Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Flavonoids as Sirtuin Modulators

Author(s): Fatma Sezer Şenol Deniz, Gökçen Eren and Ilkay Erdogan Orhan*

Volume 22, Issue 9, 2022

Published on: 23 May, 2022

Page: [790 - 805] Pages: 16

DOI: 10.2174/1568026622666220422094744

Price: $65

Abstract

Sirtuins (SIRTs) are described as NAD+-dependent deacetylases, also known as class III histone deacetylases. So far, seven sirtuin genes (SIRTS 1-7) have been identified and characterized in mammals and are also known to occur in bacteria and eukaryotes. SIRTs are involved in various biological processes, including endocrine system, apoptosis, aging and longevity, diabetes, rheumatoid arthritis, obesity, inflammation, etc. Among them, the best-characterized one is SIRT1. Small molecules seem to be the most effective SIRT modulators. Flavonoids have been reported to possess many positive effects favorable for human health, while relatively less research has been reported so far on their functions as SIRT modulation mechanisms. In this regard, we aimed to focus on the modulatory effects of flavonoids on SIRTs as the most common secondary metabolites in natural products. Our literature survey covering the years from 2006 to 2021 pointed out that flavonoids frequently interact with SIRT1 and SIRT3, followed by SIRT6. It can also be concluded that some popular flavonoid derivatives, eg., resveratrol, quercetin, and catechin derivatives, came forward in terms of SIRT modulation.

Keywords: Sirtuins, Flavonoids, Modulation, SIRT1, Natural products, Life span, Genome stability.

« Previous
Graphical Abstract

[1]
Wierman, M.B.; Smith, J.S. Yeast sirtuins and the regulation of aging. FEMS Yeast Res., 2014, 14(1), 73-88.
[http://dx.doi.org/10.1111/1567-1364.12115] [PMID: 24164855]
[2]
Sauve, A.A.; Wolberger, C.; Schramm, V.L.; Boeke, J.D. The biochemistry of sirtuins. Annu. Rev. Biochem., 2006, 75(1), 435-465.
[http://dx.doi.org/10.1146/annurev.biochem.74.082803.133500] [PMID: 16756498]
[3]
Wang, Y.; He, J.; Liao, M.; Hu, M.; Li, W.; Ouyang, H.; Wang, X.; Ye, T.; Zhang, Y.; Ouyang, L. An overview of Sirtuins as potential therapeutic target: Structure, function and modulators. Eur. J. Med. Chem., 2019, 161, 48-77.
[http://dx.doi.org/10.1016/j.ejmech.2018.10.028] [PMID: 30342425]
[4]
Li, Y.; Liu, T.; Liao, S.; Li, Y.; Lan, Y.; Wang, A.; Wang, Y.; He, B. A mini-review on Sirtuin activity assays. Biochem. Biophys. Res. Commun., 2015, 467(3), 459-466.
[http://dx.doi.org/10.1016/j.bbrc.2015.09.172] [PMID: 26456653]
[5]
Kupis, W.; Pałyga, J.; Tomal, E.; Niewiadomska, E. The role of sirtuins in cellular homeostasis. J. Physiol. Biochem., 2016, 72(3), 371-380.
[http://dx.doi.org/10.1007/s13105-016-0492-6] [PMID: 27154583]
[6]
Scisciola, L.; Sarno, F.; Carafa, V.; Cosconati, S.; Di Maro, S.; Ciuffreda, L.; De Angelis, A.; Stiuso, P.; Feoli, A.; Sbardella, G.; Altucci, L.; Nebbioso, A. Two novel SIRT1 activators, SCIC2 and SCIC2.1, enhance SIRT1-mediated effects in stress response and senescence. Epigenetics, 2020, 15(6-7), 664-683.
[http://dx.doi.org/10.1080/15592294.2019.1704349] [PMID: 31942817]
[7]
Mautone, N.; Zwergel, C.; Mai, A.; Rotili, D. Sirtuin modulators: Where are we now? A review of patents from 2015 to 2019. Expert Opin. Ther. Pat., 2020, 1-19.
[http://dx.doi.org/10.1080/13543776.2020.1749264]
[8]
Roshdy, E.; Mustafa, M.; Shaltout, A.E-R.; Radwan, M.O.; Ibrahim, M.A.A.; Soliman, M.E.; Fujita, M.; Otsuka, M.; Ali, T.F.S. Selective SIRT2 inhibitors as promising anticancer therapeutics: An update from 2016 to 2020. Eur. J. Med. Chem., 2021, 224, 113709.
[http://dx.doi.org/10.1016/j.ejmech.2021.113709] [PMID: 34303869]
[9]
Dang, W. The controversial world of sirtuins. Drug Discov. Today. Technol., 2014, 12, e9-e17.
[http://dx.doi.org/10.1016/j.ddtec.2012.08.003] [PMID: 25027380]
[10]
Kumar, A.; Chauhan, S. How much successful are the medicinal chemists in modulation of SIRT1: a critical review. Eur. J. Med. Chem., 2016, 119, 45-69.
[http://dx.doi.org/10.1016/j.ejmech.2016.04.063] [PMID: 27153347]
[11]
Rahman, S.; Islam, R. Mammalian Sirt1: Insights on its biological functions. Cell Commun. Signal., 2011, 9(1), 11.
[http://dx.doi.org/10.1186/1478-811X-9-11] [PMID: 21549004]
[12]
Lee, J.T.; Gu, W. SIRT1: regulator of p53 deacetylation. Genes Cancer, 2013, 4(3-4), 112-117.
[http://dx.doi.org/10.1177/1947601913484496] [PMID: 24020002]
[13]
McBurney, M.W.; Clark-Knowles, K.V.; Caron, A.Z.; Gray, D.A. SIRT1 is a highly networked protein that mediates the adaptation to chronic physiological stress. Genes Cancer, 2013, 4(3-4), 125-134.
[http://dx.doi.org/10.1177/1947601912474893] [PMID: 24020004]
[14]
Flori, L.; Petrarolo, G.; Brogi, S.; La Motta, C.; Testai, L.; Calderone, V. Identification of novel SIRT1 activators endowed with cardioprotective profile. Eur. J. Pharm. Sci., 2021, 165, 105930.
[http://dx.doi.org/10.1016/j.ejps.2021.105930] [PMID: 34265406]
[15]
Wang, R.H.; Sengupta, K.; Li, C.; Kim, H.S.; Cao, L.; Xiao, C.; Kim, S.; Xu, X.; Zheng, Y.; Chilton, B.; Jia, R.; Zheng, Z.M.; Appella, E.; Wang, X.W.; Ried, T.; Deng, C.X. Impaired DNA damage response, genome instability, and tumorigenesis in SIRT1 mutant mice. Cancer Cell, 2008, 14(4), 312-323.
[http://dx.doi.org/10.1016/j.ccr.2008.09.001] [PMID: 18835033]
[16]
Luo, J.; Nikolaev, A.Y.; Imai, S.; Chen, D.; Su, F.; Shiloh, A.; Guarente, L.; Gu, W. Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell, 2001, 107(2), 137-148.
[http://dx.doi.org/10.1016/S0092-8674(01)00524-4] [PMID: 11672522]
[17]
Nemoto, S.; Fergusson, M.M.; Finkel, T. SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1alpha. J. Biol. Chem., 2005, 280(16), 16456-16460.
[http://dx.doi.org/10.1074/jbc.M501485200] [PMID: 15716268]
[18]
Mei, Z.; Zhang, X.; Yi, J.; Huang, J.; He, J.; Tao, Y. Sirtuins in metabolism, DNA repair and cancer. J. Exp. Clin. Cancer Res., 2016, 35(1), 182.
[http://dx.doi.org/10.1186/s13046-016-0461-5] [PMID: 27916001]
[19]
Sack, M.N.; Finkel, T. Mitochondrial metabolism, sirtuins, and aging. Cold Spring Harb. Perspect. Biol., 2012, 4(12), a013102.
[http://dx.doi.org/10.1101/cshperspect.a013102] [PMID: 23209156]
[20]
Bordone, L.; Motta, M.C.; Picard, F.; Robinson, A.; Jhala, U.S.; Apfeld, J.; McDonagh, T.; Lemieux, M.; McBurney, M.; Szilvasi, A.; Easlon, E.J.; Lin, S.J.; Guarente, L. Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic beta cells. PLoS Biol., 2006, 4(2), e31.
[http://dx.doi.org/10.1371/journal.pbio.0040031] [PMID: 16366736]
[21]
Potente, M.; Ghaeni, L.; Baldessari, D.; Mostoslavsky, R.; Rossig, L.; Dequiedt, F.; Haendeler, J.; Mione, M.; Dejana, E.; Alt, F.W.; Zeiher, A.M.; Dimmeler, S. SIRT1 controls endothelial angiogenic functions during vascular growth. Genes Dev., 2007, 21(20), 2644-2658.
[http://dx.doi.org/10.1101/gad.435107] [PMID: 17938244]
[22]
Winnik, S.; Auwerx, J.; Sinclair, D.A.; Matter, C.M. Protective effects of sirtuins in cardiovascular diseases: From bench to bedside. Eur. Heart J., 2015, 36(48), 3404-3412.
[http://dx.doi.org/10.1093/eurheartj/ehv290] [PMID: 26112889]
[23]
Banks, A.S.; Kon, N.; Knight, C.; Matsumoto, M.; Gutiérrez-Juárez, R.; Rossetti, L.; Gu, W.; Accili, D. SirT1 gain of function increases energy efficiency and prevents diabetes in mice. Cell Metab., 2008, 8(4), 333-341.
[http://dx.doi.org/10.1016/j.cmet.2008.08.014] [PMID: 18840364]
[24]
Kitada, M.; Kume, S.; Takeda-Watanabe, A.; Kanasaki, K.; Koya, D. Sirtuins and renal diseases: Relationship with aging and diabetic nephropathy. Clin. Sci. (Lond.), 2013, 124(3), 153-164.
[http://dx.doi.org/10.1042/CS20120190] [PMID: 23075334]
[25]
Budayeva, H.G.; Rowland, E.A.; Cristea, I.M. Intricate roles of mammalian sirtuins in defense against viral pathogens. J. Virol., 2015, 90(1), 5-8.
[http://dx.doi.org/10.1128/JVI.03220-14] [PMID: 26491165]
[26]
Pagans, S.; Pedal, A.; North, B.J.; Kaehlcke, K.; Marshall, B.L.; Dorr, A.; Hetzer-Egger, C.; Henklein, P.; Frye, R.; McBurney, M.W.; Hruby, H.; Jung, M.; Verdin, E.; Ott, M. SIRT1 regulates HIV transcription via Tat deacetylation. PLoS Biol., 2005, 3(2), e41.
[http://dx.doi.org/10.1371/journal.pbio.0030041] [PMID: 15719057]
[27]
Chung, H.T.; Joe, Y. Antagonistic crosstalk between SIRT1, PARP-1, and -2 in the regulation of chronic inflammation associated with aging and metabolic diseases. Integr. Med. Res., 2014, 3(4), 198-203.
[http://dx.doi.org/10.1016/j.imr.2014.09.005] [PMID: 28664098]
[28]
Kim, D.; Nguyen, M.D.; Dobbin, M.M.; Fischer, A.; Sananbenesi, F.; Rodgers, J.T.; Delalle, I.; Baur, J.A.; Sui, G.; Armour, S.M.; Puigserver, P.; Sinclair, D.A.; Tsai, L.H. SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer’s disease and amyotrophic lateral sclerosis. EMBO J., 2007, 26(13), 3169-3179.
[http://dx.doi.org/10.1038/sj.emboj.7601758] [PMID: 17581637]
[29]
Gan, L.; Mucke, L. Paths of convergence: Sirtuins in aging and neurodegeneration. Neuron, 2008, 58(1), 10-14.
[http://dx.doi.org/10.1016/j.neuron.2008.03.015] [PMID: 18400158]
[30]
Liu, T.; Liu, P.Y.; Marshall, G.M. The critical role of the class III histone deacetylase SIRT1 in cancer. Cancer Res., 2009, 69(5), 1702-1705.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-3365] [PMID: 19244112]
[31]
Li, K.; Luo, J.; Azabdaftari, G. The role of SIRT1 in tumorigenesis. N. Am. J. Med. Sci. (Boston), 2011, 4(2), 104-106.
[http://dx.doi.org/10.7156/v4i2p104] [PMID: 22180829]
[32]
Gillum, M.P.; Kotas, M.E.; Erion, D.M.; Kursawe, R.; Chatterjee, P.; Nead, K.T.; Muise, E.S.; Hsiao, J.J.; Frederick, D.W.; Yonemitsu, S.; Banks, A.S.; Qiang, L.; Bhanot, S.; Olefsky, J.M.; Sears, D.D.; Caprio, S.; Shulman, G.I. SirT1 regulates adipose tissue inflammation. Diabetes, 2011, 60(12), 3235-3245.
[http://dx.doi.org/10.2337/db11-0616] [PMID: 22110092]
[33]
Yoshizaki, T.; Schenk, S.; Imamura, T.; Babendure, J. L.; Sonoda, N.; Bae, E. J.; Oh, D. Y.; Lu, M.; Milne, J. C.; Westphal, C.; Bandyopadhyay, G.; Olefsky, J. M. SIRT1 inhibits inflammatory pathways in macrophages and modulates insulin sensitivity. Am. J. Physiol-Endoc. M, 2010, 298(3), E419-E428.
[http://dx.doi.org/10.1152/ajpendo.00417.2009]
[34]
Matsushima, S.; Sadoshima, J. The role of sirtuins in cardiac disease. Am. J. Physiol. Heart Circ. Physiol., 2015, 309(9), H1375-H1389.
[http://dx.doi.org/10.1152/ajpheart.00053.2015] [PMID: 26232232]
[35]
Askin, L.; Tibilli, H.; Tanriverdi, O.; Turkmen, S. The relationship between coronary artery disease and SIRT1 protein. North. Clin. Istanb., 2020, 7(6), 631-635.
[http://dx.doi.org/10.14744/nci.2020.31391] [PMID: 33381707]
[36]
Zhang, F.; Wang, S.; Gan, L.; Vosler, P.S.; Gao, Y.; Zigmond, M.J.; Chen, J. Protective effects and mechanisms of sirtuins in the nervous system. Prog. Neurobiol., 2011, 95(3), 373-395.
[http://dx.doi.org/10.1016/j.pneurobio.2011.09.001] [PMID: 21930182]
[37]
Donmez, G.; Outeiro, T.F. SIRT1 and SIRT2: Emerging targets in neurodegeneration. EMBO Mol. Med., 2013, 5(3), 344-352.
[http://dx.doi.org/10.1002/emmm.201302451] [PMID: 23417962]
[38]
Xu, J.; Jackson, C.W.; Khoury, N.; Escobar, I.; Perez-Pinzon, M.A. Brain SIRT1 mediates metabolic homeostasis and neuroprotection. Front. Endocrinol. (Lausanne), 2018, 9, 702.
[http://dx.doi.org/10.3389/fendo.2018.00702] [PMID: 30532738]
[39]
Duan, W.; Mattson, M.P. Dietary restriction and 2-deoxyglucose administration improve behavioral outcome and reduce degeneration of dopaminergic neurons in models of Parkinson’s disease. J. Neurosci. Res., 1999, 57(2), 195-206.
[http://dx.doi.org/10.1002/(SICI)1097-4547(19990715)57:2<195:AID-JNR5>3.0.CO;2-P] [PMID: 10398297]
[40]
Donmez, G.; Arun, A.; Chung, C.Y.; McLean, P.J.; Lindquist, S.; Guarente, L. SIRT1 protects against &α-synuclein aggregation by activating molecular chaperones. J. Neurosci., 2012, 32(1), 124-132.
[http://dx.doi.org/10.1523/JNEUROSCI.3442-11.2012] [PMID: 22219275]
[41]
Duan, W. Targeting sirtuin-1 in Huntington’s disease: rationale and current status. CNS Drugs, 2013, 27(5), 345-352.
[http://dx.doi.org/10.1007/s40263-013-0055-0] [PMID: 23549885]
[42]
Jeong, H.; Cohen, D.E.; Cui, L.; Supinski, A.; Savas, J.N.; Mazzulli, J.R.; Yates, J.R., III; Bordone, L.; Guarente, L.; Krainc, D. Sirt1 mediates neuroprotection from mutant huntingtin by activation of the TORC1 and CREB transcriptional pathway. Nat. Med., 2011, 18(1), 159-165.
[http://dx.doi.org/10.1038/nm.2559] [PMID: 22179316]
[43]
Jiang, M.; Wang, J.; Fu, J.; Du, L.; Jeong, H.; West, T.; Xiang, L.; Peng, Q.; Hou, Z.; Cai, H.; Seredenina, T.; Arbez, N.; Zhu, S.; Sommers, K.; Qian, J.; Zhang, J.; Mori, S.; Yang, X.W.; Tamashiro, K.L.K.; Aja, S.; Moran, T.H.; Luthi-Carter, R.; Martin, B.; Maudsley, S.; Mattson, M.P.; Cichewicz, R.H.; Ross, C.A.; Holtzman, D.M.; Krainc, D.; Duan, W. Neuroprotective role of Sirt1 in mammalian models of Huntington’s disease through activation of multiple SIRT1 targets. Nat. Med., 2011, 18(1), 153-158.
[http://dx.doi.org/10.1038/nm.2558] [PMID: 22179319]
[44]
Tulino, R.; Benjamin, A.C.; Jolinon, N.; Smith, D.L.; Chini, E.N.; Carnemolla, A.; Bates, G.P. SIRT1 activity is linked to its brain region-specific phosphorylation and is impaired in Huntington’s disease mice. PLoS One, 2016, 11(2), e0150682.
[http://dx.doi.org/10.1371/journal.pone.0150682] [PMID: 26919088]
[45]
Michán, S.; Li, Y.; Chou, M.M.H.; Parrella, E.; Ge, H.; Long, J.M.; Allard, J.S.; Lewis, K.; Miller, M.; Xu, W.; Mervis, R.F.; Chen, J.; Guerin, K.I.; Smith, L.E.H.; McBurney, M.W.; Sinclair, D.A.; Baudry, M.; de Cabo, R.; Longo, V.D. SIRT1 is essential for normal cognitive function and synaptic plasticity. J. Neurosci., 2010, 30(29), 9695-9707.
[http://dx.doi.org/10.1523/JNEUROSCI.0027-10.2010] [PMID: 20660252]
[46]
Guo, W.; Qian, L.; Zhang, J.; Zhang, W.; Morrison, A.; Hayes, P.; Wilson, S.; Chen, T.; Zhao, J. Sirt1 overexpression in neurons promotes neurite outgrowth and cell survival through inhibition of the mTOR signaling. J. Neurosci. Res., 2011, 89(11), 1723-1736.
[http://dx.doi.org/10.1002/jnr.22725] [PMID: 21826702]
[47]
Yuan, H.; Su, L.; Chen, W.Y. The emerging and diverse roles of sirtuins in cancer: A clinical perspective. OncoTargets Ther., 2013, 6, 1399-1416.
[http://dx.doi.org/10.2147/OTT.S37750] [PMID: 24133372]
[48]
Deng, C.X. SIRT1, is it a tumor promoter or tumor suppressor? Int. J. Biol. Sci., 2009, 5(2), 147-152.
[http://dx.doi.org/10.7150/ijbs.5.147] [PMID: 19173036]
[49]
Chen, X.; Sun, K.; Jiao, S.; Cai, N.; Zhao, X.; Zou, H.; Xie, Y.; Wang, Z.; Zhong, M.; Wei, L. High levels of SIRT1 expression enhance tumorigenesis and associate with a poor prognosis of colorectal carcinoma patients. Sci. Rep., 2014, 4(1), 7481.
[http://dx.doi.org/10.1038/srep07481] [PMID: 25500546]
[50]
Huffman, D.M.; Grizzle, W.E.; Bamman, M.M.; Kim, J.S.; Eltoum, I.A.; Elgavish, A.; Nagy, T.R. SIRT1 is significantly elevated in mouse and human prostate cancer. Cancer Res., 2007, 67(14), 6612-6618.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-0085] [PMID: 17638871]
[51]
Holloway, K.R.; Barbieri, A.; Malyarchuk, S.; Saxena, M.; Nedeljkovic-Kurepa, A.; Cameron Mehl, M.; Wang, A.; Gu, X.; Pruitt, K. SIRT1 positively regulates breast cancer associated human aromatase (CYP19A1) expression. Mol. Endocrinol., 2013, 27(3), 480-490.
[http://dx.doi.org/10.1210/me.2012-1347] [PMID: 23340254]
[52]
Herranz, D.; Muñoz-Martin, M.; Cañamero, M.; Mulero, F.; Martinez-Pastor, B.; Fernandez-Capetillo, O.; Serrano, M. Sirt1 improves healthy ageing and protects from metabolic syndrome-associated cancer. Nat. Commun., 2010, 1(1), 3.
[http://dx.doi.org/10.1038/ncomms1001] [PMID: 20975665]
[53]
Choi, G.; Lee, J.; Ji, J.Y.; Woo, J.; Kang, N.S.; Cho, S.Y.; Kim, H.R.; Ha, J.D.; Han, S-Y. Discovery of a potent small molecule SIRT1/2 inhibitor with anticancer effects. Int. J. Oncol., 2013, 43(4), 1205-1211.
[http://dx.doi.org/10.3892/ijo.2013.2035] [PMID: 23900402]
[54]
Yeung, F.; Hoberg, J.E.; Ramsey, C.S.; Keller, M.D.; Jones, D.R.; Frye, R.A.; Mayo, M.W. Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J., 2004, 23(12), 2369-2380.
[http://dx.doi.org/10.1038/sj.emboj.7600244] [PMID: 15152190]
[55]
Sakai, T.; Matsumoto, Y.; Ishikawa, M.; Sugita, K.; Hashimoto, Y.; Wakai, N.; Kitao, A.; Morishita, E.; Toyoshima, C.; Hayashi, T.; Akiyama, T. Design, synthesis and structure-activity relationship studies of novel sirtuin 2 (SIRT2) inhibitors with a benzamide skeleton. Bioorg. Med. Chem., 2015, 23(2), 328-339.
[http://dx.doi.org/10.1016/j.bmc.2014.11.027] [PMID: 25515955]
[56]
Wang, Y.; Yang, J.; Hong, T.; Chen, X.; Cui, L. SIRT2: Controversy and multiple roles in disease and physiology. Ageing Res. Rev., 2019, 55, 100961.
[http://dx.doi.org/10.1016/j.arr.2019.100961] [PMID: 31505260]
[57]
Zhang, L.; Kim, S.; Ren, X. The clinical significance of SIRT2 in malignancies: A tumor suppressor or an oncogene? Front. Oncol., 2020, 10, 1721.
[http://dx.doi.org/10.3389/fonc.2020.01721] [PMID: 33014852]
[58]
Dryden, S.C.; Nahhas, F.A.; Nowak, J.E.; Goustin, A.S.; Tainsky, M.A. Role for human SIRT2 NAD-dependent deacetylase activity in control of mitotic exit in the cell cycle. Mol. Cell. Biol., 2003, 23(9), 3173-3185.
[http://dx.doi.org/10.1128/MCB.23.9.3173-3185.2003] [PMID: 12697818]
[59]
Wang, F.; Nguyen, M.; Qin, F.X.F.; Tong, Q. SIRT2 deacetylates FOXO3a in response to oxidative stress and caloric restriction. Aging Cell, 2007, 6(4), 505-514.
[http://dx.doi.org/10.1111/j.1474-9726.2007.00304.x] [PMID: 17521387]
[60]
Jing, E.; Gesta, S.; Kahn, C.R. SIRT2 regulates adipocyte differentiation through FoxO1 acetylation/deacetylation. Cell Metab., 2007, 6(2), 105-114.
[http://dx.doi.org/10.1016/j.cmet.2007.07.003] [PMID: 17681146]
[61]
Langley, B.; Sauve, A. Sirtuin deacetylases as therapeutic targets in the nervous system. Neurotherapeutics, 2013, 10(4), 605-620.
[http://dx.doi.org/10.1007/s13311-013-0214-5] [PMID: 24037427]
[62]
Rothgiesser, K.M.; Erener, S.; Waibel, S.; Lüscher, B.; Hottiger, M.O. SIRT2 regulates NF-κ B dependent gene expression through deacetylation of p65 Lys310. J. Cell Sci., 2010, 123(Pt 24), 4251-4258.
[http://dx.doi.org/10.1242/jcs.073783] [PMID: 21081649]
[63]
Jiang, W.; Wang, S.; Xiao, M.; Lin, Y.; Zhou, L.; Lei, Q.; Xiong, Y.; Guan, K.L.; Zhao, S. Acetylation regulates gluconeogenesis by promoting PEPCK1 degradation via recruiting the UBR5 ubiquitin ligase. Mol. Cell, 2011, 43(1), 33-44.
[http://dx.doi.org/10.1016/j.molcel.2011.04.028] [PMID: 21726808]
[64]
Outeiro, T.F.; Kontopoulos, E.; Altmann, S.M.; Kufareva, I.; Strathearn, K.E.; Amore, A.M.; Volk, C.B.; Maxwell, M.M.; Rochet, J.C.; McLean, P.J.; Young, A.B.; Abagyan, R.; Feany, M.B.; Hyman, B.T.; Kazantsev, A.G. Sirtuin 2 inhibitors rescue alpha-synuclein-mediated toxicity in models of Parkinson’s disease. Science, 2007, 317(5837), 516-519.
[http://dx.doi.org/10.1126/science.1143780] [PMID: 17588900]
[65]
Luthi-Carter, R.; Taylor, D.M.; Pallos, J.; Lambert, E.; Amore, A.; Parker, A.; Moffitt, H.; Smith, D.L.; Runne, H.; Gokce, O.; Kuhn, A.; Xiang, Z.; Maxwell, M.M.; Reeves, S.A.; Bates, G.P.; Neri, C.; Thompson, L.M.; Marsh, J.L.; Kazantsev, A.G. SIRT2 inhibition achieves neuroprotection by decreasing sterol biosynthesis. Proc. Natl. Acad. Sci. USA, 2010, 107(17), 7927-7932.
[http://dx.doi.org/10.1073/pnas.1002924107] [PMID: 20378838]
[66]
Taylor, D.M.; Balabadra, U.; Xiang, Z.; Woodman, B.; Meade, S.; Amore, A.; Maxwell, M.M.; Reeves, S.; Bates, G.P.; Luthi-Carter, R.; Lowden, P.A.S.; Kazantsev, A.G. A brain-permeable small molecule reduces neuronal cholesterol by inhibiting activity of sirtuin 2 deacetylase. ACS Chem. Biol., 2011, 6(6), 540-546.
[http://dx.doi.org/10.1021/cb100376q] [PMID: 21370928]
[67]
Carafa, V.; Altucci, L.; Nebbioso, A. Dual tumor suppressor and tumor promoter action of sirtuins in determining malignant phenotype. Front. Pharmacol., 2019, 10, 38.
[http://dx.doi.org/10.3389/fphar.2019.00038] [PMID: 30761005]
[68]
Chen, G.; Huang, P.; Hu, C. The role of SIRT2 in cancer: A novel therapeutic target. Int. J. Cancer, 2020, 147(12), 3297-3304.
[http://dx.doi.org/10.1002/ijc.33118] [PMID: 32449165]
[69]
Jing, H.; Hu, J.; He, B.; Negrón Abril, Y.L.; Stupinski, J.; Weiser, K.; Carbonaro, M.; Chiang, Y-L.; Southard, T.; Giannakakou, P.; Weiss, R.S.; Lin, H.A. SIRT2-selective inhibitor promotes c-Myc oncoprotein degradation and exhibits broad anticancer activity. Cancer Cell, 2016, 29(3), 297-310.
[http://dx.doi.org/10.1016/j.ccell.2016.02.007] [PMID: 26977881]
[70]
Shah, A.A.; Ito, A.; Nakata, A.; Yoshida, M. Identification of a selective SIRT2 inhibitor and its anti-breast cancer activity. Biol. Pharm. Bull., 2016, 39(10), 1739-1742.
[http://dx.doi.org/10.1248/bpb.b16-00520] [PMID: 27725455]
[71]
Kozako, T.; Mellini, P.; Ohsugi, T.; Aikawa, A.; Uchida, Y.I.; Honda, S.I.; Suzuki, T. Novel small molecule SIRT2 inhibitors induce cell death in leukemic cell lines. BMC Cancer, 2018, 18(1), 791.
[http://dx.doi.org/10.1186/s12885-018-4710-1] [PMID: 30081901]
[72]
Sayd, S.; Thirant, C.; El-Habr, E.A.; Lipecka, J.; Dubois, L.G.; Bogeas, A.; Tahiri-Jouti, N.; Chneiweiss, H.; Junier, M.P. Sirtuin-2 activity is required for glioma stem cell proliferation arrest but not necrosis induced by resveratrol. Stem Cell Rev. Rep., 2014, 10(1), 103-113.
[http://dx.doi.org/10.1007/s12015-013-9465-0] [PMID: 23955573]
[73]
Alhazzazi, T.Y.; Kamarajan, P.; Verdin, E.; Kapila, Y.L. SIRT3 and cancer: tumor promoter or suppressor? Biochim. Biophys. Acta, 2011, 1816(1), 80-88.
[http://dx.doi.org/10.1016/j.bbcan.2011.04.004] [PMID: 21586315]
[74]
Someya, S.; Yu, W.; Hallows, W.C.; Xu, J.; Vann, J.M.; Leeuwenburgh, C.; Tanokura, M.; Denu, J.M.; Prolla, T.A. Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction. Cell, 2010, 143(5), 802-812.
[http://dx.doi.org/10.1016/j.cell.2010.10.002] [PMID: 21094524]
[75]
Lin, S.; Xing, H.; Zang, T.; Ruan, X.; Wo, L.; He, M. Sirtuins in mitochondrial stress: Indispensable helpers behind the scenes. Ageing Res. Rev., 2018, 44, 22-32.
[http://dx.doi.org/10.1016/j.arr.2018.03.006] [PMID: 29580919]
[76]
Kim, S.H.; Lu, H.F.; Alano, C.C. Neuronal Sirt3 protects against excitotoxic injury in mouse cortical neuron culture. PLoS One, 2011, 6(3), e14731.
[http://dx.doi.org/10.1371/journal.pone.0014731] [PMID: 21390294]
[77]
Sun, W.; Liu, C.; Chen, Q.; Liu, N.; Yan, Y.; Liu, B. SIRT3: A new regulator of cardiovascular diseases. Oxid. Med. Cell. Longev., 2018, 2018, 7293861.
[http://dx.doi.org/10.1155/2018/7293861] [PMID: 29643974]
[78]
Chen, Y.; Fu, L.L.; Wen, X.; Wang, X.Y.; Liu, J.; Cheng, Y.; Huang, J. Sirtuin-3 (SIRT3), a therapeutic target with oncogenic and tumor-suppressive function in cancer. Cell Death Dis., 2014, 5(2), e1047.
[http://dx.doi.org/10.1038/cddis.2014.14] [PMID: 24503539]
[79]
Alhazzazi, T.Y.; Kamarajan, P.; Joo, N.; Huang, J.Y.; Verdin, E.; D’Silva, N.J.; Kapila, Y.L. Sirtuin-3 (SIRT3), a novel potential therapeutic target for oral cancer. Cancer, 2011, 117(8), 1670-1678.
[http://dx.doi.org/10.1002/cncr.25676] [PMID: 21472714]
[80]
Alhazzazi, T.Y.; Kamarajan, P.; Xu, Y.; Ai, T.; Chen, L.; Verdin, E.; Kapila, Y.L. A novel Sirtuin-3 inhibitor, LC-0296, inhibits cell survival and proliferation, and promotes apoptosis of head and neck cancer cells. Anticancer Res., 2016, 36(1), 49-60.
[PMID: 26722027]
[81]
Xiong, Y.; Wang, M.; Zhao, J.; Wang, L.; Li, X.; Zhang, Z.; Jia, L.; Han, Y. SIRT3 is correlated with the malignancy of non-small cell lung cancer. Int. J. Oncol., 2017, 50(3), 903-910.
[http://dx.doi.org/10.3892/ijo.2017.3868] [PMID: 28197634]
[82]
Watroba, M.; Szukiewicz, D. The role of sirtuins in aging and age-related diseases. Adv. Med. Sci., 2016, 61(1), 52-62.
[http://dx.doi.org/10.1016/j.advms.2015.09.003] [PMID: 26521204]
[83]
Wang, C.; Liu, Y.; Zhu, Y.; Kong, C. Functions of mammalian SIRT4 in cellular metabolism and research progress in human cancer. Oncol. Lett., 2020, 20(4), 11.
[http://dx.doi.org/10.3892/ol.2020.11872] [PMID: 32774484]
[84]
Min, Z.; Gao, J.; Yu, Y. The roles of mitochondrial SIRT4 in cellular metabolism. Front. Endocrinol. (Lausanne), 2019, 9, 783.
[http://dx.doi.org/10.3389/fendo.2018.00783] [PMID: 30666234]
[85]
Jeong, S.M.; Xiao, C.; Finley, L.W.S.; Lahusen, T.; Souza, A.L.; Pierce, K.; Li, Y.H.; Wang, X.; Laurent, G.; German, N.J.; Xu, X.; Li, C.; Wang, R.H.; Lee, J.; Csibi, A.; Cerione, R.; Blenis, J.; Clish, C.B.; Kimmelman, A.; Deng, C.X.; Haigis, M.C. SIRT4 has tumor-suppressive activity and regulates the cellular metabolic response to DNA damage by inhibiting mitochondrial glutamine metabolism. Cancer Cell, 2013, 23(4), 450-463.
[http://dx.doi.org/10.1016/j.ccr.2013.02.024] [PMID: 23562301]
[86]
Huang, G.; Zhu, G. Sirtuin-4 (SIRT4), a therapeutic target with oncogenic and tumor-suppressive activity in cancer. OncoTargets Ther., 2018, 11, 3395-3400.
[http://dx.doi.org/10.2147/OTT.S157724] [PMID: 29928130]
[87]
Tomaselli, D.; Steegborn, C.; Mai, A.; Rotili, D. Sirt4: A multifaceted enzyme at the crossroads of mitochondrial metabolism and cancer. Front. Oncol., 2020, 10, 474.
[http://dx.doi.org/10.3389/fonc.2020.00474] [PMID: 32373514]
[88]
Nishida, Y.; Rardin, M.J.; Carrico, C.; He, W.; Sahu, A.K.; Gut, P.; Najjar, R.; Fitch, M.; Hellerstein, M.; Gibson, B.W.; Verdin, E. SIRT5 regulates both cytosolic and mitochondrial protein malonylation with glycolysis as a major target. Mol. Cell, 2015, 59(2), 321-332.
[http://dx.doi.org/10.1016/j.molcel.2015.05.022] [PMID: 26073543]
[89]
Polletta, L.; Vernucci, E.; Carnevale, I.; Arcangeli, T.; Rotili, D.; Palmerio, S.; Steegborn, C.; Nowak, T.; Schutkowski, M.; Pellegrini, L.; Sansone, L.; Villanova, L.; Runci, A.; Pucci, B.; Morgante, E.; Fini, M.; Mai, A.; Russo, M.A.; Tafani, M. SIRT5 regulation of ammonia-induced autophagy and mitophagy. Autophagy, 2015, 11(2), 253-270.
[http://dx.doi.org/10.1080/15548627.2015.1009778] [PMID: 25700560]
[90]
Li, F.; He, X.; Ye, D.; Lin, Y.; Yu, H.; Yao, C.; Huang, L.; Zhang, J.; Wang, F.; Xu, S.; Wu, X.; Liu, L.; Yang, C.; Shi, J.; He, X.; Liu, J.; Qu, Y.; Guo, F.; Zhao, J.; Xu, W.; Zhao, S. NADP(+)-IDH mutations promote hypersuccinylation that impairs mitochondria respiration and induces apoptosis resistance. Mol. Cell, 2015, 60(4), 661-675.
[http://dx.doi.org/10.1016/j.molcel.2015.10.017] [PMID: 26585387]
[91]
Rardin, M.J.; He, W.; Nishida, Y.; Newman, J.C.; Carrico, C.; Danielson, S.R.; Guo, A.; Gut, P.; Sahu, A.K.; Li, B.; Uppala, R.; Fitch, M.; Riiff, T.; Zhu, L.; Zhou, J.; Mulhern, D.; Stevens, R.D.; Ilkayeva, O.R.; Newgard, C.B.; Jacobson, M.P.; Hellerstein, M.; Goetzman, E.S.; Gibson, B.W.; Verdin, E. SIRT5 regulates the mitochondrial lysine succinylome and metabolic networks. Cell Metab., 2013, 18(6), 920-933.
[http://dx.doi.org/10.1016/j.cmet.2013.11.013] [PMID: 24315375]
[92]
Lin, Z.F.; Xu, H.B.; Wang, J.Y.; Lin, Q.; Ruan, Z.; Liu, F.B.; Jin, W.; Huang, H.H.; Chen, X. SIRT5 desuccinylates and activates SOD1 to eliminate ROS. Biochem. Biophys. Res. Commun., 2013, 441(1), 191-195.
[http://dx.doi.org/10.1016/j.bbrc.2013.10.033] [PMID: 24140062]
[93]
Nakagawa, T.; Lomb, D.J.; Haigis, M.C.; Guarente, L. SIRT5 Deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle. Cell, 2009, 137(3), 560-570.
[http://dx.doi.org/10.1016/j.cell.2009.02.026] [PMID: 19410549]
[94]
Nakamura, Y.; Ogura, M.; Ogura, K.; Tanaka, D.; Inagaki, N. SIRT5 deacetylates and activates urate oxidase in liver mitochondria of mice. FEBS Lett., 2012, 586(23), 4076-4081.
[http://dx.doi.org/10.1016/j.febslet.2012.10.009] [PMID: 23085393]
[95]
Zhu, W.Z.; Wu, X.F.; Zhang, Y.; Zhou, Z.N. Proteomic analysis of mitochondrial proteins in cardiomyocytes from rats subjected to intermittent hypoxia. Eur. J. Appl. Physiol., 2012, 112(3), 1037-1046.
[http://dx.doi.org/10.1007/s00421-011-2050-9] [PMID: 21735218]
[96]
Zhou, B.; Xiao, M.; Hu, H.; Pei, X.; Xue, Y.; Miao, G.; Wang, J.; Li, W.; Du, Y.; Zhang, P.; Wei, T. Cardioprotective role of SIRT5 in response to acute ischemia through a novel liver-cardiac crosstalk mechanism. Front. Cell Dev. Biol., 2021, 9, 687559.
[http://dx.doi.org/10.3389/fcell.2021.687559] [PMID: 34368135]
[97]
Sadhukhan, S.; Liu, X.; Ryu, D.; Nelson, O.D.; Stupinski, J.A.; Li, Z.; Chen, W.; Zhang, S.; Weiss, R.S.; Locasale, J.W.; Auwerx, J.; Lin, H. Metabolomics-assisted proteomics identifies succinylation and SIRT5 as important regulators of cardiac function. Proc. Natl. Acad. Sci. USA, 2016, 113(16), 4320-4325.
[http://dx.doi.org/10.1073/pnas.1519858113] [PMID: 27051063]
[98]
Gu, W.; Qian, Q.; Xu, Y.; Xu, X.; Zhang, L.; He, S.; Li, D. SIRT5 regulates autophagy and apoptosis in gastric cancer cells. J. Int. Med. Res., 2021, 49(2), 300060520986355.
[http://dx.doi.org/10.1177/0300060520986355] [PMID: 33530803]
[99]
Lutz, M.I.; Milenkovic, I.; Regelsberger, G.; Kovacs, G.G. Distinct patterns of sirtuin expression during progression of Alzheimer’s disease. Neuromolecular Med., 2014, 16(2), 405-414.
[http://dx.doi.org/10.1007/s12017-014-8288-8] [PMID: 24464653]
[100]
Wu, S.; Wei, Y.; Li, J.; Bai, Y.; Yin, P.; Wang, S. SIRT5 represses neurotrophic pathways and abeta production in Alzheimer’s disease by targeting autophagy. ACS Chem. Neurosci., 2021, 12(23), 4428-4437.
[http://dx.doi.org/10.1021/acschemneuro.1c00468] [PMID: 34788008]
[101]
Avalos, J.L.; Bever, K.M.; Wolberger, C. Mechanism of sirtuin inhibition by nicotinamide: Altering the NAD(+) cosubstrate specificity of a Sir2 enzyme. Mol. Cell, 2005, 17(6), 855-868.
[http://dx.doi.org/10.1016/j.molcel.2005.02.022] [PMID: 15780941]
[102]
Lu, W.; Zuo, Y.; Feng, Y.; Zhang, M. SIRT5 facilitates cancer cell growth and drug resistance in non-small cell lung cancer. Tumour Biol., 2014, 35(11), 10699-10705.
[http://dx.doi.org/10.1007/s13277-014-2372-4] [PMID: 25070488]
[103]
Du, Z.; Liu, X.; Chen, T.; Gao, W.; Wu, Z.; Hu, Z.; Wei, D.; Gao, C.; Li, Q. Targeting a Sirt5-positive subpopulation overcomes multidrug resistance in wild-type KRAS colorectal carcinomas. Cell Rep., 2018, 22(10), 2677-2689.
[http://dx.doi.org/10.1016/j.celrep.2018.02.037] [PMID: 29514096]
[104]
Greene, K.S.; Lukey, M.J.; Wang, X.; Blank, B.; Druso, J.E.; Lin, M.J.; Stalnecker, C.A.; Zhang, C.; Negrón Abril, Y.; Erickson, J.W.; Wilson, K.F.; Lin, H.; Weiss, R.S.; Cerione, R.A. SIRT5 stabilizes mitochondrial glutaminase and supports breast cancer tumorigenesis. Proc. Natl. Acad. Sci. USA, 2019, 116(52), 26625-26632.
[http://dx.doi.org/10.1073/pnas.1911954116] [PMID: 31843902]
[105]
Jaiswal, A.; Xudong, Z.; Zhenyu, J.; Saretzki, G. Mitochondrial sirtuins in stem cells and cancer. FEBS J., 2021, febs.15879.
[http://dx.doi.org/10.1111/febs.15879] [PMID: 33866670]
[106]
Liu, G.; Chen, H.; Liu, H.; Zhang, W.; Zhou, J. Emerging roles of SIRT6 in human diseases and its modulators. Med. Res. Rev., 2021, 41(2), 1089-1137.
[http://dx.doi.org/10.1002/med.21753] [PMID: 33325563]
[107]
Chang, A.R.; Ferrer, C.M.; Mostoslavsky, R. SIRT6, a mammalian deacylase with multitasking abilities. Physiol. Rev., 2020, 100(1), 145-169.
[http://dx.doi.org/10.1152/physrev.00030.2018] [PMID: 31437090]
[108]
Zhong, L.; D’Urso, A.; Toiber, D.; Sebastian, C.; Henry, R.E.; Vadysirisack, D.D.; Guimaraes, A.; Marinelli, B.; Wikstrom, J.D.; Nir, T.; Clish, C.B.; Vaitheesvaran, B.; Iliopoulos, O.; Kurland, I.; Dor, Y.; Weissleder, R.; Shirihai, O.S.; Ellisen, L.W.; Espinosa, J.M.; Mostoslavsky, R. The histone deacetylase SIRT6 regulates glucose homeostasis via HIF1 alpha. Cell, 2010, 140(2), 280-293.
[http://dx.doi.org/10.1016/j.cell.2009.12.041] [PMID: 20141841]
[109]
Sebastián, C.; Zwaans, B.M.M.; Silberman, D.M.; Gymrek, M.; Goren, A.; Zhong, L.; Ram, O.; Truelove, J.; Guimaraes, A.R.; Toiber, D.; Cosentino, C.; Greenson, J.K.; MacDonald, A.I.; McGlynn, L.; Maxwell, F.; Edwards, J.; Giacosa, S.; Guccione, E.; Weissleder, R.; Bernstein, B.E.; Regev, A.; Shiels, P.G.; Lombard, D.B.; Mostoslavsky, R. The histone deacetylase SIRT6 is a tumor suppressor that controls cancer metabolism. Cell, 2012, 151(6), 1185-1199.
[http://dx.doi.org/10.1016/j.cell.2012.10.047] [PMID: 23217706]
[110]
Kawahara, T.L.A.; Michishita, E.; Adler, A.S.; Damian, M.; Berber, E.; Lin, M.; McCord, R.A.; Ongaigui, K.C.L.; Boxer, L.D.; Chang, H.Y.; Chua, K.F. SIRT6 links histone H3 lysine 9 deacetylation to NF-kappaB-dependent gene expression and organismal life span. Cell, 2009, 136(1), 62-74.
[http://dx.doi.org/10.1016/j.cell.2008.10.052] [PMID: 19135889]
[111]
Mao, Z.; Hine, C.; Tian, X.; Van Meter, M.; Au, M.; Vaidya, A.; Seluanov, A.; Gorbunova, V. SIRT6 promotes DNA repair under stress by activating PARP1. Science, 2011, 332(6036), 1443-1446.
[http://dx.doi.org/10.1126/science.1202723] [PMID: 21680843]
[112]
Tasselli, L.; Zheng, W.; Chua, K.F. SIRT6: Novel mechanisms and links to aging and disease. Trends Endocrinol. Metab., 2017, 28(3), 168-185.
[http://dx.doi.org/10.1016/j.tem.2016.10.002] [PMID: 27836583]
[113]
Li, X.; Liu, L.; Li, T.; Liu, M.; Wang, Y.; Ma, H.; Mu, N.; Wang, H. SIRT6 in senescence and aging-related cardiovascular diseases. Front. Cell Dev. Biol., 2021, 9, 641315.
[http://dx.doi.org/10.3389/fcell.2021.641315] [PMID: 33855020]
[114]
Jung, E. S.; Choi, H.; Song, H.; Hwang, Y. J.; Kim, A.; Ryu, H.; Mook-Jung, I. p53-dependent SIRT6 expression protects A beta 42-induced DNA damage. Sci. Rep.-Uk, 2016, 6.
[http://dx.doi.org/10.1038/srep25628]
[115]
Kaluski, S.; Portillo, M.; Besnard, A.; Stein, D.; Einav, M.; Zhong, L.; Ueberham, U.; Arendt, T.; Mostoslavsky, R.; Sahay, A.; Toiber, D. Neuroprotective functions for the histone deacetylase SIRT6. Cell Rep., 2017, 18(13), 3052-3062.
[http://dx.doi.org/10.1016/j.celrep.2017.03.008] [PMID: 28355558]
[116]
Nicholatos, J.W.; Francisco, A.B.; Bender, C.A.; Yeh, T.; Lugay, F.J.; Salazar, J.E.; Glorioso, C.; Libert, S. Nicotine promotes neuron survival and partially protects from Parkinson’s disease by suppressing SIRT6. Acta Neuropathol. Commun., 2018, 6(1), 120.
[http://dx.doi.org/10.1186/s40478-018-0625-y] [PMID: 30409187]
[117]
Marquardt, J.U.; Fischer, K.; Baus, K.; Kashyap, A.; Ma, S.; Krupp, M.; Linke, M.; Teufel, A.; Zechner, U.; Strand, D.; Thorgeirsson, S.S.; Galle, P.R.; Strand, S. Sirtuin-6-dependent genetic and epigenetic alterations are associated with poor clinical outcome in hepatocellular carcinoma patients. Hepatology, 2013, 58(3), 1054-1064.
[http://dx.doi.org/10.1002/hep.26413] [PMID: 23526469]
[118]
Zhang, Y.; Nie, L.; Xu, K.; Fu, Y.; Zhong, J.; Gu, K.; Zhang, L. SIRT6, a novel direct transcriptional target of FoxO3a, mediates colon cancer therapy. Theranostics, 2019, 9(8), 2380-2394.
[http://dx.doi.org/10.7150/thno.29724] [PMID: 31149050]
[119]
Zhang, J.; Yin, X.J.; Xu, C.J.; Ning, Y.X.; Chen, M.; Zhang, H.; Chen, S.F.; Yao, L.Q. The histone deacetylase SIRT6 inhibits ovarian cancer cell proliferation via down-regulation of Notch 3 expression. Eur. Rev. Med. Pharmaco., 2015, 19(5), 818-824.
[PMID: 25807436]
[120]
Cea, M.; Cagnetta, A.; Adamia, S.; Acharya, C.; Tai, Y.T.; Fulciniti, M.; Ohguchi, H.; Munshi, A.; Acharya, P.; Bhasin, M.K.; Zhong, L.; Carrasco, R.; Monacelli, F.; Ballestrero, A.; Richardson, P.; Gobbi, M.; Lemoli, R.M.; Munshi, N.; Hideshima, T.; Nencioni, A.; Chauhan, D.; Anderson, K.C. Evidence for a role of the histone deacetylase SIRT6 in DNA damage response of multiple myeloma cells. Blood, 2016, 127(9), 1138-1150.
[http://dx.doi.org/10.1182/blood-2015-06-649970] [PMID: 26675349]
[121]
Lai, C.C.; Lin, P.M.; Lin, S.F.; Hsu, C.H.; Lin, H.C.; Hu, M.L.; Hsu, C.M.; Yang, M.Y. Altered expression of SIRT gene family in head and neck squamous cell carcinoma. Tumour Biol., 2013, 34(3), 1847-1854.
[http://dx.doi.org/10.1007/s13277-013-0726-y] [PMID: 23475622]
[122]
Wang, J.C.; Kafeel, M.I.; Avezbakiyev, B.; Chen, C.; Sun, Y.; Rathnasabapathy, C.; Kalavar, M.; He, Z.; Burton, J.; Lichter, S. Histone deacetylase in chronic lymphocytic leukemia. Oncology, 2011, 81(5-6), 325-329.
[http://dx.doi.org/10.1159/000334577] [PMID: 22237050]
[123]
Tsai, Y.C.; Greco, T.M.; Cristea, I.M. Sirtuin 7 plays a role in ribosome biogenesis and protein synthesis. Mol. Cell. Proteomics, 2014, 13(1), 73-83.
[http://dx.doi.org/10.1074/mcp.M113.031377] [PMID: 24113281]
[124]
Wu, D.; Li, Y.; Zhu, K.S.; Wang, H.; Zhu, W.G. Advances in cellular characterization of the sirtuin isoform, SIRT7. Front. Endocrinol. (Lausanne), 2018, 9, 652.
[http://dx.doi.org/10.3389/fendo.2018.00652] [PMID: 30510540]
[125]
Chen, S.; Blank, M.F.; Iyer, A.; Huang, B.; Wang, L.; Grummt, I.; Voit, R. SIRT7-dependent deacetylation of the U3-55k protein controls pre-rRNA processing. Nat. Commun., 2016, 7(1), 10734.
[http://dx.doi.org/10.1038/ncomms10734] [PMID: 26867678]
[126]
Chen, S.; Seiler, J.; Santiago-Reichelt, M.; Felbel, K.; Grummt, I.; Voit, R. Repression of RNA polymerase I upon stress is caused by inhibition of RNA-dependent deacetylation of PAF53 by SIRT7. Mol. Cell, 2013, 52(3), 303-313.
[http://dx.doi.org/10.1016/j.molcel.2013.10.010] [PMID: 24207024]
[127]
Hubbi, M.E.; Hu, H. Kshitiz; Gilkes, D.M.; Semenza, G.L. Sirtuin-7 inhibits the activity of hypoxia-inducible factors. J. Biol. Chem., 2013, 288(29), 20768-20775.
[http://dx.doi.org/10.1074/jbc.M113.476903] [PMID: 23750001]
[128]
Ryu, D.; Jo, Y.S.; Lo Sasso, G.; Stein, S.; Zhang, H.; Perino, A.; Lee, J.U.; Zeviani, M.; Romand, R.; Hottiger, M.O.; Schoonjans, K.; Auwerx, J.A. SIRT7-dependent acetylation switch of GABP&β1 controls mitochondrial function. Cell Metab., 2014, 20(5), 856-869.
[http://dx.doi.org/10.1016/j.cmet.2014.08.001] [PMID: 25200183]
[129]
Kim, J.K.; Noh, J.H.; Jung, K.H.; Eun, J.W.; Bae, H.J.; Kim, M.G.; Chang, Y.G.; Shen, Q.; Park, W.S.; Lee, J.Y.; Borlak, J.; Nam, S.W. Sirtuin7 oncogenic potential in human hepatocellular carcinoma and its regulation by the tumor suppressors MiR-125a-5p and MiR-125b. Hepatology, 2013, 57(3), 1055-1067.
[http://dx.doi.org/10.1002/hep.26101] [PMID: 23079745]
[130]
Han, Y.; Liu, Y.; Zhang, H.; Wang, T.; Diao, R.; Jiang, Z.; Gui, Y.; Cai, Z. Hsa-miR-125b suppresses bladder cancer development by down-regulating oncogene SIRT7 and oncogenic long non-coding RNA MALAT1. FEBS Lett., 2013, 587(23), 3875-3882.
[http://dx.doi.org/10.1016/j.febslet.2013.10.023] [PMID: 24396870]
[131]
Yu, H.; Ye, W.; Wu, J.; Meng, X.; Liu, R.Y.; Ying, X.; Zhou, Y.; Wang, H.; Pan, C.; Huang, W. Overexpression of sirt7 exhibits oncogenic property and serves as a prognostic factor in colorectal cancer. Clin. Cancer Res., 2014, 20(13), 3434-3445.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-2952] [PMID: 24771643]
[132]
Wang, H.L.; Lu, R.Q.; Xie, S.H.; Zheng, H.; Wen, X.M.; Gao, X.; Guo, L. SIRT7 exhibits oncogenic potential in human ovarian cancer cells. Asian Pac. J. Cancer Prev., 2015, 16(8), 3573-3577.
[http://dx.doi.org/10.7314/APJCP.2015.16.8.3573] [PMID: 25921180]
[133]
Geng, Q.; Peng, H.; Chen, F.; Luo, R.; Li, R. High expression of Sirt7 served as a predictor of adverse outcome in breast cancer. Int. J. Clin. Exp. Pathol., 2015, 8(2), 1938-1945.
[PMID: 25973086]
[134]
Barber, M.F.; Michishita-Kioi, E.; Xi, Y.; Tasselli, L.; Kioi, M.; Moqtaderi, Z.; Tennen, R.I.; Paredes, S.; Young, N.L.; Chen, K.; Struhl, K.; Garcia, B.A.; Gozani, O.; Li, W.; Chua, K.F. SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation. Nature, 2012, 487(7405), 114-118.
[http://dx.doi.org/10.1038/nature11043] [PMID: 22722849]
[135]
McGlynn, L.M.; McCluney, S.; Jamieson, N.B.; Thomson, J.; MacDonald, A.I.; Oien, K.; Dickson, E.J.; Carter, C.R.; McKay, C.J.; Shiels, P.G. SIRT3 & SIRT7: Potential novel biomarkers for determining outcome in pancreatic cancer patients. PLoS One, 2015, 10(6), e0131344.
[http://dx.doi.org/10.1371/journal.pone.0131344] [PMID: 26121130]
[136]
Vauzour, D. Dietary polyphenols as modulators of brain functions: Biological actions and molecular mechanisms underpinning their beneficial effects. Oxid. Med. Cell. Longev., 2012, 2012, 914273.
[http://dx.doi.org/10.1155/2012/914273] [PMID: 22701758]
[137]
Chung, S.; Yao, H.; Caito, S.; Hwang, J.W.; Arunachalam, G.; Rahman, I. Regulation of SIRT1 in cellular functions: Role of polyphenols. Arch. Biochem. Biophys., 2010, 501(1), 79-90.
[http://dx.doi.org/10.1016/j.abb.2010.05.003] [PMID: 20450879]
[138]
Wang, T.Y.; Li, Q.; Bi, K.S. Bioactive flavonoids in medicinal plants: Structure, activity and biological fate. Asian J. Pharm. Sci., 2018, 13(1), 12-23.
[http://dx.doi.org/10.1016/j.ajps.2017.08.004] [PMID: 32104374]
[139]
Zhang, Q.; Yang, W.; Liu, J.; Liu, H.; Lv, Z.; Zhang, C.; Chen, D.; Jiao, Z. Identification of six flavonoids as novel cellular antioxidants and their structure-activity relationship. Oxid. Med. Cell. Longev., 2020, 2020, 4150897.
[http://dx.doi.org/10.1155/2020/4150897] [PMID: 33014269]
[140]
Wen, L.; Zhao, Y.; Jiang, Y.; Yu, L.; Zeng, X.; Yang, J.; Tian, M.; Liu, H.; Yang, B. Identification of a flavonoid C-glycoside as potent antioxidant. Free Radic. Biol. Med., 2017, 110, 92-101.
[http://dx.doi.org/10.1016/j.freeradbiomed.2017.05.027] [PMID: 28587909]
[141]
Kovács, D.; Karancsi, Z.; Farkas, O.; Jerzsele, Á. Antioxidant activity of flavonoids in LPS-Treated IPEC-J2 porcine intestinal epithelial cells and their antibacterial effect against bacteria of swine origin. Antioxidants, 2020, 9(12), E1267.
[http://dx.doi.org/10.3390/antiox9121267] [PMID: 33322114]
[142]
Akher, F.B.; Farrokhzadeh, A.; Ramharack, P.; Shunmugam, L.; Van Heerden, F.R.; Soliman, M.E.S. Discovery of novel natural flavonoids as potent antiviral candidates against hepatitis C virus NS5B polymerase. Med. Hypotheses, 2019, 132, 109359.
[http://dx.doi.org/10.1016/j.mehy.2019.109359] [PMID: 31466018]
[143]
Dai, W.; Bi, J.; Li, F.; Wang, S.; Huang, X.; Meng, X.; Sun, B.; Wang, D.; Kong, W.; Jiang, C.; Su, W. Antiviral efficacy of flavonoids against enterovirus 71 infection in vitro and in newborn mice. Viruses, 2019, 11(7), E625.
[http://dx.doi.org/10.3390/v11070625] [PMID: 31284698]
[144]
Al-Karmalawy, A.A.; Farid, M.M.; Mostafa, A.; Ragheb, A.Y.; Mahmoud, H. S.; Shehata, M.; Shama, N.M.A.; GabAllah, M.; Mostafa-Hedeab, G.; Marzouk, M.M. Naturally available flavonoid aglycones as potential antiviral drug candidates against SARS-CoV-2. Molecules, 2021, 26(21), 6559.
[http://dx.doi.org/10.3390/molecules26216559] [PMID: 34770969]
[145]
Sharma, V.; Sehrawat, N.; Sharma, A.; Yadav, M.; Verma, P.; Sharma, A.K. Multifaceted antiviral therapeutic potential of dietary flavonoids: Emerging trends and future perspectives; Biotechnol. Appl. Bioc, 2021.
[http://dx.doi.org/10.1002/bab.2265]
[146]
Wang, Z.; Ding, Z.; Li, Z.; Ding, Y.; Jiang, F.; Liu, J. Antioxidant and antibacterial study of 10 flavonoids revealed rutin as a potential antibiofilm agent in Klebsiella pneumoniae strains isolated from hospitalized patients. Microb. Pathog., 2021, 159, 105121.
[http://dx.doi.org/10.1016/j.micpath.2021.105121] [PMID: 34343655]
[147]
da Silva, H.C.; Leal, A.L.A.B.; de Oliveira, M.M.; Barreto, H.M.; Coutinho, H.D.M.; dos Santos, H.S.; Santiago, G.M.P.; de Freitas, T.S.; Lima, I.K.C.; Teixeira, A.M.R.; Nogueira, C.E.S. Structural characterization, antibacterial activity and NorA efflux pump inhibition of flavonoid fisetinidol. S. Afr. J. Bot., 2020, 132, 140-145.
[http://dx.doi.org/10.1016/j.sajb.2020.03.023]
[148]
Al-Jumaili, M.H.A.; Al Hdeethi, M.K.Y. Study of selected flavonoid structures and their potential activity as breast anticancer agents. Cancer Inform., 2021, 20, 11769351211055160.
[http://dx.doi.org/10.1177/11769351211055160] [PMID: 34803373]
[149]
Satari, A.; Ghasemi, S.; Habtemariam, S.; Asgharian, S.; Lorigooini, Z. Rutin: A Flavonoid as an effective sensitizer for anticancer therapy; insights into multifaceted mechanisms and applicability for combination therapy. Evid-Based Compl. Evid. Based Complement. Alternat. Med., 2021, 2021, 9913179.
[http://dx.doi.org/10.1155/2021/9913179] [PMID: 34484407]
[150]
Yu, X.J.; Liu, C.Y.; Yang, L.R.; Xie, G.L.; Li, Z.Q.; Chen, S.Z.; Yang, X.D.; Han, H. Study on the antioxidant and anticancer activities of Sorbus pohuashanensis (Hance) Hedl flavonoids in vitro and its screen of small molecule active components. Nutr. Cancer, 2021, 1-11.
[http://dx.doi.org/10.1080/01635581.2021.1998560]
[151]
Parveen, Z.; Deng, Y.; Saeed, M.K.; Dai, R.; Ahamad, W.; Yu, Y.H. Antiinflammatory and analgesic activities of Thesium chinense Turcz extracts and its major flavonoids, kaempferol and kaempferol-3-O-glucoside. Yakugaku Zasshi, 2007, 127(8), 1275-1279.
[http://dx.doi.org/10.1248/yakushi.127.1275] [PMID: 17666881]
[152]
Tsuji, P.A.; Stephenson, K.K.; Wade, K.L.; Liu, H.; Fahey, J.W. Structure-activity analysis of flavonoids: Direct and indirect antioxidant, and antiinflammatory potencies and toxicities. Nutr. Cancer, 2013, 65(7), 1014-1025.
[http://dx.doi.org/10.1080/01635581.2013.809127] [PMID: 24087992]
[153]
Guo, H.J. Eriodictyol, a plant flavonoid, attenuates LPS-induced acute lung injury through its antioxidative and antiinflammatory activity. Chest, 2016, 149(4), 156a-156a.
[http://dx.doi.org/10.1016/j.chest.2016.02.162]
[154]
Testai, L.; Martelli, A.; Cristofaro, M.; Breschi, M.C.; Calderone, V. Cardioprotective effects of different flavonoids against myocardial ischaemia/reperfusion injury in Langendorff-perfused rat hearts. J. Pharm. Pharmacol., 2013, 65(5), 750-756.
[http://dx.doi.org/10.1111/jphp.12032] [PMID: 23600393]
[155]
Bartekova, M.; Ferenczyova, K.; Radosinska, J.; Pancza, D.; Barancik, M.; Ravingerova, T. Cardioprotective effects of acute and chronic treatment with flavonoid quercetin against ischemia/reperfusion injury in isolated rat hearts: Focus on the role of age in the efficiency of treatment. J. Mol. Cell. Cardiol., 2018, 120, 20-21.
[http://dx.doi.org/10.1016/j.yjmcc.2018.05.069]
[156]
Khan, J.; Deb, P.K.; Priya, S.; Medina, K.D.; Devi, R.; Walode, S.G.; Rudrapal, M. Dietary flavonoids: Cardioprotective potential with antioxidant effects and their pharmacokinetic, toxicological and therapeutic concerns. Molecules, 2021, 26(13), 4021.
[http://dx.doi.org/10.3390/molecules26134021] [PMID: 34209338]
[157]
Mechchate, H.; Es-Safi, I.; Bourhia, M.; Kyrylchuk, A.; El Moussaoui, A.; Conte, R.; Ullah, R.; Ezzeldin, E.; Mostafa, G.A.; Grafov, A.; Bekkari, H.; Bousta, D. In-vivo antidiabetic activity and in-silico mode of action of LC/MS-MS identified flavonoids in oleaster leaves. Molecules, 2020, 25(21), E5073.
[http://dx.doi.org/10.3390/molecules25215073] [PMID: 33139638]
[158]
Brás, N.F.; Neves, R.P.P.; Lopes, F.A.A.; Correia, M.A.S.; Palma, A.S.; Sousa, S.F.; Ramos, M.J. Combined in silico and in vitro studies to identify novel antidiabetic flavonoids targeting glycogen phosphorylase. Bioorg. Chem., 2021, 108, 104552.
[http://dx.doi.org/10.1016/j.bioorg.2020.104552] [PMID: 33357981]
[159]
Allard, J.S.; Perez, E.; Zou, S.; de Cabo, R. Dietary activators of Sirt1. Mol. Cell. Endocrinol., 2009, 299(1), 58-63.
[http://dx.doi.org/10.1016/j.mce.2008.10.018] [PMID: 19010386]
[160]
Ayissi, V.B.O.; Ebrahimi, A.; Schluesenner, H. Epigenetic effects of natural polyphenols: A focus on SIRT1-mediated mechanisms. Mol. Nutr. Food Res., 2014, 58(1), 22-32.
[http://dx.doi.org/10.1002/mnfr.201300195] [PMID: 23881751]
[161]
Rahnasto-Rilla, M.; Tyni, J.; Huovinen, M.; Jarho, E.; Kulikowicz, T.; Ravichandran, S.; Bohr, V.A.; Ferrucci, L.; Lahtela-Kakkonen, M.; Moaddel, R. Natural polyphenols as sirtuin 6 modulators. Sci. Rep., 2018, 8(1), 4163.
[http://dx.doi.org/10.1038/s41598-018-22388-5]
[162]
Zhang, Y.; Yang, X.; Ge, X.; Zhang, F. Puerarin attenuates neurological deficits via Bcl-2/Bax/cleaved caspase-3 and Sirt3/SOD2 apoptotic pathways in subarachnoid hemorrhage mice. Biomed. Pharmacother., 2019, 109, 726-733.
[http://dx.doi.org/10.1016/j.biopha.2018.10.161] [PMID: 30551525]
[163]
Li, Y.; Liu, T.; Li, Y.; Han, D.; Hong, J.; Yang, N.; He, J.; Peng, R.; Mi, X.; Kuang, C.; Zhou, Y.; Han, Y.; Shi, C.; Li, Z.; Guo, X. Baicalin ameliorates cognitive impairment and protects microglia from lps-induced neuroinflammation via the SIRT1/HMGB1 pathway. Oxid. Med. Cell. Longev., 2020, 2020, 4751349.
[http://dx.doi.org/10.1155/2020/4751349] [PMID: 33029280]
[164]
Sarubbo, F.; Esteban, S.; Miralles, A.; Moranta, D. Effects of resveratrol and other polyphenols on SIRT1: Relevance to brain function during aging. Curr. Neuropharmacol., 2018, 16(2), 126-136.
[http://dx.doi.org/10.2174/1570159X15666170703113212] [PMID: 28676015]
[165]
Pyo, I.S.; Yun, S.; Yoon, Y.E.; Choi, J.W.; Lee, S.J. Mechanisms of aging and the preventive effects of resveratrol on age-related diseases. Molecules, 2020, 25(20), E4649.
[http://dx.doi.org/10.3390/molecules25204649] [PMID: 33053864]
[166]
Bonkowski, M.S.; Sinclair, D.A. Slowing ageing by design: The rise of NAD+ and sirtuin-activating compounds. Nat. Rev. Mol. Cell Biol., 2016, 17(11), 679-690.
[http://dx.doi.org/10.1038/nrm.2016.93] [PMID: 27552971]
[167]
Sawda, C.; Moussa, C.; Turner, R.S. Resveratrol for Alzheimer’s disease. Ann. N. Y. Acad. Sci., 2017, 1403(1), 142-149.
[http://dx.doi.org/10.1111/nyas.13431] [PMID: 28815614]
[168]
Dai, H.; Sinclair, D.A.; Ellis, J.L.; Steegborn, C. Sirtuin activators and inhibitors: Promises, achievements, and challenges. Pharmacol. Ther., 2018, 188, 140-154.
[http://dx.doi.org/10.1016/j.pharmthera.2018.03.004] [PMID: 29577959]
[169]
Costa, L.G.; Garrick, J.M.; Roquè, P.J.; Pellacani, C. Mechanisms of neuroprotection by quercetin: Counteracting oxidative stress and more. Oxid. Med. Cell. Longev., 2016, 2016, 2986796.
[http://dx.doi.org/10.1155/2016/2986796] [PMID: 26904161]
[170]
Feng, K.; Chen, Z.; Pengcheng, L.; Zhang, S.; Wang, X. Quercetin attenuates oxidative stress-induced apoptosis via SIRT1/AMPK-mediated inhibition of ER stress in rat chondrocytes and prevents the progression of osteoarthritis in a rat model. J. Cell. Physiol., 2019, 234(10), 18192-18205.
[http://dx.doi.org/10.1002/jcp.28452] [PMID: 30854676]
[171]
Farghali, H.; Kemelo, M.K.; Canová, N.K. SIRT1 modulators in experimentally induced liver injury. Oxid. Med. Cell. Longev., 2019, 2019, 8765954.
[http://dx.doi.org/10.1155/2019/8765954] [PMID: 31281594]
[172]
Okada, Y.; Okada, M. Quercetin, caffeic acid and resveratrol regulate circadian clock genes and aging-related genes in young and old human lung fibroblast cells. Mol. Biol. Rep., 2020, 47(2), 1021-1032.
[http://dx.doi.org/10.1007/s11033-019-05194-8] [PMID: 31773385]
[173]
Cao, Y.; Zhao, H.; Wang, Z.; Zhang, C.; Bian, Y.; Liu, X.; Zhang, C.; Zhang, X.; Zhao, Y. Quercetin promotes in vitro maturation of oocytes from humans and aged mice. Cell Death Dis., 2020, 11(11), 965.
[http://dx.doi.org/10.1038/s41419-020-03183-5] [PMID: 33177495]
[174]
You, W.J.; Zheng, W.; Weiss, S.; Chua, K.F.; Steegborn, C. Structural basis for the activation and inhibition of sirtuin 6 by quercetin and its derivatives; Sci. Rep.-Uk, 2019, p. 9.
[http://dx.doi.org/10.1038/s41598-019-55654-1]
[175]
Song, L.; Chen, X.; Mi, L.; Liu, C.; Zhu, S.; Yang, T.; Luo, X.; Zhang, Q.; Lu, H.; Liang, X. Icariin-induced inhibition of SIRT6/NF-κ B triggers redox mediated apoptosis and enhances anti-tumor immunity in triple-negative breast cancer. Cancer Sci., 2020, 111(11), 4242-4256.
[http://dx.doi.org/10.1111/cas.14648] [PMID: 32926492]
[176]
Sayed, A.M.; Hassanein, E.H.M.; Salem, S.H.; Hussein, O.E.; Mahmoud, A.M. Flavonoids-mediated SIRT1 signaling activation in hepatic disorders. Life Sci., 2020, 259, 118173.
[http://dx.doi.org/10.1016/j.lfs.2020.118173] [PMID: 32750437]
[177]
Fernández-García, C.; Rancan, L.; Paredes, S.D.; Montero, C.; de la Fuente, M.; Vara, E.; Tresguerres, J.A.F. Xanthohumol exerts protective effects in liver alterations associated with aging. Eur. J. Nutr., 2019, 58(2), 653-663.
[http://dx.doi.org/10.1007/s00394-018-1657-6] [PMID: 29536163]
[178]
Zhu, Y.; Liu, R.; Shen, Z.; Cai, G. Combination of luteolin and lycopene effectively protect against the “two-hit” in NAFLD through Sirt1/AMPK signal pathway. Life Sci., 2020, 256, 117990.
[http://dx.doi.org/10.1016/j.lfs.2020.117990] [PMID: 32574665]
[179]
Liu, S.; Su, Y.; Sun, B.; Hao, R.; Pan, S.; Gao, X.; Dong, X.; Ismail, A.M.; Han, B. Luteolin protects against CIRI, potentially via regulation of the SIRT3/AMPK/mTOR signaling pathway. Neurochem. Res., 2020, 45(10), 2499-2515.
[http://dx.doi.org/10.1007/s11064-020-03108-w] [PMID: 32809175]
[180]
Xu, J.; Li, Y.; Lou, M.; Xia, W.; Liu, Q.; Xie, G.; Liu, L.; Liu, B.; Yang, J.; Qin, M. Baicalin regulates SirT1/STAT3 pathway and restrains excessive hepatic glucose production. Pharmacol. Res., 2018, 136, 62-73.
[http://dx.doi.org/10.1016/j.phrs.2018.08.018] [PMID: 30144531]
[181]
Yuan, H.; Duan, S.; Guan, T.; Yuan, X.; Lin, J.; Hou, S.; Lai, X.; Huang, S.; Du, X.; Chen, S. Vitexin protects against ethanol-induced liver injury through Sirt1/p53 signaling pathway. Eur. J. Pharmacol., 2020, 873, 173007.
[http://dx.doi.org/10.1016/j.ejphar.2020.173007] [PMID: 32045602]
[182]
Chen, C.C.; Kuo, C.H.; Leu, Y.L.; Wang, S.H. Corylin reduces obesity and insulin resistance and promotes adipose tissue browning through SIRT-1 and &β3-AR activation. Pharmacol. Res., 2021, 164, 105291.
[http://dx.doi.org/10.1016/j.phrs.2020.105291] [PMID: 33253817]
[183]
Liou, C.J.; Lee, Y.K.; Ting, N.C.; Chen, Y.L.; Shen, S.C.; Wu, S.J.; Huang, W.C. Protective effects of licochalcone a ameliorates obesity and non-alcoholic fatty liver disease via promotion of the Sirt-1/AMPK pathway in mice fed a high-fat diet. Cells, 2019, 8(5), E447.
[http://dx.doi.org/10.3390/cells8050447] [PMID: 31083505]
[184]
Tian, L.; Cao, W.; Yue, R.; Yuan, Y.; Guo, X.; Qin, D.; Xing, J.; Wang, X. Pretreatment with Tilianin improves mitochondrial energy metabolism and oxidative stress in rats with myocardial ischemia/reperfusion injury via AMPK/SIRT1/PGC-1 alpha signaling pathway. J. Pharmacol. Sci., 2019, 139(4), 352-360.
[http://dx.doi.org/10.1016/j.jphs.2019.02.008] [PMID: 30910451]
[185]
Dusabimana, T.; Kim, S.R.; Kim, H.J.; Park, S.W.; Kim, H. Nobiletin ameliorates hepatic ischemia and reperfusion injury through the activation of SIRT-1/FOXO3a-mediated autophagy and mitochondrial biogenesis. Exp. Mol. Med., 2019, 51(4), 1-16.
[http://dx.doi.org/10.1038/s12276-019-0245-z] [PMID: 31028246]
[186]
Chen, M.; Chen, Z.; Huang, D.; Sun, C.; Xie, J.; Chen, T.; Zhao, X.; Huang, Y.; Li, D.; Wu, B.; Wu, D. Myricetin inhibits TNF-&α-induced inflammation in A549 cells via the SIRT1/NF-κ B pathway. Pulm. Pharmacol. Ther., 2020, 65, 102000.
[http://dx.doi.org/10.1016/j.pupt.2021.102000] [PMID: 33601000]
[187]
Silva, J.; Spatz, M.H.; Folk, C.; Chang, A.; Cadenas, E.; Liang, J.; Davies, D.L. Dihydromyricetin improves mitochondrial outcomes in the liver of alcohol-fed mice via the AMPK/Sirt-1/PGC-1&α signaling axis. Alcohol, 2021, 91, 1-9.
[http://dx.doi.org/10.1016/j.alcohol.2020.10.002] [PMID: 33080338]
[188]
Wang, S.; He, N.; Xing, H.; Sun, Y.; Ding, J.; Liu, L. Function of hesperidin alleviating inflammation and oxidative stress responses in COPD mice might be related to SIRT1/PGC-1&α/NF-κ B signaling axis. J. Recept. Sig. Transd., 2020, 40(4), 388-394.
[http://dx.doi.org/10.1080/10799893.2020.1738483] [PMID: 32164488]
[189]
Hu, T.; Lu, X.Y.; Shi, J.J.; Liu, X.Q.; Chen, Q.B.; Wang, Q.; Chen, Y.B.; Zhang, S.J. Quercetin protects against diabetic encephalopathy via SIRT1/NLRP3 pathway in db/db mice. J. Cell. Mol. Med., 2020, 24(6), 3449-3459.
[http://dx.doi.org/10.1111/jcmm.15026] [PMID: 32000299]
[190]
Li, H.; Chen, F.J.; Yang, W.L.; Qiao, H.Z.; Zhang, S.J. Quercetin improves cognitive disorder in aging mice by inhibiting NLRP3 inflammasome activation. Food Funct., 2021, 12(2), 717-725.
[http://dx.doi.org/10.1039/D0FO01900C] [PMID: 33338087]
[191]
Zhang, Y.; Qu, X.; Gao, H.; Zhai, J.; Tao, L.; Sun, J.; Song, Y.; Zhang, J. Quercetin attenuates NLRP3 inflammasome activation and apoptosis to protect INH-induced liver injury via regulating SIRT1 pathway. Int. Immunopharmacol., 2020, 85, 106634.
[http://dx.doi.org/10.1016/j.intimp.2020.106634] [PMID: 32492628]
[192]
Tong, Y.; Fu, H.; Xia, C.; Song, W.; Li, Y.; Zhao, J.; Zhang, X.; Gao, X.; Yong, J.; Liu, Q.; Yang, C.; Wang, H. Astragalin exerted antidepressant-like action through SIRT1 signaling modulated NLRP3 inflammasome deactivation. ACS Chem. Neurosci., 2020, 11(10), 1495-1503.
[http://dx.doi.org/10.1021/acschemneuro.0c00156] [PMID: 32364698]
[193]
Zhou, Y.; Wang, S.; Wan, T.; Huang, Y.; Pang, N.; Jiang, X.; Gu, Y.; Zhang, Z.; Luo, J.; Yang, L. Cyanidin-3-O-&β-glucoside inactivates NLRP3 inflammasome and alleviates alcoholic steatohepatitis via SirT1/NF-κ B signaling pathway. Free Radic. Biol. Med., 2020, 160, 334-341.
[http://dx.doi.org/10.1016/j.freeradbiomed.2020.08.006] [PMID: 32805401]
[194]
Wang, T.; Wang, J.; Sun, T.; Li, Y. Amelioration of juglanin against LPS-induced activation of NLRP3 inflammasome in chondrocytes mediated by SIRT1. Inflammation, 2021, 44(3), 1119-1129.
[http://dx.doi.org/10.1007/s10753-020-01407-6] [PMID: 33398541]
[195]
Li, Y.; Wu, S. Epigallocatechin gallate suppresses hepatic cholesterol synthesis by targeting SREBP-2 through SIRT1/FOXO1 signaling pathway. Mol. Cell. Biochem., 2018, 448(1-2), 175-185.
[http://dx.doi.org/10.1007/s11010-018-3324-x] [PMID: 29446047]
[196]
Cai, Y.; Yu, S.S.; He, Y.; Bi, X.Y.; Gao, S.; Yan, T.D.; Zheng, G.D.; Chen, T.T.; Ye, J.T.; Liu, P.Q. EGCG inhibits pressure overload-induced cardiac hypertrophy via the PSMB5/Nmnat2/SIRT6-dependent signalling pathways. Acta Physiol. (Oxf.), 2021, 231(4), e13602.
[http://dx.doi.org/10.1111/apha.13602] [PMID: 33315278]
[197]
James, K.D.; Kennett, M.J.; Lambert, J.D. Potential role of the mitochondria as a target for the hepatotoxic effects of (-)-epigallocatechin-3-gallate in mice. Food Chem. Toxicol., 2018, 111, 302-309.
[http://dx.doi.org/10.1016/j.fct.2017.11.029] [PMID: 29175576]
[198]
Oza, M.J.; Kulkarni, Y.A. Formononetin attenuates kidney damage in type 2 diabetic rats. Life Sci., 2019, 219, 109-121.
[http://dx.doi.org/10.1016/j.lfs.2019.01.013] [PMID: 30641085]
[199]
Oza, M.J.; Kulkarni, Y.A. Formononetin ameliorates diabetic neuropathy by increasing expression of SIRT1 and NGF. Chem. Biodivers., 2020, 17(6), e2000162.
[http://dx.doi.org/10.1002/cbdv.202000162] [PMID: 32459048]
[200]
Fridén-Saxin, M.; Seifert, T.; Landergren, M.R.; Suuronen, T.; Lahtela-Kakkonen, M.; Jarho, E.M.; Luthman, K. Synthesis and evaluation of substituted chroman-4-one and chromone derivatives as sirtuin 2-selective inhibitors. J. Med. Chem., 2012, 55(16), 7104-7113.
[http://dx.doi.org/10.1021/jm3005288] [PMID: 22746324]
[201]
Nakata, A.; Koike, Y.; Matsui, H.; Shimadad, T.; Aburada, M.; Yang, J. Potent SIRT1 enzyme-stimulating and anti-glycation activities of polymethoxyflavonoids from Kaempferia parviflora. Nat. Prod. Commun., 2014, 9(9), 1291-1294.
[http://dx.doi.org/10.1177/1934578X1400900918] [PMID: 25918795]
[202]
Zhao, S.; Zhu, Y.Y.; Wang, X.Y.; Liu, Y.S.; Sun, Y.X.; Zhao, Q.J.; Li, H.Y. Structural insight into the interactions between structurally similar inhibitors and SIRT6. Int. J. Mol. Sci., 2020, 21(7), E2601.
[http://dx.doi.org/10.3390/ijms21072601] [PMID: 32283646]
[203]
Azminah, A.; Erlina, L.; Radji, M.; Mun’im, A.; Syahdi, R.R.; Yanuar, A. In silico and in vitro identification of candidate SIRT1 activators from Indonesian medicinal plants compounds database. Comput. Biol. Chem., 2019, 83, 107096.
[http://dx.doi.org/10.1016/j.compbiolchem.2019.107096] [PMID: 31377446]
[204]
Singh, S.; Singh, A.K.; Garg, G.; Rizvi, S.I. Fisetin as a caloric restriction mimetic protects rat brain against aging induced oxidative stress, apoptosis and neurodegeneration. Life Sci., 2018, 193, 171-179.
[http://dx.doi.org/10.1016/j.lfs.2017.11.004] [PMID: 29122553]
[205]
Yang, W.; Tian, Z.K.; Yang, H.X.; Feng, Z.J.; Sun, J.M.; Jiang, H.; Cheng, C.; Ming, Q.L.; Liu, C.M. Fisetin improves lead-induced neuroinflammation, apoptosis and synaptic dysfunction in mice associated with the AMPK/SIRT1 and autophagy pathway. Food Chem. Toxicol., 2019, 134, 110824.
[http://dx.doi.org/10.1016/j.fct.2019.110824] [PMID: 31539617]
[206]
Yen, J.H.; Wu, P.S.; Chen, S.F.; Wu, M.J. Fisetin protects PC12 cells from tunicamycin-mediated cell death via reactive oxygen species scavenging and modulation of nrf2-driven gene expression, SIRT1 and MAPK signaling in PC12 Cells. Int. J. Mol. Sci., 2017, 18(4), E852.
[http://dx.doi.org/10.3390/ijms18040852] [PMID: 28420170]
[207]
Marfe, G.; Tafani, M.; Indelicato, M.; Sinibaldi-Salimei, P.; Reali, V.; Pucci, B.; Fini, M.; Russo, M.A. Kaempferol induces apoptosis in two different cell lines via Akt inactivation, Bax and SIRT3 activation, and mitochondrial dysfunction. J. Cell. Biochem., 2009, 106(4), 643-650.
[http://dx.doi.org/10.1002/jcb.22044] [PMID: 19160423]
[208]
Heger, V.; Tyni, J.; Hunyadi, A.; Horáková, L.; Lahtela-Kakkonen, M.; Rahnasto-Rilla, M. Quercetin based derivatives as sirtuin inhibitors. Biomed. Pharmacother., 2019, 111, 1326-1333.
[http://dx.doi.org/10.1016/j.biopha.2019.01.035] [PMID: 30841446]
[209]
de Boer, V.C.; de Goffau, M.C.; Arts, I.C.; Hollman, P.C.; Keijer, J. SIRT1 stimulation by polyphenols is affected by their stability and metabolism. Mech. Ageing Dev., 2006, 127(7), 618-627.
[http://dx.doi.org/10.1016/j.mad.2006.02.007] [PMID: 16603228]
[210]
Jung, H.Y.; Lee, D.; Ryu, H.G.; Choi, B.H.; Go, Y.; Lee, N.; Lee, D.; Son, H.G.; Jeon, J.; Kim, S.H.; Yoon, J.H.; Park, S.M.; Lee, S.V.; Lee, I.K.; Choi, K.Y.; Ryu, S.H.; Nohara, K.; Yoo, S.H.; Chen, Z.; Kim, K.T. Myricetin improves endurance capacity and mitochondrial density by activating SIRT1 and PGC-1&#945. Sci. Rep., 2017, 7(1), 6237.
[http://dx.doi.org/10.1038/s41598-017-05303-2] [PMID: 28740165]
[211]
Giovannini, L.; Bianchi, S. Role of nutraceutical SIRT1 modulators in AMPK and mTOR pathway: Evidence of a synergistic effect. Nutrition, 2017, 34, 82-96.
[http://dx.doi.org/10.1016/j.nut.2016.09.008] [PMID: 28063518]
[212]
Fusi, J.; Bianchi, S.; Daniele, S.; Pellegrini, S.; Martini, C.; Galetta, F.; Giovannini, L.; Franzoni, F. An in vitro comparative study of the antioxidant activity and SIRT1 modulation of natural compounds. Biomed. Pharmacother., 2018, 101, 805-819.
[http://dx.doi.org/10.1016/j.biopha.2018.03.006] [PMID: 29525677]
[213]
Sarubbo, F.; Ramis, M.R.; Kienzer, C.; Aparicio, S.; Esteban, S.; Miralles, A.; Moranta, D. Chronic silymarin, quercetin and naringenin treatments increase monoamines synthesis and hippocampal SIRT1 levels improving cognition in aged rats. J. Neuroimmune Pharmacol., 2018, 13(1), 24-38.
[http://dx.doi.org/10.1007/s11481-017-9759-0] [PMID: 28808887]
[214]
Moreno-Ulloa, A.; Nogueira, L.; Rodriguez, A.; Barboza, J.; Hogan, M.C.; Ceballos, G.; Villarreal, F.; Ramirez-Sanchez, I. Recovery of indicators of mitochondrial biogenesis, oxidative stress, and aging with (-)-epicatechin in senile mice. J. Gerontol. A Biol. Sci. Med. Sci., 2015, 70(11), 1370-1378.
[http://dx.doi.org/10.1093/gerona/glu131] [PMID: 25143004]
[215]
Ramis, M.R.; Sarubbo, F.; Tejada, S.; Jiménez, M.; Esteban, S.; Miralles, A.; Moranta, D. Chronic polyphenon-60 or catechin treatments increase brain monoamines syntheses and hippocampal SIRT1 levels improving cognition in aged rats. Nutrients, 2020, 12(2), E326.
[http://dx.doi.org/10.3390/nu12020326] [PMID: 31991916]
[216]
Chen, W.; Lin, B.; Xie, S.; Yang, W.; Lin, J.; Li, Z.; Zhan, Y.; Gui, S.; Lin, B. Naringenin protects RPE cells from NaIO3-induced oxidative damage in vivo and in vitro through up-regulation of SIRT1. Phytomedicine, 2021, 80, 153375.
[http://dx.doi.org/10.1016/j.phymed.2020.153375] [PMID: 33096452]
[217]
Kou, X.; Liu, X.; Chen, X.; Li, J.; Yang, X.; Fan, J.; Yang, Y.; Chen, N. Ampelopsin attenuates brain aging of D-gal-induced rats through miR-34a-mediated SIRT1/mTOR signal pathway. Oncotarget, 2016, 7(46), 74484-74495.
[http://dx.doi.org/10.18632/oncotarget.12811] [PMID: 27780933]
[218]
Sun, P.; Yin, J.B.; Liu, L.H.; Guo, J.; Wang, S.H.; Qu, C.H.; Wang, C.X. Protective role of Dihydromyricetin in Alzheimer’s disease rat model associated with activating AMPK/SIRT1 signaling pathway. Biosci. Rep., 2019, 39(1), BSR20180902.
[http://dx.doi.org/10.1042/BSR20180902] [PMID: 30498091]
[219]
Lee, Y.Y.; Lee, E.J.; Park, J.S.; Jang, S.E.; Kim, D.H.; Kim, H.S. Anti-inflammatory and antioxidant mechanism of tangeretin in activated microglia. J. Neuroimmune Pharmacol., 2016, 11(2), 294-305.
[http://dx.doi.org/10.1007/s11481-016-9657-x] [PMID: 26899309]
[220]
Zhu, Y.; Wang, K.; Ma, Z.; Liu, D.; Yang, Y.; Sun, M.; Wen, A.; Hao, Y.; Ma, S.; Ren, F.; Xin, Z.; Li, Y.; Di, S.; Liu, J. SIRT1 activation by butein attenuates sepsis-induced brain injury in mice subjected to cecal ligation and puncture via alleviating inflammatory and oxidative stress. Toxicol. Appl. Pharmacol., 2019, 363, 34-46.
[http://dx.doi.org/10.1016/j.taap.2018.10.013] [PMID: 30336174]
[221]
Liu, X.; Ma, Y.; Wei, X.; Fan, T. Neuroprotective effect of licochalcone A against oxygen-glucose deprivation/reperfusion in rat primary cortical neurons by attenuating oxidative stress injury and inflammatory response via the SIRT1/Nrf2 pathway. J. Cell. Biochem., 2018, 119(4), 3210-3219.
[http://dx.doi.org/10.1002/jcb.26477] [PMID: 29105819]
[222]
Karaman, B.; Alhalabi, Z.; Swyter, S.; Mihigo, S.O.; Andrae-Marobela, K.; Jung, M.; Sippl, W.; Ntie-Kang, F. Identification of bichalcones as sirtuin inhibitors by virtual screening and in vitro testing. Molecules, 2018, 23(2), E416.
[http://dx.doi.org/10.3390/molecules23020416] [PMID: 29443909]
[223]
Rasbach, K.A.; Schnellmann, R.G. Isoflavones promote mitochondrial biogenesis. J. Pharmacol. Exp. Ther., 2008, 325(2), 536-543.
[http://dx.doi.org/10.1124/jpet.107.134882] [PMID: 18267976]
[224]
Yu, H.; Zhang, F.; Guan, X. Baicalin reverse depressive-like behaviors through regulation SIRT1-NF-kB signaling pathway in olfactory bulbectomized rats. Phytother. Res., 2019, 33(5), 1480-1489.
[http://dx.doi.org/10.1002/ptr.6340] [PMID: 30848526]
[225]
Velagapudi, R.; El-Bakoush, A.; Olajide, O.A. Activation of nrf2 pathway contributes to neuroprotection by the dietary flavonoid tiliroside. Mol. Neurobiol., 2018, 55(10), 8103-8123.
[http://dx.doi.org/10.1007/s12035-018-0975-2] [PMID: 29508282]
[226]
Zeng, R.; Wang, X.; Zhou, Q.; Fu, X.; Wu, Q.; Lu, Y.; Shi, J.; Klaunig, J.E.; Zhou, S. Icariin protects rotenone-induced neurotoxicity through induction of SIRT3. Toxicol. Appl. Pharmacol., 2019, 379, 114639.
[http://dx.doi.org/10.1016/j.taap.2019.114639] [PMID: 31251943]
[227]
Le, L.; Fu, H.; Lv, Q.; Bai, X.; Zhao, Y.; Xiang, J.; Jiang, B.; Hu, K.; Chen, S. The protective effects of the native flavanone flavanomarein on neuronal cells damaged by 6-OHDA. Phytomedicine, 2019, 53, 193-204.
[http://dx.doi.org/10.1016/j.phymed.2018.09.005] [PMID: 30668399]
[228]
Qi, J.J.; Yan, Y.M.; Cheng, L.Z.; Liu, B.H.; Qin, F.Y.; Cheng, Y.X. A novel flavonoid glucoside from the fruits of Lycium ruthenicun. Molecules, 2018, 23(2), E325.
[http://dx.doi.org/10.3390/molecules23020325] [PMID: 29401662]
[229]
Guo, Y.; Xing, L.; Qian, C.; Ding, Z.; Jin, B. Involvement of flavonoids from the leaves of Carya cathayensis Sarg. in sirtuin 1 expression in HUVEC senescence. Evid. Based Complement. Alternat. Med., 2018, 2018, 8246560.
[http://dx.doi.org/10.1155/2018/8246560] [PMID: 30105071]
[230]
Qin, B.; Panickar, K.S.; Anderson, R.A. Cinnamon polyphenols regulate S100&β sirtuins, and neuroactive proteins in rat C6 glioma cells. Nutrition, 2014, 30(2), 210-217.
[http://dx.doi.org/10.1016/j.nut.2013.07.001] [PMID: 24239092]
[231]
Wang, J.; Cheng, C.; Xin, C.; Wang, Z. The antidepressant-like effect of flavonoids from Trigonella foenum-graecum seeds in chronic restraint stress mice via modulation of monoamine regulatory pathways. Molecules, 2019, 24(6), E1105.
[http://dx.doi.org/10.3390/molecules24061105] [PMID: 30897781]
[232]
Zhou, W.; Lin, J.M.; Wang, S.L.; Lin, H.Z. Effect of Herba Scutellariae Barbatae flavonoids in delaying aging of Caenorhabditis elegans and human umbilical vein endothelial cells in vitro. Nan Fang Yi Ke Da Xue Xue Bao, 2017, 37(6), 821-826.
[http://dx.doi.org/10.3969/j.issn.1673-4254.2017.06.19] [PMID: 28669960]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy