Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Letter Article

Screening and Structure-Activity Relationship of Potential Compounds against Proposed Targets of COVID-19 Infection

Author(s): Majid Ali, Asma Zaidi, Umar Farooq and Syed Majid Bukhari*

Volume 19, Issue 5, 2022

Published on: 24 November, 2021

Page: [367 - 378] Pages: 12

DOI: 10.2174/1570180818666210930154641

Price: $65

Abstract

Background: With reference to COVID-19 pandemic prevailing across the globe, chloroquine and hydroxychloroquine were reported as effective against the disease to some extent. This effectiveness can be attributed to the glycosylation interruption of the Angiotensin-converting enzyme 2 (ACE2) receptor, which is a known target for SARS-CoV-2 entery. On the other hand, studies suggest that the inhibition of ACE2 can be lethal in certain cases, thereby causing cardiovascular disorders, especially in patients already suffering from heart-related diseases.

Methods: In this study, the most probable targets (other than ACE2) have been proposed for the treatment of COVID-19 infection by taking chloroquine and hydroxychloroquine as reference drugs. SwissTargetPrediction and PASSonline tools were used in order to achieve this objective. Known drugs against each target possessing close relation to either viral infections or lung disorders were assessed from the DrugBank database, and simultaneous efficacy of these drugs towards other proposed targets has been analyzed. By taking the most effective drugs as a reference, similar compounds were screened from the ChEMBL library by using the SwissSimilarity tool. Finally, molecular docking studies were performed through MOE software by using screened compounds against proposed targets.

Results: Four most probable targets have been proposed, which include chemokine receptors (CCRs), dipeptidyl peptidase 4 (DPP4), muscarinic acetylcholine receptors (CHRMs), and histamine Nmethyltransferase (HNMT). Furthermore, it has been evaluated that quinacrine and vildagliptin are effective against most of the proposed targets. By taking vildagliptin as well as quinacrine as reference drugs, further eight compounds with similar effectiveness against these targets have been screened from the ChEMBL library. Molecular docking studies with CCR5, DPP4, and CHRM5 suggest that the quinacrine and its analogue (ChEMBL1782742) as well as vildagliptin and its analogue (ChEMBL511785) are the most suitable compounds as HITs for these targets.

Conclusion: It has been established that the quinacrine, ChEMBL1782742, vildagliptin, ChEMBL511785, mavorixafor, atropine, and N-(2-aminoethyl)-1-aziridineethanamine in descending order can be considered as effective drugs for the treatment of COVID-19 infection.

Keywords: COVID-19 infection, chloroquine, angiotensin-converting enzyme 2, chemokine receptors, dipeptidyl peptidase, muscarinic acetylcholine receptors.

Next »
Graphical Abstract

[1]
Keidar, S.; Kaplan, M.; Gamliel-Lazarovich, A. ACE2 of the heart: From angiotensin I to angiotensin (1-7). Cardiovasc. Res., 2007, 73(3), 463-469.
[http://dx.doi.org/10.1016/j.cardiores.2006.09.006] [PMID: 17049503]
[2]
Wang, W.; McKinnie, S.M.K.; Farhan, M.; Paul, M.; McDonald, T.; McLean, B.; Llorens-Cortes, C.; Hazra, S.; Murray, A.G.; Vederas, J.C.; Oudit, G.Y. Angiotensin-converting enzyme 2 metabolizes and partially inactivates pyr-apelin-13 and apelin-17. Hypertension, 2016, 68(2), 365-377.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.115.06892] [PMID: 27217402]
[3]
Donoghue, M.; Hsieh, F.; Baronas, E.; Godbout, K.; Gosselin, M.; Stagliano, N.; Donovan, M.; Woolf, B.; Robison, K.; Jeyaseelan, R.; Breitbart, R.E.; Acton, S. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ. Res., 2000, 87(5), E1-E9.
[http://dx.doi.org/10.1161/01.RES.87.5.e1] [PMID: 10969042]
[4]
Jia, H.P.; Look, D.C.; Shi, L.; Hickey, M.; Pewe, L.; Netland, J.; Farzan, M.; Wohlford-Lenane, C.; Perlman, S.; McCray, P.B., Jr ACE2 receptor expression and severe acute respiratory syndrome coronavirus infection depend on differentiation of human airway epithelia. J. Virol., 2005, 79(23), 14614-14621.
[http://dx.doi.org/10.1128/JVI.79.23.14614-14621.2005] [PMID: 16282461]
[5]
Oettgen, H.; Broide, D.H. Introduction to mechanisms of allergic disease.Introduction to the immune response; Holgate, S.T., Ed.; Elsevier, 2012.
[http://dx.doi.org/10.1016/B978-0-7234-3658-4.00005-6]
[6]
Cashin, K.; Akobsen, M.R.; Sterjovski, J.; Roche, M.; Ellett, A.; Flynn, J.K.; Borm, K.; Gouillou, M.; Churchill, M.J.; Gorry, P.R. Linkages between HIV-1 specificity for CCR5 or CXCR4 and in vitro usage of alternative coreceptors during progressive HIV-1 subtype C infection. Retrovirology, 2013, 10, 1-10.
[http://dx.doi.org/10.1186/1742-4690-10-98]
[7]
Coulson, F.R.; Fryer, A.D. Muscarinic acetylcholine receptors and airway diseases. Pharmacol. Ther., 2003, 98(1), 59-69.
[http://dx.doi.org/10.1016/S0163-7258(03)00004-4] [PMID: 12667888]
[8]
Deng, Z.; Wang, Z.; Lieberman, P.M. Telomeres and viruses: common themes of genome maintenance. Front. Oncol., 2012, 2, 201.
[http://dx.doi.org/10.3389/fonc.2012.00201] [PMID: 23293769]
[9]
Maida, Y.; Masutomi, K. Telomerase reverse transcriptase moonlights: Therapeutic targets beyond telomerase. Cancer Sci., 2015, 106(11), 1486-1492.
[http://dx.doi.org/10.1111/cas.12806] [PMID: 26331588]
[10]
Yang, F.; Xian, R.R.; Li, Y.; Polony, T.S.; Beemon, K.L. Telomerase reverse transcriptase expression elevated by avian leukosis virus integration in B cell lymphomas. Proc. Natl. Acad. Sci. USA, 2007, 104(48), 18952-18957.
[http://dx.doi.org/10.1073/pnas.0709173104] [PMID: 18024587]
[11]
Raj, V.S.; Mou, H.; Smits, S.L.; Dekkers, D.H.W.; Müller, M.A.; Dijkman, R.; Muth, D.; Demmers, J.A.A.; Zaki, A.; Fouchier, R.A.M.; Thiel, V.; Drosten, C.; Rottier, P.J.M.; Osterhaus, A.D.M.E.; Bosch, B.J.; Haagmans, B.L. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature, 2013, 495(7440), 251-254.
[http://dx.doi.org/10.1038/nature12005] [PMID: 23486063]
[12]
Thangam, E.B.; Jemima, E.A.; Singh, H.; Baig, M.S.; Khan, M.; Mathias, C.B.; Church, M.K.; Saluja, R. The role of histamine and histamine receptors in mast cell-mediated allergy and inflammation: The hunt for new therapeutic targets. Front. Immunol., 2018, 9, 1873.
[http://dx.doi.org/10.3389/fimmu.2018.01873] [PMID: 30150993]
[13]
Kim, S.; Thiessen, P.A.; Bolton, E.E.; Chen, J.; Fu, G.; Gindulyte, A.; Han, L.; He, J.; He, S.; Shoemaker, B.A.; Wang, J.; Yu, B.; Zhang, J.; Bryant, S.H. PubChem substance and compound databases. Nucleic Acids Res., 2016, 44(D1), D1202-D1213.
[http://dx.doi.org/10.1093/nar/gkv951] [PMID: 26400175]
[14]
Daina, A.; Michielin, O.; Zoete, V. Swiss Target Prediction: updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res., 2019, 47(W1), W357-W364.
[http://dx.doi.org/10.1093/nar/gkz382] [PMID: 31106366]
[15]
Zoete, V.; Daina, A.; Bovigny, C.; Michielin, O. Swiss Similarity: a web tool for low to ultra high throughput ligand-based virtual screening. J. Chem. Inf. Model., 2016, 56(8), 1399-1404.
[http://dx.doi.org/10.1021/acs.jcim.6b00174] [PMID: 27391578]
[16]
Lee, H.K.; Kim, M-K.; Kim, H.D.; Kim, H.J.; Kim, J.W.; Lee, J-O.; Kim, C-W.; Kim, E.E. Unique binding mode of Evogliptin with human dipeptidyl peptidase IV. Biochem. Biophys. Res. Commun., 2017, 494(3-4), 452-459.
[http://dx.doi.org/10.1016/j.bbrc.2017.10.101] [PMID: 29061303]
[17]
Tan, Q.; Zhu, Y.; Li, J.; Chen, Z.; Han, G.W.; Kufareva, I.; Li, T.; Ma, L.; Fenalti, G.; Li, J.; Zhang, W.; Xie, X.; Yang, H.; Jiang, H.; Cherezov, V.; Liu, H.; Stevens, R.C.; Zhao, Q.; Wu, B. Structure of the CCR5 chemokine receptor-HIV entry inhibitor maraviroc complex. Science, 2013, 341(6152), 1387-1390.
[http://dx.doi.org/10.1126/science.1241475] [PMID: 24030490]
[18]
Vuckovic, Z.; Gentry, P.R.; Berizzi, A.E.; Hirata, K.; Varghese, S.; Thompson, G.; van der Westhuizen, E.T.; Burger, W.A.C.; Rahmani, R.; Valant, C.; Langmead, C.J.; Lindsley, C.W.; Baell, J.B.; Tobin, A.B.; Sexton, P.M.; Christopoulos, A.; Thal, D.M. Crystal structure of the M5 muscarinic acetylcholine receptor. Proc. Natl. Acad. Sci. USA, 2019, 116(51), 26001-26007.
[http://dx.doi.org/10.1073/pnas.1914446116] [PMID: 31772027]
[19]
Hoffman, H.; Rice, C.; Skordalakes, E. Structural analysis reveals the deleterious effects of telomerase mutations in bone marrow failure syndromes. J. Biol. Chem., 2017, 292(11), 4593-4601.
[http://dx.doi.org/10.1074/jbc.M116.771204] [PMID: 28154186]
[20]
Sussman, J.L.; Lin, D.; Jiang, J.; Manning, N.O.; Prilusky, J.; Ritter, O.; Abola, E.E. Protein data bank (PDB): database of threedimensional structural information of biological macromolecules. Acta Crystallogr. D Biol. Crystallogr., 1998, 54(Pt 6 Pt 1), 1078-1084.
[http://dx.doi.org/10.1107/S0907444998009378] [PMID: 10089483]
[21]
Narayanaswamy, V.K.; Rissdörfer, M.; Odhav, B. Review on CambridgeSoft ChemBioDraw Ultra 13.0v. Int. J. Theoreti. Appli. Sci., 2013, 5, 43-49.
[22]
Molecular operating environment (MOE); Chemical Computing Group Inc: 1010 sherbooke St. West, Suite #910, Montreal, QC, Canada, H3A 2R7 2016.
[23]
Dassault systems BIOVIA.Discovery studio visualizer; DassaultSytems: San Diego, 2016.
[24]
OriginLab. Origin 6.1 curve fitting program; OriginLab Corporation: Northampton, 2020.
[25]
Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N-H.; Nitsche, A.; Müller, M.A.; Drosten, C.; Pöhlmann, S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 2020, 181(2), 271-280.
[http://dx.doi.org/10.1016/j.cell.2020.02.052] [PMID: 32142651]
[26]
Gao, J.; Tian, Z.; Yang, X. Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci. Trends, 2020, 14(1), 72-73.
[http://dx.doi.org/10.5582/bst.2020.01047] [PMID: 32074550]
[27]
Wang, M.; Cao, R.; Zhang, L.; Yang, X.; Liu, J.; Xu, M.; Shi, Z.; Hu, Z.; Zhong, W.; Xiao, G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res., 2020, 30(3), 269-271.
[http://dx.doi.org/10.1038/s41422-020-0282-0] [PMID: 32020029]
[28]
Vincent, M.J.; Bergeron, E.; Benjannet, S.; Erickson, B.R.; Rollin, P.E.; Ksiazek, T.G.; Seidah, N.G.; Nichol, S.T. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol. J., 2005, 2, 69.
[http://dx.doi.org/10.1186/1743-422X-2-69] [PMID: 16115318]
[29]
Matera, C.; Tata, A.M. Pharmacological approaches to targeting muscarinic acetylcholine receptors. Recent Patents CNS Drug Discov., 2014, 9(2), 85-100.
[http://dx.doi.org/10.2174/1574889809666141120131238] [PMID: 25413004]
[30]
Huentelman, M.J.; Zubcevic, J.; Hernández Prada, J.A.; Xiao, X.; Dimitrov, D.S.; Raizada, M.K.; Ostrov, D.A. Structure-based discovery of a novel angiotensin-converting enzyme 2 inhibitor. Hypertension, 2004, 44(6), 903-906.
[http://dx.doi.org/10.1161/01.HYP.0000146120.29648.36] [PMID: 15492138]
[31]
Grassmann, S.; Apelt, J.; Sippl, W.; Ligneau, X.; Pertz, H.H.; Zhao, Y.H.; Arrang, J.M.; Ganellin, C.R.; Schwartz, J.C.; Schunack, W.; Stark, H. Imidazole derivatives as a novel class of hybrid compounds with inhibitory histamine N-methyltransferase potencies and histamine hH3 receptor affinities. Bioorg. Med. Chem., 2003, 11(10), 2163-2174.
[http://dx.doi.org/10.1016/S0968-0896(03)00120-2] [PMID: 12713826]
[32]
Stone, N.D.; Dunaway, S.B.; Flexner, C.; Tierney, C.; Calandra, G.B.; Becker, S.; Cao, Y.J.; Wiggins, I.P.; Conley, J.; MacFarland, R.T.; Park, J.G.; Lalama, C.; Snyder, S.; Kallungal, B.; Klingman, K.L.; Hendrix, C.W. Multiple-dose escalation study of the safety, pharmacokinetics, and biologic activity of oral AMD070, a selective CXCR4 receptor inhibitor, in human subjects. Antimicrob. Agents Chemother., 2007, 51(7), 2351-2358.
[http://dx.doi.org/10.1128/AAC.00013-07] [PMID: 17452489]
[33]
Overington, J.P.; Al-Lazikani, B.; Hopkins, A.L. How many drug targets are there? Nat. Rev. Drug Discov., 2006, 5(12), 993-996.
[http://dx.doi.org/10.1038/nrd2199] [PMID: 17139284]
[34]
Cusack, B.; Nelson, A.; Richelson, E. Binding of antidepressants to human brain receptors: focus on newer generation compounds. Psychopharmacology (Berl.), 1994, 114(4), 559-565.
[http://dx.doi.org/10.1007/BF02244985] [PMID: 7855217]
[35]
De Clercq, E. Antiretroviral drugs. Curr. Opin. Pharmacol., 2010, 10(5), 507-515.
[http://dx.doi.org/10.1016/j.coph.2010.04.011] [PMID: 20471318]
[36]
Leeansyah, E.; Cameron, P.U.; Solomon, A.; Tennakoon, S.; Velayudham, P.; Gouillou, M.; Spelman, T.; Hearps, A.; Fairley, C.; Smit, V.; Pierce, A.B.; Armishaw, J.; Crowe, S.M.; Cooper, D.A.; Koelsch, K.K.; Liu, J.P.; Chuah, J.; Lewin, S.R. Inhibition of telomerase activity by human immunodeficiency virus (HIV) nucleos(t)ide reverse transcriptase inhibitors: a potential factor contributing to HIV-associated accelerated aging. J. Infect. Dis., 2013, 207(7), 1157-1165.
[http://dx.doi.org/10.1093/infdis/jit006] [PMID: 23303810]
[37]
Gupta, R.; Walunj, S.S.; Tokala, R.K.; Parsa, K.V.; Singh, S.K.; Pal, M. Emerging drug candidates of dipeptidyl peptidase IV (DPP IV) inhibitor class for the treatment of Type 2 Diabetes. Curr. Drug Targets, 2009, 10(1), 71-87.
[http://dx.doi.org/10.2174/138945009787122860] [PMID: 19149538]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy