Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Review Article

Impact of Physicochemical Parameters on Effective Extraction of Bioactive Compounds from Natural Sources: An Overview

Author(s): Kunjiappan Selvaraj*, Panneerselvam Theivendren*, Parasuraman Pavadai, Ram kumar Pandian Sureshbabu, Vigneshwaran Ravishankar, Ponnusamy Palanisamy, Murugananthan Gopal, Senthil Rajan Dharmalingam and Murugesan Sankaranarayanan*

Volume 18, Issue 4, 2022

Published on: 25 May, 2021

Article ID: e011221193572 Pages: 17

DOI: 10.2174/1573407217666210525143836

Price: $65

Abstract

Background: Bioactive compounds obtained from natural sources like plants, algae, mushrooms and marine have become of utmost importance in the pharmaceutical, food and cosmetic industries. Many bioactive chemicals have been found to have health-promoting characteristics, including antioxidant, antidiabetic, antibacterial, and anticancer activities. Extraction of these bioactive chemicals from natural sources is difficult since they are present in extremely low concentrations inside the cell.

Methods: The complete cropping of bioactive compounds from natural sources depends on several physicochemical parameters such as solvent, solvent concentration, temperature, pressure, time, etc., and they play a crucial role in determining the efficiency of extraction. Furthermore, these factors are not inherently connected to one another, but when they are combined, they change not just the extraction efficiency but also the process cost. As a result, the physicochemical parameters must be properly adjusted in order to increase the extraction efficiency as well as the biological characteristics of isolated molecules.

Results: The article provides a thorough examination of several extraction strategies, as well as the mechanism and concepts that underpin them. Also, the review highlights the impact of various physicochemical parameters on the effective extraction of bioactive compounds from natural sources to meet the standards of industrial requirements.

Conclusion: Many of the tests have been conducted at the laboratory level; as a result, recommendations for scaling up the extraction process have been provided in order to assess the performance of small-scale to large-scale industrial operations.

Keywords: Biological activity, isolation, separation, natural products, optimization, physicochemical parameters.

Graphical Abstract

[1]
Schuster, D.; Laggner, C.; Langer, T. Why drugs fail-a study on side effects in new chemical entities. Curr. Pharm. Des., 2005, 11(27), 3545-3559.
[http://dx.doi.org/10.2174/138161205774414510] [PMID: 16248807]
[2]
Thurston, H.D. Sustainable practices for plant disease management in traditional farming systems; CRC Press: Florida, 2019, pp. 223-226.
[http://dx.doi.org/10.1201/9780429308062]
[3]
Wells, M.L.; Potin, P.; Craigie, J.S.; Raven, J.A.; Merchant, S.S.; Helliwell, K.E.; Smith, A.G.; Camire, M.E.; Brawley, S.H. Algae as nutritional and functional food sources: Revisiting our understanding. J. Appl. Phycol., 2017, 29(2), 949-982.
[http://dx.doi.org/10.1007/s10811-016-0974-5] [PMID: 28458464]
[4]
Liu, J.; Lu, Y.; Wu, Q.; Goyer, R.A.; Waalkes, M.P. Mineral arsenicals in traditional medicines: Orpiment, realgar, and arsenolite. J. Pharmacol. Exp. Ther., 2008, 326(2), 363-368.
[http://dx.doi.org/10.1124/jpet.108.139543] [PMID: 18463319]
[5]
Frias, J.; Martinez, V.C.; Peñas, E. Fermented foods in health and disease prevention; Academic Press: Massachusetts, 2016.
[6]
Barbosa, E.; Calzada, F.; Campos, R. In vivo antigiardial activity of three flavonoids isolated of some medicinal plants used in Mexican traditional medicine for the treatment of diarrhea. J. Ethnopharmacol., 2007, 109(3), 552-554.
[http://dx.doi.org/10.1016/j.jep.2006.09.009] [PMID: 17052875]
[7]
do Céu de Madureira, M.; Paula Martins, A.; Gomes, M.; Paiva, J.; Proença da Cunha, A.; do Rosário, V. Antimalarial activity of medicinal plants used in traditional medicine in S. Tomé and Príncipe islands. J. Ethnopharmacol., 2002, 81(1), 23-29.
[http://dx.doi.org/10.1016/S0378-8741(02)00005-3] [PMID: 12020924]
[8]
Muthu, C.; Ayyanar, M.; Raja, N.; Ignacimuthu, S. Medicinal plants used by traditional healers in Kancheepuram district of Tamil Nadu, India. J. Ethnobiol. Ethnomed., 2006, 2(1), 43.
[http://dx.doi.org/10.1186/1746-4269-2-43] [PMID: 17026769]
[9]
Rout, S.; Panda, T.; Mishra, N. Ethno-medicinal plants used to cure different diseases by tribals of Mayurbhanj district of North Orissa. Stud. Ethno-Med., 2009, 3(1), 27-32.
[http://dx.doi.org/10.1080/09735070.2009.11886333]
[10]
Valadeau, C.; Castillo, J.A.; Sauvain, M.; Lores, A.F.; Bourdy, G. The rainbow hurts my skin: medicinal concepts and plants uses among the Yanesha (Amuesha), an Amazonian Peruvian ethnic group. J. Ethnopharmacol., 2010, 127(1), 175-192.
[http://dx.doi.org/10.1016/j.jep.2009.09.024] [PMID: 19835943]
[11]
Ota, A.; Ulrih, N.P. An overview of herbal products and secondary metabolites used for management of type two diabetes. Front. Pharmacol., 2017, 8, 436.
[http://dx.doi.org/10.3389/fphar.2017.00436] [PMID: 28729836]
[12]
Long, C.; Li, S.; Long, B.; Shi, Y.; Liu, B. Medicinal plants used by the Yi ethnic group: A case study in central Yunnan. J. Ethnobiol. Ethnomed., 2009, 5(1), 13.
[http://dx.doi.org/10.1186/1746-4269-5-13] [PMID: 19389251]
[13]
aBiswas, K.; Chattopadhyay, I.; Banerjee, R.K.; Bandyopadhyay, U. Biological activities and medicinal properties of neem ( Azadirachta indica ). Curr. Sci. Bangalore, 2002, 82(11), 1336-1345.
bKris-Etherton, P.M.; Lefevre, M.; Beecher, G.R.; Gross, M.D.; Keen, C.L.; Etherton, T.D. Bioactive compounds in nutrition and health-research methodologies for establishing biological function: the antioxidant and anti-inflammatory effects of flavonoids on atherosclerosis. Annu. Rev. Nutr., 2004, 24, 511-538.
[http://dx.doi.org/10.1146/annurev.nutr.23.011702.073237] [PMID: 15189130]
[14]
a)De Silva, D.D.; Rapior, S.; Sudarman, E.; Stadler, M.; Xu, J.; Alias, S.A.; Hyde, K.D. Bioactive metabolites from macrofungi: Ethnopharmacology, biological activities and chemistry. Fungal Divers., 2013, 62(1), 1-40.
b)Chanda, S.; Kaneria, M. Indian nutraceutical plant leaves as a potential source of natural antimicrobial agents. Science against microbial pathogens: Communicating current research and technological advances, 2011, 2, 1251-1259.
[http://dx.doi.org/10.1007/s13225-013-0265-2]
[15]
Selvaraj, K.; Chowdhury, R.; Bhattacharjee, C. Isolation and structural elucidation of flavonoids from aquatic fern Azolla microphylla and evaluation of free radical scavenging activity. Int. J. Pharma Sci., 2013, 5(3), 743-749.
[16]
Kato, M.; Mizuno, K.; Fujimura, T.; Iwama, M.; Irie, M.; Crozier, A.; Ashihara, H. Purification and characterization of caffeine synthase from tea leaves. Plant Physiol., 1999, 120(2), 579-586.
[http://dx.doi.org/10.1104/pp.120.2.579] [PMID: 10364410]
[17]
Bui-Khac, T.; Dupuis, N. Process for extraction and purification of paclitaxel from natural sources US Patent 6452024, 2002.
[18]
Sakato, K.; Tanaka, H.; Mukai, N.; Misawa, M. Isolation and identification of camptothecin from cells of Camptotheca acuminata suspension cultures. Agric. Biol. Chem., 1974, 38(1), 217-218.
[http://dx.doi.org/10.1080/00021369.1974.10861136]
[19]
Tian, M.; Bi, W.; Row, K.H. Simultaneous extraction and purification of myricetin from Chamaecyparis obtusa by multi-phase extraction with ionic liquid-modified mesoporous MCM-41. J. Chem. Technol. Biotechnol., 2012, 87(2), 165-169.
[http://dx.doi.org/10.1002/jctb.2670]
[20]
Liu, N.Q.; Schuehly, W.; von Freyhold, M.; van der Kooy, F. A novel purification method of artemisinin from Artemisia annua . Ind. Crops Prod., 2011, 34(1), 1084-1088.
[http://dx.doi.org/10.1016/j.indcrop.2011.03.023]
[21]
Berger, F. Extraction and purification of penicillin. Nature, 1944, 154(3910), 459-459.
[http://dx.doi.org/10.1038/154459a0]
[22]
Hughes, J. Isolation of an endogenous compound from the brain with pharmacological properties similar to morphine. Brain Res., 1975, 88(2), 295-308.
[http://dx.doi.org/10.1016/0006-8993(75)90391-1] [PMID: 1148827]
[23]
Kunjiappan, S.; Panneerselvam, T.; Prasad, P.; Sukumaran, S.; Somasundaram, B.; Sankaranarayanan, M.; Murugan, I.; Parasuraman, P. Design, graph theoretical analysis and in silico modeling of Dunaliella bardawil biomass encapsulated keratin nanoparticles: A scaffold for effective glucose utilization. Biomed. Mater., 2018, 13(4), 045012.
[http://dx.doi.org/10.1088/1748-605X/aabcea] [PMID: 29727301]
[24]
Bargiotti, A.; Zini, P.; Penco, S.; Giuliani, F. Morpholino derivatives of daunorubicin and doxorubicin. 1987.US Patent 4,672,057,
[25]
Brito, F.; DeMoss, J.A.; Dubourdieu, M. Isolation and identification of menaquinone-9 from purified nitrate reductase of Escherichia coli . J. Bacteriol., 1995, 177(13), 3728-3735.
[http://dx.doi.org/10.1128/JB.177.13.3728-3735.1995] [PMID: 7601837]
[26]
Johnson, J.J.; Mukhtar, H. Curcumin for chemoprevention of colon cancer. Cancer Lett., 2007, 255(2), 170-181.
[http://dx.doi.org/10.1016/j.canlet.2007.03.005] [PMID: 17448598]
[27]
Gheorghiade, M.; Adams, K.F., Jr; Colucci, W.S. Digoxin in the management of cardiovascular disorders. Circulation, 2004, 109(24), 2959-2964.
[http://dx.doi.org/10.1161/01.CIR.0000132482.95686.87] [PMID: 15210613]
[28]
Yin, J.; Xing, H.; Ye, J. Efficacy of berberine in patients with type 2 diabetes mellitus. Metabolism, 2008, 57(5), 712-717.
[http://dx.doi.org/10.1016/j.metabol.2008.01.013] [PMID: 18442638]
[29]
Fekry, R.M.; Keshta, A.T.; Nawara, S.R. Therapeutic effects of resveratrol and baicalein on hepatocellular carcinoma induced in rats. Biochem. Lett., 2016, 12(1), 249-258.
[http://dx.doi.org/10.21608/blj.2016.48196]
[30]
Wintachai, P.; Kaur, P.; Lee, R.C.H.; Ramphan, S.; Kuadkitkan, A.; Wikan, N.; Ubol, S.; Roytrakul, S.; Chu, J.J.H.; Smith, D.R. Activity of andrographolide against chikungunya virus infection. Sci. Rep., 2015, 5, 14179.
[http://dx.doi.org/10.1038/srep14179] [PMID: 26384169]
[31]
Selvaraj, K.; Chowdhury, R.; Bhattacharjee, C. Optimization of the solvent extraction of bioactive polyphenolic compounds from aquatic fern Azolla microphylla using response surface methodology. Int. Food Res. J., 2014, 21(4), 1559-1567.
[32]
Gujar, A.; Cui, H.; Ji, C.; Kubar, S.; Li, R. Development, production and market value of microalgae products. Appli microbiol open access, 2019, 5, 162.
[33]
Joana Gil-Chávez, G.; Villa, J.A.; Fernando Ayala-Zavala, J.; Basilio Heredia, J.; Sepulveda, D.; Yahia, E.M.; González-Aguilar, G.A. Technologies for extraction and production of bioactive compounds to be used as nutraceuticals and food ingredients: An overview. Compr. Rev. Food Sci. Food Saf., 2013, 12(1), 5-23.
[http://dx.doi.org/10.1111/1541-4337.12005]
[34]
Kaufmann, B.; Christen, P. Recent extraction techniques for natural products: Microwave-assisted extraction and pressurised solvent extraction. Phytochem. Anal., 2002, 13(2), 105-113.
[http://dx.doi.org/10.1002/pca.631] [PMID: 12018022]
[35]
Ganesan, V.; Gurumani, V.; Kunjiappan, S.; Panneerselvam, T.; Somasundaram, B.; Kannan, S.; Chowdhury, A.; Saravanan, G.; Bhattacharjee, C. Optimization and analysis of microwave-assisted extraction of bioactive compounds from Mimosa pudica L. using RSM & ANFIS modeling. J. Food Meas. Charact., 2018, 12(1), 228-242.
[http://dx.doi.org/10.1007/s11694-017-9634-y]
[36]
Xi, J. Ultrahigh pressure extraction of bioactive compounds from plants-a review. Crit. Rev. Food Sci. Nutr., 2017, 57(6), 1097-1106.
[http://dx.doi.org/10.1080/10408398.2013.874327] [PMID: 25830766]
[37]
Sotelo, K.A. Effects of Pulsed Electric Field (PEF) processing on the physical, chemical and microbiological properties of Red-Fleshed Sweet Cherries (Prunus avium var. Stella). 2015.
[38]
Chowdhury, A.; Panneerselvam, T.; Kannan, S.; Bhattachejee, C.; Somasundaram, B.; Sankaranarayanan, M.; Baskararaj, S.; Kunjiappan, S. Optimization of microwave-assisted extraction of bioactive polyphenolic compounds from Marsilea quadrifolia L. using RSM and ANFIS modelling. Indian J. Nat. Prod. Resour., 2018, 9(3), 204-221.
[39]
Belwal, T.; Ezzat, S.M.; Rastrelli, L.; Bhatt, I.D.; Daglia, M.; Baldi, A.; Devkota, H.P.; Orhan, i.e.; Patra, J.K.; Das, G. A critical analysis of extraction techniques used for botanicals: Trends, priorities, industrial uses and optimization strategies. Trends Analyt. Chem., 2018, 100, 82-102.
[http://dx.doi.org/10.1016/j.trac.2017.12.018]
[40]
Nyiredy, S. Separation strategies of plant constituents-current status. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2004, 812(1-2), 35-51.
[http://dx.doi.org/10.1016/S1570-0232(04)00719-6] [PMID: 15556487]
[41]
Azmir, J.; Zaidul, I.; Rahman, M.; Sharif, K.; Mohamed, A.; Sahena, F.; Jahurul, M.; Ghafoor, K.; Norulaini, N.; Omar, A. Techniques for extraction of bioactive compounds from plant materials: A review. J. Food Eng., 2013, 117(4), 426-436.
[http://dx.doi.org/10.1016/j.jfoodeng.2013.01.014]
[42]
Luque de Castro, M.D.; Priego-Capote, F. Soxhlet extraction: Past and present panacea. J. Chromatogr. A, 2010, 1217(16), 2383-2389.
[http://dx.doi.org/10.1016/j.chroma.2009.11.027] [PMID: 19945707]
[43]
Kumoro, A.C.; Hasan, M.; Singh, H. Effects of solvent properties on the Soxhlet extraction of diterpenoid lactones from Andrographis paniculata leaves. Sci. Asia, 2009, 35(1), 306-309.
[http://dx.doi.org/10.2306/scienceasia1513-1874.2009.35.306]
[44]
Kunjiappan, S.; Panneerselvam, T.; Kannan, S.; Somasundaram, B.; Sankaranarayanan, M.; Arunachalam, S.; Manimaran, A. Optimization of microwave-assisted extraction of bioactive compounds from Dunaliella bardawil using RSM and ANFIS modeling and assessment of the anticancer activity of bioactive compounds. Curr. Microw. Chem., 2018, 5(2), 139-154.
[http://dx.doi.org/10.2174/2213335605666180528084153]
[45]
Shiferaw, G. Optimazation and characterization of extract essential oil from zingiber officinale and evaluate antimicrobial effect. 2016.
[46]
Zhang, H-F.; Yang, X-H.; Wang, Y. Microwave assisted extraction of secondary metabolites from plants: Current status and future directions. Trends Food Sci. Technol., 2011, 22(12), 672-688.
[http://dx.doi.org/10.1016/j.tifs.2011.07.003]
[47]
Muhamad, I.I.; Hassan, N.D.; Mamat, S.N.; Nawi, N.M.; Rashid, W.A.; Tan, N.A. Extraction technologies and solvents of phytocompounds from plant materials: Physicochemical characterization and identification of ingredients and bioactive compounds from plant extract using various instrumentations. Ingredients extraction by physicochemical methods in food.Ingredients extraction by physicochemical methods in food; Elsevier, 2017, pp. 523-560.
[48]
Wen, Y.; Chen, H.; Zhou, X.; Deng, Q.; Zhao, Y.; Zhao, C.; Gong, X. Optimization of the microwave-assisted extraction and antioxidant activities of anthocyanins from blackberry using a response surface methodology. RSC Advances, 2015, 5(25), 19686-19695.
[http://dx.doi.org/10.1039/C4RA16396F]
[49]
Kunjiappan, S.; Panneerselvam, T.; Govindaraj, S.; Kannan, S.; Parasuraman, P.; Arunachalam, S.; Sankaranarayanan, M.; Baskararaj, S.; Palanisamy, P.; Ammunje, D.N. Optimization and analysis of ultrasound-assisted extraction of bioactive polyphenols from Garcinia indica using RSM and ANFIS modeling and its anticancer activity. J. Indian Chem. Soc., 2020, 17(4), 789-801.
[50]
Wang, L. Advances in extraction of plant products in nutraceutical processing. In: Handbook of nutraceuticals; , 2011; Vol II, pp. 15-52.
[51]
a)Tiwari, B.K. Ultrasound: A clean, green extraction technology. Trends Analyt. Chem., 2015, 71, 100-109.
b)Chandrapala, J.; Oliver, C.M.; Kentish, S.; Ashokkumar, M. Use of power ultrasound to improve extraction and modify phase transitions in food processing. Food Rev. Int., 2013, 29(1), 67-91.
c)Vinatoru, M.; Mason, T.; Calinescu, I. Ultrasonically assisted extraction (UAE) and microwave assisted extraction (MAE) of functional compounds from plant materials. Trends Analyt. Chem., 2017, 97, 159-178.
[http://dx.doi.org/10.1016/j.trac.2015.04.013] [http://dx.doi.org/10.1080/87559129.2012.692140] [http://dx.doi.org/10.1016/j.trac.2017.09.002]
[52]
Wen, C.; Zhang, J.; Zhang, H.; Dzah, C.S.; Zandile, M.; Duan, Y.; Ma, H.; Luo, X. Advances in ultrasound assisted extraction of bioactive compounds from cash crops -a review. Ultrason. Sonochem., 2018, 48, 538-549.
[http://dx.doi.org/10.1016/j.ultsonch.2018.07.018] [PMID: 30080583]
[53]
Shirsath, S.; Sonawane, S.; Gogate, P. Intensification of extraction of natural products using ultrasonic irradiations-a review of current status. Chemical engineering and processing: Process intensification, March, 2012, 53, 10-23.
[http://dx.doi.org/10.1016/j.cep.2012.01.003]
[54]
Maran, J.P.; Manikandan, S.; Nivetha, C.V.; Dinesh, R. Ultrasound assisted extraction of bioactive compounds from Nephelium lappaceum L. fruit peel using central composite face centered response surface design. Arab. J. Chem., 2017, 10, S1145-S1157.
[http://dx.doi.org/10.1016/j.arabjc.2013.02.007]
[55]
Rodríguez-Pérez, C.; Mendiola, J.; Quirantes-Piné, R.; Ibáñez, E.; Segura-Carretero, A. Green downstream processing using supercritical carbon dioxide, CO2-expanded ethanol and pressurized hot water extractions for recovering bioactive compounds from Moringa oleifera leaves. J. Supercrit. Fluids, 2016, 116, 90-100.
[http://dx.doi.org/10.1016/j.supflu.2016.05.009]
[56]
a)Teo, C.C.; Tan, S.N.; Yong, J.W.H.; Hew, C.S.; Ong, E.S. Pressurized hot water extraction (PHWE). J. Chromatogr. A, 2010, 1217(16), 2484-2494.
b)Kruse, A.; Dinjus, E. Hot compressed water as reaction medium and reactant: Properties and synthesis reactions. J. Supercrit. Fluids, 2007, 39(3), 362-380.
c)Beament, J. The effect of temperature on the water-proofing mechanism of an insect. J. Exp. Biol., 1958, 35(3), 494-519.
[http://dx.doi.org/10.1016/j.chroma.2009.12.050] [PMID: 20060531] [http://dx.doi.org/10.1016/j.supflu.2006.03.016]
[57]
Vogler, E.A. Water and the acute biological response to surfaces. J. Biomater. Sci. Polym. Ed., 1999, 10(10), 1015-1045.
[http://dx.doi.org/10.1163/156856299X00667] [PMID: 10591130]
[58]
Carr, A.G.; Mammucari, R.; Foster, N. A review of subcritical water as a solvent and its utilisation for the processing of hydrophobic organic compounds. Chem. Eng. J., 2011, 172(1), 1-17.
[http://dx.doi.org/10.1016/j.cej.2011.06.007]
[59]
Herrero, M.; Castro-Puyana, M.; Mendiola, J.A.; Ibañez, E. Compressed fluids for the extraction of bioactive compounds. Trends Analyt. Chem., 2013, 43, 67-83.
[http://dx.doi.org/10.1016/j.trac.2012.12.008]
[60]
Euterpio, M.A.; Cavaliere, C.; Capriotti, A.L.; Crescenzi, C. Extending the applicability of pressurized hot water extraction to compounds exhibiting limited water solubility by pH control: Curcumin from the turmeric rhizome. Anal. Bioanal. Chem., 2011, 401(9), 2977-2985.
[http://dx.doi.org/10.1007/s00216-011-5383-7] [PMID: 21935599]
[61]
Khoza, B.S.; Chimuka, L.; Mukwevho, E.; Steenkamp, P.A.; Madala, N.E. The effect of temperature on pressurised hot water extraction of pharmacologically important metabolites as analysed by UPLC-qTOF-MS and PCA. Evid. Based Complement. Alternat. Med., 2014, 2014, 914759.
[http://dx.doi.org/10.1155/2014/914759] [PMID: 25371697]
[62]
Gupta, R.; Balasubramaniam, V. High-pressure processing of fluid foods. In: Novel thermal and non-thermal technologies for fluid foods; Elsevier, 2012; pp. 109-133.
[http://dx.doi.org/10.1016/B978-0-12-381470-8.00005-0]
[63]
Jun, X.; Shuo, Z.; Bingbing, L.; Rui, Z.; Ye, L.; Deji, S.; Guofeng, Z. Separation of major catechins from green tea by ultrahigh pressure extraction. Int. J. Pharm., 2010, 386(1-2), 229-231.
[http://dx.doi.org/10.1016/j.ijpharm.2009.10.035] [PMID: 19874878]
[64]
Xi, J.; Wang, B. Optimization of ultrahigh-pressure extraction of polyphenolic antioxidants from green tea by response surface methodology. Food Bioprocess Technol., 2013, 6(9), 2538-2546.
[http://dx.doi.org/10.1007/s11947-012-0891-9]
[65]
Nogueira, J.M.F. Stir bar sorptive extraction and related techniques. In: Analytical microextraction techniques; , 2017; Vol. 22, pp. 219-240.
[http://dx.doi.org/10.2174/9781681083797117010009]
[66]
Sánchez-Rojas, F.; Bosch-Ojeda, C.; Cano-Pavón, J.M. A review of stir bar sorptive extraction. Chromatographia, 2009, 69(1), 79-94.
[http://dx.doi.org/10.1365/s10337-008-0687-2]
[67]
Rodil, R.; von Sonntag, J.; Montero, L.; Popp, P.; Buchmeiser, M.R. Glass-fiber reinforced poly(acrylate)-based sorptive materials for the enrichment of organic micropollutants from aqueous samples. J. Chromatogr. A, 2007, 1138(1-2), 1-9.
[http://dx.doi.org/10.1016/j.chroma.2006.10.039] [PMID: 17116307]
[68]
Anitescu, G.; Tavlarides, L.L. Supercritical extraction of contaminants from soils and sediments. J. Supercrit. Fluids, 2006, 38(2), 167-180.
[http://dx.doi.org/10.1016/j.supflu.2006.03.024]
[69]
Gonzalez, M.M.; Gerardo, J. A hydromechanically-based risk framework for CO2 storage coupled to underground coal gasification.. 2014.
[70]
Wijngaard, H.; Hossain, M.B.; Rai, D.K.; Brunton, N. Techniques to extract bioactive compounds from food by-products of plant origin. Food Res. Int., 2012, 46(2), 505-513.
[http://dx.doi.org/10.1016/j.foodres.2011.09.027]
[71]
Khaw, K-Y.; Parat, M-O.; Shaw, P.N.; Falconer, J.R. Solvent supercritical fluid technologies to extract bioactive compounds from natural sources: A review. Molecules, 2017, 22(7), 1186.
[http://dx.doi.org/10.3390/molecules22071186] [PMID: 28708073]
[72]
Ara, K.M.; Jowkarderis, M.; Raofie, F. Optimization of supercritical fluid extraction of essential oils and fatty acids from flixweed ( Descurainia Sophia L.) seed using response surface methodology and central composite design. J. Food Sci. Technol., 2015, 52(7), 4450-4458.
[http://dx.doi.org/10.1007/s13197-014-1353-3] [PMID: 26139911]
[73]
Yang, B.; Liu, X.; Gao, Y. Extraction optimization of bioactive compounds (crocin, geniposide and total phenolic compounds) from Gardenia ( Gardenia jasminoides Ellis) fruits with response surface methodology. Innov. Food Sci. Emerg. Technol., 2009, 10(4), 610-615.
[http://dx.doi.org/10.1016/j.ifset.2009.03.003]
[74]
Vitorino, C.; Carvalho, F.A.; Almeida, A.J.; Sousa, J.J.; Pais, A.A. The size of solid lipid nanoparticles: An interpretation from experimental design. Colloids Surf. B Biointerfaces, 2011, 84(1), 117-130.
[http://dx.doi.org/10.1016/j.colsurfb.2010.12.024] [PMID: 21242064]
[75]
Capes, C.E. Particle size enlargement; Elsevier: Amsterdam, 2013.
[76]
Gritti, F.; Guiochon, G. Comparison between the loading capacities of columns packed with partially and totally porous fine particles. What is the effective surface area available for adsorption? J. Chromatogr. A, 2007, 1176(1-2), 107-122.
[http://dx.doi.org/10.1016/j.chroma.2007.10.076] [PMID: 18001756]
[77]
Özcan, M. Nutrient composition of rose ( Rosa canina L.) seed and oils. J. Med. Food, 2002, 5(3), 137-140.
[http://dx.doi.org/10.1089/10966200260398161] [PMID: 12495585]
[78]
Lakshmi, C.; Kumar, K.A.; Dennis, T.J.; Kumar, T.S. Antibacterial activity of polyphenols of garcinia indica . Indian J. Pharm. Sci., 2011, 73(4), 470-473.
[PMID: 22707838]
[79]
Ankolekar, C.; Johnson, D.; Pinto, Mda.S.; Johnson, K.; Labbe, R.; Shetty, K. Inhibitory potential of tea polyphenolics and influence of extraction time against Helicobacter pylori and lack of inhibition of beneficial lactic acid bacteria. J. Med. Food, 2011, 14(11), 1321-1329.
[http://dx.doi.org/10.1089/jmf.2010.0237] [PMID: 21663484]
[80]
Mukherjee, S.; Mandal, N.; Dey, A.; Mondal, B. An approach towards optimization of the extraction of polyphenolic antioxidants from ginger ( Zingiber officinale ). J. Food Sci. Technol., 2014, 51(11), 3301-3308.
[http://dx.doi.org/10.1007/s13197-012-0848-z] [PMID: 26396324]
[81]
Makanjuola, S.A.; Enujiugha, V.N.; Omoba, O.S.; Sanni, D.M. Optimization and prediction of antioxidant properties of a tea-ginger extract. Food Sci. Nutr., 2015, 3(5), 443-452.
[http://dx.doi.org/10.1002/fsn3.237] [PMID: 26405530]
[82]
Russin, T.A.; Arcand, Y.; Boye, J.I. Particle size effect on soy protein isolate extraction. J. Food Process. Preserv., 2007, 31(3), 308-319.
[http://dx.doi.org/10.1111/j.1745-4549.2007.00127.x]
[83]
Qu, W.; Pan, Z.; Ma, H. Extraction modeling and activities of antioxidants from pomegranate marc. J. Food Eng., 2010, 99(1), 16-23.
[http://dx.doi.org/10.1016/j.jfoodeng.2010.01.020]
[84]
Zhao, S.; Baik, O-D.; Choi, Y.J.; Kim, S-M. Pretreatments for the efficient extraction of bioactive compounds from plant-based biomaterials. Crit. Rev. Food Sci. Nutr., 2014, 54(10), 1283-1297.
[http://dx.doi.org/10.1080/10408398.2011.632698] [PMID: 24564586]
[85]
Barba, F.J.; Zhu, Z.; Koubaa, M.; Sant’Ana, A.S.; Orlien, V. Green alternative methods for the extraction of antioxidant bioactive compounds from winery wastes and by-products: A review. Trends Food Sci. Technol., 2016, 49, 96-109.
[http://dx.doi.org/10.1016/j.tifs.2016.01.006]
[86]
Melo, P.S.; Massarioli, A.P.; Denny, C.; dos Santos, L.F.; Franchin, M.; Pereira, G.E.; Vieira, T.M.; Rosalen, P.L.; de Alencar, S.M. Winery by-products: Extraction optimization, phenolic composition and cytotoxic evaluation to act as a new source of scavenging of reactive oxygen species. Food Chem., 2015, 181, 160-169.
[http://dx.doi.org/10.1016/j.foodchem.2015.02.087] [PMID: 25794735]
[87]
Zhang, Q.W.; Lin, L.G.; Ye, W-C. Techniques for extraction and isolation of natural products: A comprehensive review. Chin. Med., 2018, 13, 20.
[http://dx.doi.org/10.1186/s13020-018-0177-x] [PMID: 29692864]
[88]
Laboukhi-Khorsi, S.; Daoud, K.; Chemat, S. Efficient solvent selection approach for high solubility of active phytochemicals: Application for the extraction of an antimalarial compound from medicinal plants. ACS Sustain. Chem.& Eng., 2017, 5(5), 4332-4339.
[http://dx.doi.org/10.1021/acssuschemeng.7b00384]
[89]
Brusotti, G.; Cesari, I.; Dentamaro, A.; Caccialanza, G.; Massolini, G. Isolation and characterization of bioactive compounds from plant resources: The role of analysis in the ethnopharmacological approach. J. Pharm. Biomed. Anal., 2014, 87, 218-228.
[http://dx.doi.org/10.1016/j.jpba.2013.03.007] [PMID: 23591140]
[90]
Kua, Y.L.; Gan, S.; Morris, A.; Ng, H.K. Ethyl lactate as a potential green solvent to extract hydrophilic (polar) and lipophilic (non-polar) phytonutrients simultaneously from fruit and vegetable by-products. Sustainable Chemistry and Pharmacy, 2016, 4, 21-31.
[http://dx.doi.org/10.1016/j.scp.2016.07.003]
[91]
Rathod, S.S.; Rathod, V.K. Extraction of piperine from Piper longum using ultrasound. Ind. Crops Prod., 2014, 58, 259-264.
[http://dx.doi.org/10.1016/j.indcrop.2014.03.040]
[92]
a)Luthria, D.L. Influence of experimental conditions on the extraction of phenolic compounds from parsley (Petroselinum crispum) flakes using a pressurized liquid extractor. Food Chem, 2008, 107(2), 745-752.
b)Tan, P.; Tan, C.; Ho, C. Antioxidant properties: Effects of solid-to-solvent ratio on antioxidant compounds and capacities of Pegaga (Centella asiatica). Int. Food Res. J., 2011, 18(2), 557-562.
c)Luthria, D.L. Significance of sample preparation in developing analytical methodologies for accurate estimation of bioactive compounds in functional foods. J. Sci. Food Agric., 2006, 86(14), 2266-2272.
[http://dx.doi.org/10.1016/j.foodchem.2007.08.074] [http://dx.doi.org/10.1002/jsfa.2666]
[93]
Wong, B.; Tan, C.; Ho, C. Effect of solid-to-solvent ratio on phenolic content and antioxidant capacities of” Dukung Anak” ( Phyllanthus niruri ). Int. Food Res. J., 2013, 20(1), 325-330.
[94]
Giménez, B.; López-Caballero, E.; Montero, P.; Gómez-Guillén, C. Antioxidant peptides from marine origin: Sources, properties and potential applications. In: Antioxidant polymers: Synthesis, properties, and applications; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012; pp. 203-257.
[http://dx.doi.org/10.1002/9781118445440.ch9]
[95]
Girhammar, U.; Nair, B.M. Certain physical properties of water soluble non-starch polysaccharides from wheat, rye, triticale, barley and oats. Food Hydrocoll., 1992, 6(4), 329-343.
[http://dx.doi.org/10.1016/S0268-005X(09)80001-5]
[96]
Bai, L.; Zhu, P.; Wang, W.; Wang, M. The influence of extraction pH on the chemical compositions, macromolecular characteristics, and rheological properties of polysaccharide: The case of okra polysaccharide. Food Hydrocoll., 2020, 102, 105586.
[http://dx.doi.org/10.1016/j.foodhyd.2019.105586]
[97]
B, V.; K, S.; R, A.; K Usha, S.; M, A. Bioactive and thermostable sulphated polysaccharide from Sargassum swartzii with drug delivery applications. Int. J. Biol. Macromol., 2020, 153, 190-200.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.02.332] [PMID: 32135254]
[98]
Gulzar, M.; Taylor, J.R.; Minnaar, A. Influence of extraction pH on the foaming, emulsification, oil-binding and visco-elastic properties of marama protein. J. Sci. Food Agric., 2017, 97(14), 4815-4821.
[http://dx.doi.org/10.1002/jsfa.8351] [PMID: 28374434]
[99]
Carey, V.P. Liquid-vapor phase-change phenomena: An introduction to the thermophysics of vaporization and condensation processes in heat transfer equipment, 3rd ed; CRC Press: Florida, 2020.
[http://dx.doi.org/10.1201/9780429082221]
[100]
Huie, C.W. A review of modern sample-preparation techniques for the extraction and analysis of medicinal plants. Anal. Bioanal. Chem., 2002, 373(1-2), 23-30.
[http://dx.doi.org/10.1007/s00216-002-1265-3] [PMID: 12012169]
[101]
Puri, B.; Hall, A. Phytochemical dictionary: A handbook of bioactive compounds from plants, 2nd ed.; CRC press: Florida, 1998.
[http://dx.doi.org/10.4324/9780203483756]
[102]
Vega, A.J.D.; Hector, R-E.; Jose, L-G.J.; Paola, H-C.; Raúl, Á-S.; Enrique, O-V.C. Effect of solvents and extraction methods on total anthocyanins, phenolic compounds and antioxidant capacity of Renealmia alpinia (Rottb.) Maas peel. Czech J. Food Sci., 2017, 35(5), 456-465.
[http://dx.doi.org/10.17221/316/2016-CJFS]
[103]
Chen, R.; Meng, F.; Zhang, S.; Liu, Z. Effects of ultrahigh pressure extraction conditions on yields and antioxidant activity of ginsenoside from ginseng. Separ. Purif. Tech., 2009, 66(2), 340-346.
[http://dx.doi.org/10.1016/j.seppur.2008.12.026]
[104]
Jun, X. High-pressure processing as emergent technology for the extraction of bioactive ingredients from plant materials. Crit. Rev. Food Sci. Nutr., 2013, 53(8), 837-852.
[http://dx.doi.org/10.1080/10408398.2011.561380] [PMID: 23768146]
[105]
Liu, C-S.; Zheng, Y-R.; Zhang, Y-F.; Long, X-Y. Research progress on berberine with a special focus on its oral bioavailability. Fitoterapia, 2016, 109, 274-282.
[http://dx.doi.org/10.1016/j.fitote.2016.02.001] [PMID: 26851175]
[106]
Hongfang, Ji.; Lingwen, Z.; Jian, Li.; Mingduo, Y.; Xin, L. Optimization of ultrahigh pressure extraction of momordicosides from bitter melon. Int. J. Food Eng., 2010, 6(6)
[http://dx.doi.org/10.2202/1556-3758.1962]
[107]
Baskararaj, S.; Theivendren, P.; Palanisamy, P.; Kannan, S.; Pavadai, P.; Arunachalam, S.; Sankaranarayanan, M.; Mohan, U.P.; Ramasamy, L.; Kunjiappan, S. Optimization of bioactive compounds extraction assisted by microwave parameters from Kappaphycus alvarezii using RSM and ANFIS modeling. J. Food Meas. Charact., 2019, 13(4), 2773-2789.
[http://dx.doi.org/10.1007/s11694-019-00198-1]
[108]
Esclapez, M.; García-Pérez, J.V.; Mulet, A.; Cárcel, J. Ultrasound-assisted extraction of natural products. Food Eng. Rev., 2011, 3(2), 108.
[http://dx.doi.org/10.1007/s12393-011-9036-6]
[109]
Vardanega, R.; Santos, D.T.; Meireles, M.A.A. Intensification of bioactive compounds extraction from medicinal plants using ultrasonic irradiation. Pharmacogn. Rev., 2014, 8(16), 88-95.
[http://dx.doi.org/10.4103/0973-7847.134231] [PMID: 25125880]
[110]
Passos, H.; Freire, M.G.; Coutinho, J.A. Ionic liquid solutions as extractive solvents for value-added compounds from biomass. Green Chem., 2014, 16(12), 4786-4815.
[http://dx.doi.org/10.1039/C4GC00236A] [PMID: 25516718]
[111]
Freudenmann, D.; Wolf, S.; Wolff, M.; Feldmann, C. Ionic liquids: New perspectives for inorganic synthesis? Angew. Chem. Int. Ed. Engl., 2011, 50(47), 11050-11060.
[http://dx.doi.org/10.1002/anie.201100904] [PMID: 21990270]
[112]
Chunjian, Z.; Zhicheng, Lu.; Chunying, Li.; Xin, He.; Zhao, Li.; Kunming, Shi.; Yang, L.; Yujie, Fu.; Yuangang, Zu. Optimization of ionic liquid based simultaneous ultrasonic-and microwave-assisted extraction of rutin and quercetin from leaves of velvetleaf (Abutilon theophrasti) by response surface methodology. The Scientific World Journal, 2014, 2014
[113]
Veggi, P.C.; Martinez, J.; Meireles, M.A.A. Fundamentals of microwave extraction.Microwave-assisted extraction for bioactive compounds; Springer, 2012, pp. 15-52.
[http://dx.doi.org/10.1007/978-1-4614-4830-3_2]
[114]
Pawliszyn, J. Theory of solid-phase microextraction. Handbook of solid phase microextraction; Elsevier, 2012, pp. 13-59.
[http://dx.doi.org/10.1016/B978-0-12-416017-0.00002-4]
[115]
Kumar, V.; Sharma, H. Process optimization for extraction of bioactive compounds from taro ( Colocasia esculenta ), using RSM and ANFIS modeling. J. Food Meas. Charact., 2017, 11(2), 704-718.
[http://dx.doi.org/10.1007/s11694-016-9440-y]
[116]
Punín Crespo, M.O.; Lage Yusty, M.A. Comparison of supercritical fluid extraction and Soxhlet extraction for the determination of aliphatic hydrocarbons in seaweed samples. Ecotoxicol. Environ. Saf., 2006, 64(3), 400-405.
[http://dx.doi.org/10.1016/j.ecoenv.2005.04.010] [PMID: 15939471]
[117]
Panfili, G.; Fratianni, A.; Irano, M. Normal phase high-performance liquid chromatography method for the determination of tocopherols and tocotrienols in cereals. J. Agric. Food Chem., 2003, 51(14), 3940-3944.
[http://dx.doi.org/10.1021/jf030009v] [PMID: 12822927]
[118]
Danlami, J.M.; Arsad, A.; Zaini, M.A.A.; Sulaiman, H. A comparative study of various oil extraction techniques from plants. Rev. Chem. Eng., 2014, 30(6), 605-626.
[http://dx.doi.org/10.1515/revce-2013-0038]
[119]
Michel, T.; Destandau, E.; Elfakir, C. Evaluation of a simple and promising method for extraction of antioxidants from sea buckthorn ( Hippophaë rhamnoides L.) berries: Pressurised solvent-free microwave assisted extraction. Food Chem., 2011, 126(3), 1380-1386.
[http://dx.doi.org/10.1016/j.foodchem.2010.09.112]
[120]
Filgueiras, A.V.; Capelo, J.L.; Lavilla, I.; Bendicho, C. Comparison of ultrasound-assisted extraction and microwave-assisted digestion for determination of magnesium, manganese and zinc in plant samples by flame atomic absorption spectrometry. Talanta, 2000, 53(2), 433-441.
[http://dx.doi.org/10.1016/S0039-9140(00)00510-5] [PMID: 18968128]
[121]
Plaza, M.; Turner, C. Pressurized hot water extraction of bioactives. Trends Analyt. Chem., 2015, 71, 39-54.
[http://dx.doi.org/10.1016/j.trac.2015.02.022]
[122]
Camino-Sánchez, F.J.; Rodríguez-Gómez, R.; Zafra-Gómez, A.; Santos-Fandila, A.; Vílchez, J.L. Stir bar sorptive extraction: Recent applications, limitations and future trends. Talanta, 2014, 130, 388-399.
[http://dx.doi.org/10.1016/j.talanta.2014.07.022] [PMID: 25159426]
[123]
Pieczykolan, A.; Pietrzak, W.; Rój, E.; Nowak, R. Effects of supercritical carbon dioxide extraction (SC-CO2) on the content of tiliroside in the extracts from Tilia L. flowers. Open Chem., 2019, 17(1), 302-312.
[http://dx.doi.org/10.1515/chem-2019-0040]
[124]
Halfadji, A.; Touabet, A.; Badjah-Hadj-Ahmed, A-Y. Comparison of soxhlet extraction, microwave-assisted extraction and ultrasonic extraction for the determination of PCBs congeners in spiked soils by transformer oil (Askarel). Int. J. Adv. Eng. Technol., 2013, 5(2), 63-75.
[125]
Egizabal, A.; Zuloaga, O.; Etxebarria, N.; Fernández, L.; Madariaga, J. Comparison of microwave-assisted extraction and Soxhlet extraction for phenols in soil samples using experimental designs. Analyst (Lond.), 1998, 123(8), 1679-1684.
[http://dx.doi.org/10.1039/a802117a]
[126]
Diagne, R.G.; Foster, G.D.; Khan, S.U. Comparison of soxhlet and microwave-assisted extractions for the determination of fenitrothion residues in beans. J. Agric. Food Chem., 2002, 50(11), 3204-3207.
[http://dx.doi.org/10.1021/jf011469w] [PMID: 12009987]
[127]
Fernandez-Pastor, I.; Fernandez-Hernandez, A.; Perez-Criado, S.; Rivas, F.; Martinez, A.; Garcia-Granados, A.; Parra, A. Microwave-assisted extraction versus Soxhlet extraction to determine triterpene acids in olive skins. J. Sep. Sci., 2017, 40(5), 1209-1217.
[http://dx.doi.org/10.1002/jssc.201601130] [PMID: 28027426]
[128]
Porevsky, P.; Ruiz, H.; Garciadiego, L. Comparison of Soxhlet extraction, ultrasonic bath and focused microwave extraction techniques for the simultaneous extraction of PAHs and pesticides from sediment samples. Sci. Chromatogr., 2014, 6(2), 124-138.
[http://dx.doi.org/10.4322/sc.2014.026]
[129]
Péres, V.F.; Saffi, J.; Melecchi, M.I.S.; Abad, F.C.; de Assis Jacques, R.; Martinez, M.M.; Oliveira, E.C.; Caramão, E.B. Comparison of soxhlet, ultrasound-assisted and pressurized liquid extraction of terpenes, fatty acids and Vitamin E from Piper gaudichaudianum Kunth. J. Chromatogr. A, 2006, 1105(1-2), 115-118.
[http://dx.doi.org/10.1016/j.chroma.2005.07.113] [PMID: 16439256]
[130]
Da Porto, C.; Porretto, E.; Decorti, D. Comparison of ultrasound-assisted extraction with conventional extraction methods of oil and polyphenols from grape (Vitis vinifera L.) seeds. Ultrason. Sonochem., 2013, 20(4), 1076-1080.
[http://dx.doi.org/10.1016/j.ultsonch.2012.12.002] [PMID: 23305938]
[131]
Amirah, D.; Khan, M.R. Comparison of extraction techniques on extraction of gallic acid from stem bark of Jatropha curcas. J Appl Sci, 2012, 12(11), 1106-1111.
[http://dx.doi.org/10.3923/jas.2012.1106.1111]
[132]
Zeković, Z.; Pintać, D.; Majkić, T.; Vidović, S.; Mimica-Dukić, N.; Teslić, N.; Versari, A.; Pavlić, B. Utilization of sage by-products as raw material for antioxidants recovery—Ultrasound versus microwave-assisted extraction. Ind. Crops Prod., 2017, 99, 49-59.
[http://dx.doi.org/10.1016/j.indcrop.2017.01.028]
[133]
Barrera Vázquez, M.F.; Comini, L.R.; Martini, R.E.; Núñez Montoya, S.C.; Bottini, S.; Cabrera, J.L. Comparisons between conventional, ultrasound-assisted and microwave-assisted methods for extraction of anthraquinones from Heterophyllaea pustulata Hook f. (Rubiaceae). Ultrason. Sonochem., 2014, 21(2), 478-484.
[http://dx.doi.org/10.1016/j.ultsonch.2013.08.023] [PMID: 24071561]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy