J.; Johansen, C.T.; Fouchier, S.W.; Isaacs, A.; Peloso, G.M.; Barbalic, M.; Ricketts, S.L.; Bis, J.C.; Aulchenko, Y.S.; Thorleifsson, G.; Feitosa, M.F.; Chambers, J.; Orho-Melander, M.; Melander, O.; Johnson, T.; Li, X.; Guo, X.; Li, M.; Shin, C.Y.; Jin, G.M.; Jin, K.Y.; Lee, J.Y.; Park, T.; Kim, K.; Sim, X.; Twee-Hee, O.R.; Croteau-Chonka, D.C.; Lange, L.A.; Smith, J.D.; Song, K.; Hua, Z.J.; Yuan, X.; Luan, J.; Lamina, C.; Ziegler, A.; Zhang, W.; Zee, R.Y.; Wright, A.F.; Witteman, J.C.; Wilson, J.F.; Willemsen, G.; Wichmann, H.E.; Whitfield, J.B.; Waterworth, D.M.; Wareham, N.J.; Waeber, G.; Vollenweider, P.; Voight, B.F.; Vitart, V.; Uitterlinden, A.G.; Uda, M.; Tuomilehto, J.; Thompson, J.R.; Tanaka, T.; Surakka, I.; Stringham, H.M.; Spector, T.D.; Soranzo, N.; Smit, J.H.; Sinisalo, J.; Silander, K.; Sijbrands, E.J.; Scuteri, A.; Scott, J.; Schlessinger, D.; Sanna, S.; Salomaa, V.; Saharinen, J.; Sabatti, C.; Ruokonen, A.; Rudan, I.; Rose, L.M.; Roberts, R.; Rieder, M.; Psaty, B.M.; Pramstaller, P.P.; Pichler, I.; Perola, M.; Penninx, B.W.; Pedersen, N.L.; Pattaro, C.; Parker, A.N.; Pare, G.; Oostra, B.A.; O’Donnell, C.J.; Nieminen, M.S.; Nickerson, D.A.; Montgomery, G.W.; Meitinger, T.; McPherson, R.; McCarthy, M.I.; McArdle, W.; Masson, D.; Martin, N.G.; Marroni, F.; Mangino, M.; Magnusson, P.K.; Lucas, G.; Luben, R.; Loos, R.J.; Lokki, M.L.; Lettre, G.; Langenberg, C.; Launer, L.J.; Lakatta, E.G.; Laaksonen, R.; Kyvik, K.O.; Kronenberg, F.; Konig, I.R.; Khaw, K.T.; Kaprio, J.; Kaplan, L.M.; Johansson, A.; Jarvelin, M.R.; Janssens, A.C.; Ingelsson, E.; Igl, W.; Kees, H.G.; Hottenga, J.J.; Hofman, A.; Hicks, A.A.; Hengstenberg, C.; Heid, I.M.; Hayward, C.; Havulinna, A.S.; Hastie, N.D.; Harris, T.B.; Haritunians, T.; Hall, A.S.; Gyllensten, U.; Guiducci, C.; Groop, L.C.; Gonzalez, E.; Gieger, C.; Freimer, N.B.; Ferrucci, L.; Erdmann, J.; Elliott, P.; Ejebe, K.G.; Doring, A.; Dominiczak, A.F.; Demissie, S.; Deloukas, P.; de Geus, E.J. de, F.U.; Crawford, G.; Collins, F.S.; Chen, Y.D.; Caulfield, M.J.; Campbell, H.; Burtt, N.P.; Bonnycastle, L.L.; Boomsma, D.I.; Boekholdt, S.M.; Bergman, R.N.; Barroso, I.; Bandinelli, S.; Ballantyne, C.M.; Assimes, T.L.; Quertermous, T.; Altshuler, D.; Seielstad, M.; Wong, T.Y.; Tai, E.S.; Feranil, A.B.; Kuzawa, C.W.; Adair, L.S.; Taylor, H.A., Jr.; Borecki, I.B.; Gabriel, S.B.; Wilson, J.G.; Holm, H.; Thorsteinsdottir, U.; Gudnason, V.; Krauss, R.M.; Mohlke, K.L.; Ordovas, J.M.; Munroe, P.B.; Kooner, J.S.; Tall, A.R.; Hegele, R.A.; Kastelein, J.J.; Schadt, E.E.; Rotter, J.I.; Boerwinkle, E.; Strachan, D.P.; Mooser, V.; Stefansson, K.; Reilly, M.P.; Samani, N.J.; Schunkert, H.; Cupples, L.A.; Sandhu, M.S.; Ridker, P.M.; Rader, D.J.; van Duijn, C.M.; Peltonen, L.; Abecasis, G.R.; Boehnke, M.; Kathiresan, S. Biological, clinical and population relevance of 95 loci for blood lipids. Nature, 2010, 466(7307), 707-713.
[51]
Martinez, L.O.; Jacquet, S.; Esteve, J.P.; Rolland, C.; Cabezon, E.; Champagne, E.; Pineau, T.; Georgeaud, V.; Walker, J.E.; Terce, F.; Collet, X.; Perret, B.; Barbaras, R. Ectopic beta-chain of ATP synthase is an apolipoprotein A-I receptor in hepatic HDL endocytosis. Nature, 2003, 421(6918), 75-79.
[52]
Martinez, L.O.; Najib, S.; Perret, B.; Cabou, C.; Lichtenstein, L. Ecto-F1-ATPase/P2Y pathways in metabolic and vascular functions of high density lipoproteins. Atherosclerosis, 2015, 238(1), 89-100.
[53]
Kozyraki, R.; Fyfe, J.; Kristiansen, M.; Gerdes, C.; Jacobsen, C.; Cui, S.; Christensen, E.I.; Aminoff, M. de la, C.A.; Krahe, R.; Verroust, P.J.; Moestrup, S.K. The intrinsic factor-vitamin B12 receptor, cubilin, is a high-affinity apolipoprotein A-I receptor facilitating endocytosis of high-density lipoprotein. Nat. Med., 1999, 5(6), 656-661.
[54]
von Eckardstein, A.; Rohrer, L. HDLs in crises. Curr. Opin. Lipidol., 2016, 27(3), 264-273.
[55]
Rosenson, R.S.; Brewer, H.B., Jr; Ansell, B.; Barter, P.; Chapman, M.J.; Heinecke, J.W.; Kontush, A.; Tall, A.R.; Webb, N.R. Translation of high-density lipoprotein function into clinical practice: Current prospects and future challenges. Circulation, 2013, 128(11), 1256-1267.
[56]
Rosenson, R.S.; Brewer, H.B., Jr; Ansell, B.J.; Barter, P.; Chapman, M.J.; Heinecke, J.W.; Kontush, A.; Tall, A.R.; Webb, N.R. Dysfunctional HDL and atherosclerotic cardiovascular disease. Nat. Rev. Cardiol., 2016, 13(1), 48-60.
[57]
Hutchins, P.M.; Heinecke, J.W. Cholesterol efflux capacity, macrophage reverse cholesterol transport and cardioprotective HDL. Curr. Opin. Lipidol., 2015, 26(5), 388-393.
[58]
Haghpassand, M.; Bourassa, P.A.; Francone, O.L.; Aiello, R.J. Monocyte/macrophage expression of ABCA1 has minimal contribution to plasma HDL levels. J. Clin. Invest., 2001, 108(9), 1315-1320.
[59]
Catapano, A.L.; Pirillo, A.; Bonacina, F.; Norata, G.D. HDL in innate and adaptive immunity. Cardiovasc. Res., 2014, 103(3), 372-383.
[60]
Chung, S.; Parks, J.S. Dietary cholesterol effects on adipose tissue inflammation. Curr. Opin. Lipidol., 2016, 27(1), 19-25.
[61]
Nofer, J.R. Signal transduction by HDL: Agonists, receptors, and signaling cascades. Handb. Exp. Pharmacol., 2015, 224, 229-256.
[62]
Mineo, C.; Shaul, P.W. Regulation of signal transduction by HDL. J. Lipid Res., 2013, 54(9), 2315-2324.
[63]
Riwanto, M.; Rohrer, L.; von Eckardstein, A.; Landmesser, U. Dysfunctional HDL: From structure-function-relationships to biomarkers. Handb. Exp. Pharmacol., 2015, 224, 337-366.
[64]
Vollenweider, P. von, E.A.; Widmann, C. HDLs, diabetes, and metabolic syndrome. Handb. Exp. Pharmacol., 2015, 224, 405-421.
[65]
Brunham, L.R.; Kruit, J.K.; Pape, T.D.; Timmins, J.M.; Reuwer, A.Q.; Vasanji, Z.; Marsh, B.J.; Rodrigues, B.; Johnson, J.D.; Parks, J.S.; Verchere, C.B.; Hayden, M.R. Beta-cell ABCA1 influences insulin secretion, glucose homeostasis and response to thiazolidinedione treatment. Nat. Med., 2007, 13(3), 340-347.
[66]
Borup, A.; Christensen, P.M.; Nielsen, L.B.; Christoffersen, C. Apolipoprotein M in lipid metabolism and cardiometabolic diseases. Curr. Opin. Lipidol., 2015, 26(1), 48-55.
[67]
Christoffersen, C.; Obinata, H.; Kumaraswamy, S.B.; Galvani, S.; Ahnstrom, J.; Sevvana, M.; Egerer-Sieber, C.; Muller, Y.A.; Hla, T.; Nielsen, L.B.; Dahlback, B. Endothelium-protective sphingosine-1-phosphate provided by HDL-associated apolipoprotein M. Proc. Natl. Acad. Sci. USA, 2011, 108(23), 9613-9618.
[68]
Poti, F.; Simoni, M.; Nofer, J.R. Atheroprotective role of high-density lipoprotein (HDL)-associated sphingosine-1-phosphate (S1P). Cardiovasc. Res., 2014, 103(3), 395-404.
[69]
Arora, S.; Patra, S.K.; Saini, R. HDL-A molecule with a multi-faceted role in coronary artery disease. Clin. Chim. Acta, 2016, 452, 66-81.
[70]
Mangaraj, M.; Nanda, R.; Panda, S. Apolipoprotein A-I: A molecule of diverse function. Indian J. Clin. Biochem., 2016, 31(3), 253-259.
[71]
Tiniakou, I.; Drakos, E.; Sinatkas, V.; Van Eck, M.; Zannis, V.I.; Boumpas, D.; Verginis, P.; Kardassis, D. High-density lipoprotein attenuates Th1 and th17 autoimmune responses by modulating dendritic cell maturation and function. J. Immunol., 2015, 194(10), 4676-4687.
[72]
Zamanian-Daryoush, M.; DiDonato, J.A. Apolipoprotein A-I and cancer. Front. Pharmacol., 2015, 6, 265.
[73]
Gkouskou, K.K.; Ioannou, M.; Pavlopoulos, G.A.; Georgila, K.; Siganou, A.; Nikolaidis, G.; Kanellis, D.C.; Moore, S.; Papadakis, K.A.; Kardassis, D.; Iliopoulos, I.; McDyer, F.A.; Drakos, E.; Eliopoulos, A.G. Apolipoprotein A-I inhibits experimental colitis and colitis-propelled carcinogenesis. Oncogene, 2016, 35(19), 2496-2505.
[74]
Vergeer, M.; Holleboom, A.G.; Kastelein, J.J.; Kuivenhoven, J.A. The HDL hypothesis: Does high-density lipoprotein protect from atherosclerosis? J. Lipid Res., 2010, 51(8), 2058-2073.
[75]
Rader, D.J.; Alexander, E.T.; Weibel, G.L.; Billheimer, J.; Rothblat, G.H. The role of reverse cholesterol transport in animals and humans and relationship to atherosclerosis. J. Lipid Res., 2009, (50)(Suppl.), S189-S194.
[76]
Escola-Gil, J.C.; Rotllan, N.; Julve, J.; Blanco-Vaca, F. In vivo macrophage-specific RCT and antioxidant and antiinflammatory HDL activity measurements: New tools for predicting HDL atheroprotection. Atherosclerosis, 2009, 206(2), 321-327.
[77]
van der Steeg, W.A.; Holme, I.; Boekholdt, S.M.; Larsen, M.L.; Lindahl, C.; Stroes, E.S.; Tikkanen, M.J.; Wareham, N.J.; Faergeman, O.; Olsson, A.G.; Pedersen, T.R.; Khaw, K.T.; Kastelein, J.J. High-density lipoprotein cholesterol, high-density lipoprotein particle size, and apolipoprotein A-I: Significance for cardiovascular risk: the IDEAL and EPIC-Norfolk studies. J. Am. Coll. Cardiol., 2008, 51(6), 634-642.
[78]
Madsen, C.M.; Varbo, A.; Nordestgaard, B.G. Extreme high high-density lipoprotein cholesterol is paradoxically associated with high mortality in men and women: Two prospective cohort studies. Eur. Heart J., 2017, 38(32), 2478-2486.
[79]
Calabresi, L.; Baldassarre, D.; Castelnuovo, S.; Conca, P.; Bocchi, L.; Candini, C.; Frigerio, B.; Amato, M.; Sirtori, C.R.; Alessandrini, P.; Arca, M.; Boscutti, G.; Cattin, L.; Gesualdo, L.; Sampietro, T.; Vaudo, G.; Veglia, F.; Calandra, S.; Franceschini, G. Functional lecithin: Cholesterol acyltransferase is not required for efficient atheroprotection in humans. Circulation, 2009, 120(7), 628-635.
[80]
Haase, C.L.; Tybjaerg-Hansen, A.; Grande, P.; Frikke-Schmidt, R. Genetically elevated apolipoprotein A-I, high-density lipoprotein cholesterol levels, and risk of ischemic heart disease. J. Clin. Endocrinol. Metab., 2010, 95(12), E500-E510.
[81]
Frikke-Schmidt, R. Genetic variation in the ABCA1 gene, HDL cholesterol, and risk of ischemic heart disease in the general population. Atherosclerosis, 2010, 208(2), 305-316.
[82]
Jansen, H.; Samani, N.J.; Schunkert, H. Mendelian randomization studies in coronary artery disease. Eur. Heart J., 2014, 35(29), 1917-1924.
[83]
Barter, P.J.; Rye, K.A. HDL cholesterol concentration or HDL function: Which matters? Eur. Heart J., 2017, 38(32), 2487-2489.
[84]
Bowman, L.; Hopewell, J.C.; Chen, F.; Wallendszus, K.; Stevens, W.; Collins, R.; Wiviott, S.D.; Cannon, C.P.; Braunwald, E.; Sammons, E.; Landray, M.J. Effects of anacetrapib in patients with atherosclerotic vascular disease. N. Engl. J. Med., 2017, 377(13), 1217-1227.
[85]
Gkolfinopoulou, C.; Stratikos, E.; Theofilatos, D.; Kardassis, D.; Voulgari, P.V.; Drosos, A.A.; Chroni, A. Impaired antiatherogenic functions of high-density lipoprotein in patients with ankylosing spondylitis. J. Rheumatol., 2015, 42(9), 1652-1660.
[86]
Hoekstra, M.; Van Eck, M. Mouse models of disturbed HDL metabolism. Handb. Exp. Pharmacol., 2015, 224, 301-336.
[87]
Paszty, C.; Maeda, N.; Verstuyft, J.; Rubin, E.M. Apolipoprotein AI transgene corrects apolipoprotein E deficiency-induced atherosclerosis in mice. J. Clin. Invest., 1994, 94(2), 899-903.
[88]
Van Eck, M.; Twisk, J.; Hoekstra, M.; Van Rij, B.T.; Van der Lans, C.A.; Bos, I.S.; Kruijt, J.K.; Kuipers, F.; van Berkel, T.J. Differential effects of scavenger receptor BI deficiency on lipid metabolism in cells of the arterial wall and in the liver. J. Biol. Chem., 2003, 278(26), 23699-23705.
[89]
Hovingh, G.K.; Brownlie, A.; Bisoendial, R.J.; Dube, M.P.; Levels, J.H.; Petersen, W.; Dullaart, R.P.; Stroes, E.S.; Zwinderman, A.H.; de Groot, E.; Hayden, M.R.; Kuivenhoven, J.A.; Kastelein, J.J. A novel apoA-I mutation (L178P) leads to endothelial dysfunction, increased arterial wall thickness, and premature coronary artery disease. J. Am. Coll. Cardiol., 2004, 44(7), 1429-1435.
[90]
Navab, M.; Hama, S.Y.; Hough, G.P.; Subbanagounder, G.; Reddy, S.T.; Fogelman, A.M. A cell-free assay for detecting HDL that is dysfunctional in preventing the formation of or inactivating oxidized phospholipids. J. Lipid Res., 2001, 42(8), 1308-1317.
[91]
Daniil, G.; Phedonos, A.A.; Holleboom, A.G.; Motazacker, M.M.; Argyri, L.; Kuivenhoven, J.A.; Chroni, A. Characterization of antioxidant/anti-inflammatory properties and apoA-I-containing subpopulations of HDL from family subjects with monogenic low HDL disorders. Clin. Chim. Acta, 2011, 412(13-14), 1213-1220.
[92]
Holleboom, A.G.; Daniil, G.; Fu, X.; Zhang, R.; Hovingh, G.K.; Schimmel, A.W.; Kastelein, J.J.; Stroes, E.S.; Witztum, J.L.; Hutten, B.A.; Tsimikas, S.; Hazen, S.L.; Chroni, A.; Kuivenhoven, J.A. Lipid oxidation in carriers of lecithin:Cholesterol acyltransferase gene mutations. Arterioscler. Thromb. Vasc. Biol., 2012, 32(12), 3066-3075.
[93]
Ljunggren, S.; Levels, J.H.; Turkina, M.V.; Sundberg, S.; Bochem, A.E.; Hovingh, K.; Holleboom, A.G.; Lindahl, M.; Kuivenhoven, J.A.; Karlsson, H. ApoA-I mutations, L202P and K131del, in HDL from heterozygotes with low HDL-C. Proteomics Clin. Appl., 2014, 8(3-4), 241-250.
[94]
Hassan, M.I.; Waheed, A.; Yadav, S.; Singh, T.P.; Ahmad, F. Zinc alpha 2-glycoprotein: A multidisciplinary protein. Mol. Cancer Res., 2008, 6(6), 892-906.
[95]
Yeung, D.C.; Lam, K.S.; Wang, Y.; Tso, A.W.; Xu, A. Serum zinc-alpha2-glycoprotein correlates with adiposity, triglycerides, and the key components of the metabolic syndrome in Chinese subjects. J. Clin. Endocrinol. Metab., 2009, 94(7), 2531-2536.
[96]
Karuna, R.; Park, R.; Othman, A.; Holleboom, A.G.; Motazacker, M.M.; Sutter, I.; Kuivenhoven, J.A.; Rohrer, L.; Matile, H.; Hornemann, T.; Stoffel, M.; Rentsch, K.M. von, E.A. Plasma levels of sphingosine-1-phosphate and apolipoprotein M in patients with monogenic disorders of HDL metabolism. Atherosclerosis, 2011, 219(2), 855-863.
[97]
Rached, F.; Santos, R.D.; Camont, L.; Miname, M.H.; Lhomme, M.; Dauteuille, C.; Lecocq, S.; Serrano, C.V., Jr; Chapman, M.J.; Kontush, A. Defective functionality of HDL particles in familial apoA-I deficiency: relevance of alterations in HDL lipidome and proteome. J. Lipid Res., 2014, 55(12), 2509-2520.
[98]
Anthanont, P.; Polisecki, E.; Asztalos, B.F.; Diffenderfer, M.R.; Barrett, P.H.; Millar, J.S.; Billheimer, J.; Cuchel, M.; Rader, D.J.; Schaefer, E.J. A novel ApoA-I truncation (ApoA-IMytilene) associated with decreased ApoA-I production. Atherosclerosis, 2014, 235(2), 470-476.
[99]
Anthanont, P.; Asztalos, B.F.; Polisecki, E.; Zachariah, B.; Schaefer, E.J. Case report: A novel apolipoprotein A-I missense mutation apoA-I (Arg149Ser)Boston associated with decreased lecithin-cholesterol acyltransferase activation and cellular cholesterol efflux. J. Clin. Lipidol., 2015, 9(3), 390-395.
[100]
Lee, E.Y.; Klementowicz, P.T.; Hegele, R.A.; Asztalos, B.F.; Schaefer, E.J. HDL deficiency due to a new insertion mutation (ApoA-INashua) and review of the literature. J. Clin. Lipidol., 2013, 7(2), 169-173.
[101]
Miccoli, R.; Zhu, Y.; Daum, U.; Wessling, J.; Huang, Y.; Navalesi, R.; Assmann, G.; von Eckardstein, A. A natural apolipoprotein A-I variant, apoA-I (L141R)Pisa, interferes with the formation of alpha-high density lipoproteins (HDL) but not with the formation of pre beta 1-HDL and influences efflux of cholesterol into plasma. J. Lipid Res., 1997, 38(6), 1242-1253.
[102]
Utermann, G.; Haas, J.; Steinmetz, A.; Paetzold, R.; Rall, S.C., Jr; Weisgraber, K.H.; Mahley, R.W. Apolipoprotein A-IGiessen (Pro143----Arg). A mutant that is defective in activating lecithin:cholesterol acyltransferase. Eur. J. Biochem., 1984, 144(2), 325-331.
[103]
Bruckert, E.; von Eckardstein, A.; Funke, H.; Beucler, I.; Wiebusch, H.; Turpin, G.; Assmann, G. The replacement of arginine by cysteine at residue 151 in apolipoprotein A-I produces a phenotype similar to that of apolipoprotein A-IMilano. Atherosclerosis, 1997, 128(1), 121-128.
[104]
Daum, U.; Langer, C.; Duverger, N.; Emmanuel, F.; Benoit, P.; Denefle, P.; Chirazi, A.; Cullen, P.; Pritchard, P.H.; Bruckert, E.; Assmann, G.; von Eckardstein, A. Apolipoprotein A-I (R151C)Paris is defective in activation of lecithin: cholesterol acyltransferase but not in initial lipid binding, formation of reconstituted lipoproteins, or promotion of cholesterol efflux. J. Mol. Med., 1999, 77(8), 614-622.
[105]
Huang, W.; Sasaki, J.; Matsunaga, A.; Nanimatsu, H.; Moriyama, K.; Han, H.; Kugi, M.; Koga, T.; Yamaguchi, K.; Arakawa, K. A novel homozygous missense mutation in the apo A-I gene with apo A-I deficiency. Arterioscler. Thromb. Vasc. Biol., 1998, 18(3), 389-396.
[106]
von Eckardstein, A.; Funke, H.; Henke, A.; Altland, K.; Benninghoven, A.; Assmann, G. Apolipoprotein A-I variants. Naturally occurring substitutions of proline residues affect plasma concentration of apolipoprotein A-I. J. Clin. Invest., 1989, 84(6), 1722-1730.
[107]
Daum, U.; Leren, T.P.; Langer, C.; Chirazi, A.; Cullen, P.; Pritchard, P.H.; Assmann, G.; von Eckardstein, A. Multiple dysfunctions of two apolipoprotein A-I variants, apoA- I(R160L)Oslo and apoA-I(P165R), that are associated with hypoalphalipoproteinemia in heterozygous carriers. J. Lipid Res., 1999, 40(3), 486-494.
[108]
Leren, T.P.; Bakken, K.S.; Daum, U.; Ose, L.; Berg, K.; Assmann, G.; von Eckardstein, A. Heterozygosity for apolipoprotein A-I(R160L)Oslo is associated with low levels of high density lipoprotein cholesterol and HDL-subclass LpA-I/A- II but normal levels of HDL-subclass LpA-I. J. Lipid Res., 1997, 38(1), 121-131.
[109]
Miettinen, H.E.; Jauhiainen, M.; Gylling, H.; Ehnholm, S.; Palomaki, A.; Miettinen, T.A.; Kontula, K. Apolipoprotein A-IFIN (Leu159-->Arg) mutation affects lecithin cholesterol acyltransferase activation and subclass distribution of HDL but not cholesterol efflux from fibroblasts. Arterioscler. Thromb. Vasc. Biol., 1997, 17(11), 3021-3032.
[110]
Miettinen, H.E.; Gylling, H.; Miettinen, T.A.; Viikari, J.; Paulin, L.; Kontula, K. Apolipoprotein A-IFin. Dominantly inherited hypoalphalipoproteinemia due to a single base substitution in the apolipoprotein A-I gene. Arterioscler. Thromb. Vasc. Biol., 1997, 17(1), 83-90.
[111]
Martin-Campos, J.M.; Julve, J.; Escola, J.C.; Ordonez-Llanos, J.; Gomez, J.; Binimelis, J.; Gonzalez-Sastre, F.; Blanco-Vaca, F. ApoA-I(MALLORCA) impairs LCAT activation and induces dominant familial hypoalphalipoproteinemia. J. Lipid Res., 2002, 43(1), 115-123.
[112]
Deeb, S.S.; Cheung, M.C.; Peng, R.L.; Wolf, A.C.; Stern, R.; Albers, J.J.; Knopp, R.H. A mutation in the human apolipoprotein A-I gene. Dominant effect on the level and characteristics of plasma high density lipoproteins. J. Biol. Chem., 1991, 266(21), 13654-13660.
[113]
Lindholm, E.M.; Bielicki, J.K.; Curtiss, L.K.; Rubin, E.M.; Forte, T.M. Deletion of amino acids Glu146-->Arg160 in human apolipoprotein A-I (ApoA-ISeattle) alters lecithin: Cholesterol acyltransferase activity and recruitment of cell phospholipid. Biochemistry, 1998, 37(14), 4863-4868.
[114]
Han, H.; Sasaki, J.; Matsunaga, A.; Hakamata, H.; Huang, W.; Ageta, M.; Taguchi, T.; Koga, T.; Kugi, M.; Horiuchi, S.; Arakawa, K. A novel mutant, ApoA-I nichinan (Glu235-->0), is associated with low HDL cholesterol levels and decreased cholesterol efflux from cells. Arterioscler. Thromb. Vasc. Biol., 1999, 19(6), 1447-1455.
[115]
Huang, W.; Matsunaga, A.; Li, W.; Han, H.; Hoang, A.; Kugi, M.; Koga, T.; Sviridov, D.; Fidge, N.; Sasaki, J. Recombinant proapoA-I(Lys107del) shows impaired lipid binding associated with reduced binding to plasma high density lipoprotein. Atherosclerosis, 2001, 159(1), 85-91.
[116]
Weisgraber, K.H.; Bersot, T.P.; Mahley, R.W.; Franceschini, G.; Sirtori, C.R. A-Imilano apoprotein. Isolation and characterization of a cysteine-containing variant of the A-I apoprotein from human high density lipoproteins. J. Clin. Invest., 1980, 66(5), 901-907.
[117]
Franceschini, G.; Sirtori, C.R.; Capurso, A.; Weisgraber, K.H.; Mahley, R.W. A-IMilano apoprotein. Decreased high density lipoprotein cholesterol levels with significant lipoprotein modifications and without clinical atherosclerosis in an Italian family. J. Clin. Invest., 1980, 66(5), 892-900.
[118]
Sirtori, C.R.; Calabresi, L.; Franceschini, G.; Baldassarre, D.; Amato, M.; Johansson, J.; Salvetti, M.; Monteduro, C.; Zulli, R.; Muiesan, M.L.; Agabiti-Rosei, E. Cardiovascular status of carriers of the apolipoprotein A-I(Milano) mutant: the Limone sul Garda study. Circulation, 2001, 103(15), 1949-1954.
[119]
Franceschini, G.; Frosi, T.G.; Manzoni, C.; Gianfranceschi, G.; Sirtori, C.R. High density lipoprotein-3 heterogeneity in subjects with the apo-AIMilano variant. J. Biol. Chem., 1982, 257(17), 9926-9930.
[120]
Clee, S.M.; Kastelein, J.J.; van Dam, M.; Marcil, M.; Roomp, K.; Zwarts, K.Y.; Collins, J.A.; Roelants, R.; Tamasawa, N.; Stulc, T.; Suda, T.; Ceska, R.; Boucher, B.; Rondeau, C.; DeSouich, C.; Brooks-Wilson, A.; Molhuizen, H.O.; Frohlich, J.; Genest, J., Jr; Hayden, M.R. Age and residual cholesterol efflux affect HDL cholesterol levels and coronary artery disease in ABCA1 heterozygotes. J. Clin. Invest., 2000, 106(10), 1263-1270.
[121]
Candini, C.; Schimmel, A.W.; Peter, J.; Bochem, A.E.; Holleboom, A.G.; Vergeer, M.; Dullaart, R.P.; Dallinga-Thie, G.M.; Hovingh, G.K.; Khoo, K.L.; Fasano, T.; Bocchi, L.; Calandra, S.; Kuivenhoven, J.A.; Motazacker, M.M. Identification and characterization of novel loss of function mutations in ATP-binding cassette transporter A1 in patients with low plasma high-density lipoprotein cholesterol. Atherosclerosis, 2010, 213(2), 492-498.
[122]
Asztalos, B.F.; Brousseau, M.E.; McNamara, J.R.; Horvath, K.V.; Roheim, P.S.; Schaefer, E.J. Subpopulations of high density lipoproteins in homozygous and heterozygous Tangier disease. Atherosclerosis, 2001, 156(1), 217-225.
[123]
Dimick, S.M.; Sallee, B.; Asztalos, B.F.; Pritchard, P.H.; Frohlich, J.; Schaefer, E.J. A kindred with fish eye disease, corneal opacities, marked high-density lipoprotein deficiency, and statin therapy. J. Clin. Lipidol., 2014, 8(2), 223-230.
[124]
Asztalos, B.F.; Schaefer, E.J.; Horvath, K.V.; Yamashita, S.; Miller, M.; Franceschini, G.; Calabresi, L. Role of LCAT in HDL remodeling: investigation of LCAT deficiency states. J. Lipid Res., 2007, 48(3), 592-599.
[125]
Ljunggren, S.A.; Levels, J.H.; Hovingh, K.; Holleboom, A.G.; Vergeer, M.; Argyri, L.; Gkolfinopoulou, C.; Chroni, A.; Sierts, J.A.; Kastelein, J.J.; Kuivenhoven, J.A.; Lindahl, M.; Karlsson, H. Lipoprotein profiles in human heterozygote carriers of a functional mutation P297S in scavenger receptor class B1. Biochim. Biophys. Acta, 2015, 1851(12), 1587-1595.
[126]
Vanhollebeke, B.; Pays, E. The function of apolipoproteins L. Cell. Mol. Life Sci., 2006, 63(17), 1937-1944.
[127]
Ito, K.; Bick, A.G.; Flannick, J.; Friedman, D.J.; Genovese, G.; Parfenov, M.G.; Depalma, S.R.; Gupta, N.; Gabriel, S.B.; Taylor, H.A., Jr; Fox, E.R.; Newton-Cheh, C.; Kathiresan, S.; Hirschhorn, J.N.; Altshuler, D.M.; Pollak, M.R.; Wilson, J.G.; Seidman, J.G.; Seidman, C. Increased burden of cardiovascular disease in carriers of APOL1 genetic variants. Circ. Res., 2014, 114(5), 845-850.
[128]
Chantepie, S.; Bochem, A.E.; Chapman, M.J.; Hovingh, G.K.; Kontush, A. High-density lipoprotein (HDL) particle subpopulations in heterozygous cholesteryl ester transfer protein (CETP) deficiency: maintenance of antioxidative activity. PLoS One, 2012, 7(11), e49336.
[129]
Ishigami, M.; Yamashita, S.; Sakai, N.; Arai, T.; Hirano, K.; Hiraoka, H.; Kameda-Takemura, K.; Matsuzawa, Y. Large and cholesteryl ester-rich high-density lipoproteins in cholesteryl ester transfer protein (CETP) deficiency can not protect macrophages from cholesterol accumulation induced by acetylated low-density lipoproteins. J. Biochem., 1994, 116(2), 257-262.
[130]
Ohta, T.; Nakamura, R.; Takata, K.; Saito, Y.; Yamashita, S.; Horiuchi, S.; Matsuda, I. Structural and functional differences of subspecies of apoA-I-containing lipoprotein in patients with plasma cholesteryl ester transfer protein deficiency. J. Lipid Res., 1995, 36(4), 696-704.
[131]
Matsuura, F.; Wang, N.; Chen, W.; Jiang, X.C.; Tall, A.R. HDL from CETP-deficient subjects shows enhanced ability to promote cholesterol efflux from macrophages in an apoE- and ABCG1-dependent pathway. J. Clin. Invest., 2006, 116(5), 1435-1442.
[132]
Miwa, K.; Inazu, A.; Kawashiri, M.; Nohara, A.; Higashikata, T.; Kobayashi, J.; Koizumi, J.; Nakajima, K.; Nakano, T.; Niimi, M.; Mabuchi, H.; Yamagishi, M. Cholesterol efflux from J774 macrophages and Fu5AH hepatoma cells to serum is preserved in CETP-deficient patients. Clin. Chim. Acta, 2009, 402(1-2), 19-24.
[133]
Plengpanich, W.; Le, G.W.; Poolsuk, S.; Julia, Z.; Guerin, M.; Khovidhunkit, W. CETP deficiency due to a novel mutation in the CETP gene promoter and its effect on cholesterol efflux and selective uptake into hepatocytes. Atherosclerosis, 2011, 216(2), 370-373.
[134]
Tani, M.; Horvath, K.V.; Lamarche, B.; Couture, P.; Burnett, J.R.; Schaefer, E.J.; Asztalos, B.F. High-density lipoprotein subpopulation profiles in lipoprotein lipase and hepatic lipase deficiency. Atherosclerosis, 2016, 253, 7-14.
[135]
von Eckardstein, A.; Holz, H.; Sandkamp, M.; Weng, W.; Funke, H.; Assmann, G. Apolipoprotein C-III(Lys58----Glu). Identification of an apolipoprotein C-III variant in a family with hyperalphalipoproteinemia. J. Clin. Invest., 1991, 87(5), 1724-1731.
[136]
Bochem, A.E.; van Capelleveen, J.C.; Dallinga-Thie, G.M.; Schimmel, A.W.; Motazacker, M.M.; Tietjen, I.; Singaraja, R.R.; Hayden, M.R.; Kastelein, J.J.; Stroes, E.S.; Hovingh, G.K. Two novel mutations in apolipoprotein C3 underlie atheroprotective lipid profiles in families. Clin. Genet., 2014, 85(5), 433-440.
[137]
Zannis, V.I.; Chroni, A.; Kypreos, K.E.; Kan, H.Y.; Cesar, T.B.; Zanni, E.E.; Kardassis, D. Probing the pathways of chylomicron and HDL metabolism using adenovirus-mediated gene transfer. Curr. Opin. Lipidol., 2004, 15(2), 151-166.
[138]
Koukos, G.; Chroni, A.; Duka, A.; Kardassis, D.; Zannis, V.I. LCAT can rescue the abnormal phenotype produced by the natural ApoA-I mutations (Leu141Arg)Pisa and (Leu159Arg)FIN. Biochemistry, 2007, 46(37), 10713-10721.
[139]
McManus, D.C.; Scott, B.R.; Franklin, V.; Sparks, D.L.; Marcel, Y.L. Proteolytic degradation and impaired secretion of an apolipoprotein A-I mutant associated with dominantly inherited hypoalphalipoproteinemia. J. Biol. Chem., 2001, 276(24), 21292-21302.
[140]
Tiniakou, I.; Kanaki, Z.; Georgopoulos, S.; Chroni, A.; Van Eck, M.; Fotakis, P.; Zannis, V.I.; Kardassis, D. Natural human apoA-I mutations L141RPisa and L159RFIN alter HDL structure and functionality and promote atherosclerosis development in mice. Atherosclerosis, 2015, 243(1), 77-85.
[141]
Sorci-Thomas, M.G.; Zabalawi, M.; Bharadwaj, M.S.; Wilhelm, A.J.; Owen, J.S.; Asztalos, B.F.; Bhat, S.; Thomas, M.J. Dysfunctional HDL containing L159R ApoA-I leads to exacerbation of atherosclerosis in hyperlipidemic mice. Biochim. Biophys. Acta, 2012, 1821(3), 502-512.
[142]
Koukos, G.; Chroni, A.; Duka, A.; Kardassis, D.; Zannis, V.I. Naturally occurring and bioengineered apoA-I mutations that inhibit the conversion of discoidal to spherical HDL: The abnormal HDL phenotypes can be corrected by treatment with LCAT. Biochem. J., 2007, 406(1), 167-174.
[143]
Haase, C.L.; Frikke-Schmidt, R.; Nordestgaard, B.G.; Kateifides, A.K.; Kardassis, D.; Nielsen, L.B.; Andersen, C.B.; Kober, L.; Johnsen, A.H.; Grande, P.; Zannis, V.I.; Tybjaerg-Hansen, A. Mutation in APOA1 predicts increased risk of ischaemic heart disease and total mortality without low HDL cholesterol levels. J. Intern. Med., 2011, 270(2), 136-146.
[144]
Bielicki, J.K.; Forte, T.M.; McCall, M.R.; Stoltzfus, L.J.; Chiesa, G.; Sirtori, C.R.; Franceschini, G.; Rubin, E.M. High density lipoprotein particle size restriction in apolipoprotein A-I(Milano) transgenic mice. J. Lipid Res., 1997, 38(11), 2314-2321.
[145]
Parolini, C.; Chiesa, G.; Zhu, Y.; Forte, T.; Caligari, S.; Gianazza, E.; Sacco, M.G.; Sirtori, C.R.; Rubin, E.M. Targeted replacement of mouse apolipoprotein A-I with human ApoA-I or the mutant ApoA-IMilano. Evidence of APOA-IM impaired hepatic secretion. J. Biol. Chem., 2003, 278(7), 4740-4746.
[146]
Franceschini, G.; Calabresi, L.; Chiesa, G.; Parolini, C.; Sirtori, C.R.; Canavesi, M.; Bernini, F. Increased cholesterol efflux potential of sera from ApoA-IMilano carriers and transgenic mice. Arterioscler. Thromb. Vasc. Biol., 1999, 19(5), 1257-1262.
[147]
Weibel, G.L.; Alexander, E.T.; Joshi, M.R.; Rader, D.J.; Lund-Katz, S.; Phillips, M.C.; Rothblat, G.H. Wild-type ApoA-I and the Milano variant have similar abilities to stimulate cellular lipid mobilization and efflux. Arterioscler. Thromb. Vasc. Biol., 2007, 27(9), 2022-2029.
[148]
Cimmino, G.; Ibanez, B.; Vilahur, G.; Speidl, W.S.; Fuster, V.; Badimon, L.; Badimon, J.J. Up-regulation of reverse cholesterol transport key players and rescue from global inflammation by ApoA-I(Milano). J. Cell. Mol. Med., 2009, 13(9B), 3226-3235.
[149]
Kempen, H.J.; Asztalos, B.F.; Moerland, M.; Jeyarajah, E.; Otvos, J.; Kallend, D.G.; Bellibas, S.E.; Wijngaard, P.L. High-density lipoprotein subfractions and cholesterol efflux capacities after infusion of MDCO-216 (apolipoprotein a-imilano/palmitoyl-oleoyl-phosphatidylcholine) in healthy volunteers and stable coronary artery disease patients. Arterioscler. Thromb. Vasc. Biol., 2016, 36(4), 736-742.
[150]
Fotakis, P.; Kuivenhoven, J.A.; Dafnis, E.; Kardassis, D.; Zannis, V.I. The effect of natural LCAT mutations on the biogenesis of HDL. Biochemistry, 2015, 54(21), 3348-3359.
[151]
Rall, S.C., Jr; Weisgraber, K.H.; Mahley, R.W.; Ogawa, Y.; Fielding, C.J.; Utermann, G.; Haas, J.; Steinmetz, A.; Menzel, H.J.; Assmann, G. Abnormal lecithin:cholesterol acyltransferase activation by a human apolipoprotein A-I variant in which a single lysine residue is deleted. J. Biol. Chem., 1984, 259(16), 10063-10070.
[152]
Nofer, J.R.; von Eckardstein, A.; Wiebusch, H.; Weng, W.; Funke, H.; Schulte, H.; Kohler, E.; Assmann, G. Screening for naturally occurring apolipoprotein A-I variants: apo A-I(delta K107) is associated with low HDL-cholesterol levels in men but not in women. Hum. Genet., 1995, 96(2), 177-182.
[153]
Tilly-Kiesi, M.; Zhang, Q.; Ehnholm, S.; Kahri, J.; Lahdenpera, S.; Ehnholm, C.; Taskinen, M.R. ApoA-IHelsinki (Lys107-->0) associated with reduced HDL cholesterol and LpA-I:A-II deficiency. Arterioscler. Thromb. Vasc. Biol., 1995, 15(9), 1294-1306.
[154]
Tilly-Kiesi, M.; Lichtenstein, A.H.; Ordovas, J.M.; Dolnikowski, G.; Malmstrom, R.; Taskinen, M.R.; Schaefer, E.J. Subjects with ApoA-I(Lys107-->0) exhibit enhanced fractional catabolic rate of ApoA-I in Lp(AI) and ApoA-II in Lp(AI with AII). Arterioscler. Thromb. Vasc. Biol., 1997, 17(5), 873-880.
[155]
Tilly-Kiesi, M.; Packard, C.J.; Kahri, J.; Ehnholm, C.; Shepherd, J.; Taskinen, M.R. In vivo metabolism of apo A-I and apo A-II in subjects with apo A-I(Lys107-->0) associated with reduced HDL cholesterol and Lp(AI w AII) deficiency. Atherosclerosis, 1997, 128(2), 213-222.
[156]
Franceschini, G.; Sirtori, C.R.; Bosisio, E.; Gualandri, V.; Orsini, G.B.; Mogavero, A.M.; Capurso, A. Relationship of the phenotypic expression of the A-IMilano apoprotein with plasma lipid and lipoprotein patterns. Atherosclerosis, 1985, 58(1-3), 159-174.
[157]
Hovingh, G.K.; Hutten, B.A.; Holleboom, A.G.; Petersen, W.; Rol, P.; Stalenhoef, A.; Zwinderman, A.H.; de Groot, E.; Kastelein, J.J.; Kuivenhoven, J.A. Compromised LCAT function is associated with increased atherosclerosis. Circulation, 2005, 112(6), 879-884.
[158]
Kuivenhoven, J.A. van Voorst tot Voorst EJ; Wiebusch, H.; Marcovina, S.M.; Funke, H.; Assmann, G.; Pritchard, P.H.; Kastelein, J.J. A unique genetic and biochemical presentation of fish-eye disease. J. Clin. Invest., 1995, 96(6), 2783-2791.
[159]
van der Steeg, W.A.; Hovingh, G.K.; Klerkx, A.H.; Hutten, B.A.; Nootenboom, I.C.; Levels, J.H. van, Tol A.; Dallinga-Thie, G.M.; Zwinderman, A.H.; Kastelein, J.J.; Kuivenhoven, J.A. Cholesteryl ester transfer protein and hyperalphalipoproteinemia in Caucasians. J. Lipid Res., 2007, 48(3), 674-682.
[160]
Yamashita, S.; Hui, D.Y.; Sprecher, D.L.; Matsuzawa, Y.; Sakai, N.; Tarui, S.; Kaplan, D.; Wetterau, J.R.; Harmony, J.A. Total deficiency of plasma cholesteryl ester transfer protein in subjects homozygous and heterozygous for the intron 14 splicing defect. Biochem. Biophys. Res. Commun., 1990, 170(3), 1346-1351.
[161]
Brown, M.L.; Inazu, A.; Hesler, C.B.; Agellon, L.B.; Mann, C.; Whitlock, M.E.; Marcel, Y.L.; Milne, R.W.; Koizumi, J.; Mabuchi, H.; Takeda, R.; Tall, A.R. Molecular basis of lipid transfer protein deficiency in a family with increased high-density lipoproteins. Nature, 1989, 342(6248), 448-451.
[162]
Peterson, J.; Ayyobi, A.F.; Ma, Y.; Henderson, H.; Reina, M.; Deeb, S.S.; Santamarina-Fojo, S.; Hayden, M.R.; Brunzell, J.D. Structural and functional consequences of missense mutations in exon 5 of the lipoprotein lipase gene. J. Lipid Res., 2002, 43(3), 398-406.
[163]
Hooper, A.J.; Crawford, G.M.; Brisbane, J.M.; Robertson, K.; Watts, G.F.; van Bockxmeer, F.M.; Burnett, J.R. Familial lipoprotein lipase deficiency caused by known (G188E) and novel (W394X) LPL gene mutations. Ann. Clin. Biochem., 2008, 45(Pt 1), 102-105.
[164]
Parolini, C.; Chiesa, G.; Gong, E.; Caligari, S.; Cortese, M.M.; Koga, T.; Forte, T.M.; Rubin, E.M. Apolipoprotein A-I and the molecular variant apoA-I(Milano): Evaluation of the antiatherogenic effects in knock-in mouse model. Atherosclerosis, 2005, 183(2), 222-229.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy