Review Article

干扰宿主蛋白酶进入 SARS-CoV-2 为一种有前途的治疗策略

卷 29, 期 4, 2022

发表于: 03 August, 2021

页: [635 - 665] 页: 31

弟呕挨: 10.2174/0929867328666210526111318

价格: $65

conference banner
摘要

由于其快速的国际传播和高死亡率,冠状病毒 COVID-19 演变为全球威胁。由于目前还没有针对这种病毒感染的致病药物,因此科学正在努力寻找新的药物和其他方法来治疗这种新疾病。 研究表明,冠状病毒进入宿主细胞的过程是通过病毒刺突 (S) 蛋白与细胞受体的结合发生的。 S蛋白的引发是通过不同宿主蛋白酶的水解而发生的。 这些蛋白酶的抑制可能会损害 S 蛋白的加工,从而影响与宿主细胞受体的相互作用并阻止病毒细胞进入。 因此,抑制这些蛋白酶可能是治疗 SARSCoV-2 的一种有前途的策略。在这篇综述中,我们讨论了开发针对进入蛋白酶弗林蛋白酶抑制剂的现有技术,即跨膜丝氨酸蛋白酶 II 型 (TMPRSS2), 胰蛋白酶和组织蛋白酶 L。

关键词: SARS-CoV-2、COVID-19、宿主蛋白酶、蛋白酶抑制剂、弗林蛋白酶、组织蛋白酶 L、TMPRSS2、胰蛋白酶

[1]
Wu, F.; Zhao, S.; Yu, B.; Chen, Y-M.; Wang, W.; Song, Z-G.; Hu, Y.; Tao, Z-W.; Tian, J-H.; Pei, Y-Y.; Yuan, M-L.; Zhang, Y-L.; Dai, F-H.; Liu, Y.; Wang, Q-M.; Zheng, J-J.; Xu, L.; Holmes, E.C.; Zhang, Y-Z. A new coronavirus associated with human respiratory disease in China. Nature, 2020, 579(7798), 265-269.
[http://dx.doi.org/10.1038/s41586-020-2008-3] [PMID: 32015508]
[2]
Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; Niu, P.; Zhan, F.; Ma, X.; Wang, D.; Xu, W.; Wu, G.; Gao, G.F.; Tan, W. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med., 2020, 382(8), 727-733.
[http://dx.doi.org/10.1056/NEJMoa2001017] [PMID: 31978945]
[3]
Lu, R.; Zhao, X.; Li, J.; Niu, P.; Yang, B.; Wu, H.; Wang, W.; Song, H.; Huang, B.; Zhu, N.; Bi, Y.; Ma, X.; Zhan, F.; Wang, L.; Hu, T.; Zhou, H.; Hu, Z.; Zhou, W.; Zhao, L.; Chen, J.; Meng, Y.; Wang, J.; Lin, Y.; Yuan, J.; Xie, Z.; Ma, J.; Liu, W.J.; Wang, D.; Xu, W.; Holmes, E.C.; Gao, G.F.; Wu, G.; Chen, W.; Shi, W.; Tan, W. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet, 2020, 395(10224), 565-574.
[http://dx.doi.org/10.1016/S0140-6736(20)30251-8] [PMID: 32007145]
[4]
Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol., 2020, 5(4), 536-544.
[http://dx.doi.org/10.1038/s41564-020-0695-z] [PMID: 32123347]
[5]
WHO. WHO Coronavirus Disease (COVID-19) Dashboard. Available from: https://covid19.who.int/(Accessed date: February 05, 2020)
[6]
Walsh, E.E.; Frenck, R.W., Jr; Falsey, A.R.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Neuzil, K.; Mulligan, M.J.; Bailey, R.; Swanson, K.A.; Li, P.; Koury, K.; Kalina, W.; Cooper, D.; Fontes-Garfias, C.; Shi, P-Y.; Türeci, Ö.; Tompkins, K.R.; Lyke, K.E.; Raabe, V.; Dormitzer, P.R.; Jansen, K.U.; Şahin, U.; Gruber, W.C. Safety and immunogenicity of two RNA-based COVID-19 vaccine candidates. N. Engl. J. Med., 2020, 383(25), 2439-2450.
[http://dx.doi.org/10.1056/NEJMoa2027906] [PMID: 33053279]
[7]
Corbett, K.S.; Flynn, B.; Foulds, K.E.; Francica, J.R.; Boyoglu-Barnum, S.; Werner, A.P.; Flach, B.; O’Connell, S.; Bock, K.W.; Minai, M.; Nagata, B.M.; Andersen, H.; Martinez, D.R.; Noe, A.T.; Douek, N.; Donaldson, M.M.; Nji, N.N.; Alvarado, G.S.; Edwards, D.K.; Flebbe, D.R.; Lamb, E.; Doria-Rose, N.A.; Lin, B.C.; Louder, M.K.; O’Dell, S.; Schmidt, S.D.; Phung, E.; Chang, L.A.; Yap, C.; Todd, J.M.; Pessaint, L.; Van Ry, A.; Browne, S.; Greenhouse, J.; Putman-Taylor, T.; Strasbaugh, A.; Campbell, T-A.; Cook, A.; Dodson, A.; Steingrebe, K.; Shi, W.; Zhang, Y.; Abiona, O.M.; Wang, L.; Pegu, A.; Yang, E.S.; Leung, K.; Zhou, T.; Teng, I-T.; Widge, A.; Gordon, I.; Novik, L.; Gillespie, R.A.; Loomis, R.J.; Moliva, J.I.; Stewart-Jones, G.; Himansu, S.; Kong, W-P.; Nason, M.C.; Morabito, K.M.; Ruckwardt, T.J.; Ledgerwood, J.E.; Gaudinski, M.R.; Kwong, P.D.; Mascola, J.R.; Carfi, A.; Lewis, M.G.; Baric, R.S.; McDermott, A.; Moore, I.N.; Sullivan, N.J.; Roederer, M.; Seder, R.A.; Graham, B.S. Evaluation of the mRNA-1273 vaccine against SARS-CoV-2 in nonhuman primates. N. Engl. J. Med., 2020, 383(16), 1544-1555.
[http://dx.doi.org/10.1056/NEJMoa2024671] [PMID: 32722908]
[8]
Baden, L.R.; El Sahly, H.M.; Essink, B.; Kotloff, K.; Frey, S.; Novak, R.; Diemert, D.; Spector, S.A.; Rouphael, N.; Creech, C.B.; McGettigan, J.; Khetan, S.; Segall, N.; Solis, J.; Brosz, A.; Fierro, C.; Schwartz, H.; Neuzil, K.; Corey, L.; Gilbert, P.; Janes, H.; Follmann, D.; Marovich, M.; Mascola, J.; Polakowski, L.; Ledgerwood, J.; Graham, B.S.; Bennett, H.; Pajon, R.; Knightly, C.; Leav, B.; Deng, W.; Zhou, H.; Han, S.; Ivarsson, M.; Miller, J.; Zaks, T. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N. Engl. J. Med., 2021, 384(5), 403-416.
[http://dx.doi.org/10.1056/NEJMoa2035389] [PMID: 33378609]
[9]
Voysey, M.; Clemens, S.A.C.; Madhi, S.A.; Weckx, L.Y.; Folegatti, P.M.; Aley, P.K.; Angus, B.; Baillie, V.L.; Barnabas, S.L.; Bhorat, Q.E.; Bibi, S.; Briner, C.; Cicconi, P.; Collins, A.M.; Colin-Jones, R.; Cutland, C.L.; Darton, T.C.; Dheda, K.; Duncan, C.J.A.; Emary, K.R.W.; Ewer, K.J.; Fairlie, L.; Faust, S.N.; Feng, S.; Ferreira, D.M.; Finn, A.; Goodman, A.L.; Green, C.M.; Green, C.A.; Heath, P.T.; Hill, C.; Hill, H.; Hirsch, I.; Hodgson, S.H.C.; Izu, A.; Jackson, S.; Jenkin, D.; Joe, C.C.D.; Kerridge, S.; Koen, A.; Kwatra, G.; Lazarus, R.; Lawrie, A.M.; Lelliott, A.; Libri, V.; Lillie, P.J.; Mallory, R.; Mendes, A.V.A.; Milan, E.P.; Minassian, A.M.; McGregor, A.; Morrison, H.; Mujadidi, Y.F.; Nana, A.; O’Reilly, P.J.; Padayachee, S.D.; Pittella, A.; Plested, E.; Pollock, K.M.; Ramasamy, M.N.; Rhead, S.; Schwarzbold, A.V.; Singh, N.; Smith, A.; Song, R.; Snape, M.D.; Sprinz, E.; Sutherland, R.K.; Tarrant, R.; Thomson, E.C.; Török, M.E.; Toshner, M.; Turner, D.P.J.; Vekemans, J.; Villafana, T.L.; Watson, M.E.E.; Williams, C.J.; Douglas, A.D.; Hill, A.V.S.; Lambe, T.; Gilbert, S.C.; Pollard, A.J.; Aban, M.; Abayomi, F.; Abeyskera, K.; Aboagye, J.; Adam, M.; Adams, K.; Adamson, J.; Adelaja, Y.A.; Adewetan, G.; Adlou, S.; Ahmed, K.; Akhalwaya, Y.; Akhalwaya, S.; Alcock, A.; Ali, A.; Allen, E.R.; Allen, L.; Almeida, T.C.D.S.C.; Alves, M.P.S.; Amorim, F.; Andritsou, F.; Anslow, R.; Appleby, M.; Arbe-Barnes, E.H.; Ariaans, M.P.; Arns, B.; Arruda, L.; Azi, P.; Azi, L.; Babbage, G.; Bailey, C.; Baker, K.F.; Baker, M.; Baker, N.; Baker, P.; Baldwin, L.; Baleanu, I.; Bandeira, D.; Bara, A.; Barbosa, M.A.S.; Barker, D.; Barlow, G.D.; Barnes, E.; Barr, A.S.; Barrett, J.R.; Barrett, J.; Bates, L.; Batten, A.; Beadon, K.; Beales, E.; Beckley, R.; Belij-Rammerstorfer, S.; Bell, J.; Bellamy, D.; Bellei, N.; Belton, S.; Berg, A.; Bermejo, L.; Berrie, E.; Berry, L.; Berzenyi, D.; Beveridge, A.; Bewley, K.R.; Bexhell, H.; Bhikha, S.; Bhorat, A.E.; Bhorat, Z.E.; Bijker, E.; Birch, G.; Birch, S.; Bird, A.; Bird, O.; Bisnauthsing, K.; Bittaye, M.; Blackstone, K.; Blackwell, L.; Bletchly, H.; Blundell, C.L.; Blundell, S.R.; Bodalia, P.; Boettger, B.C.; Bolam, E.; Boland, E.; Bormans, D.; Borthwick, N.; Bowring, F.; Boyd, A.; Bradley, P.; Brenner, T.; Brown, P.; Brown, C.; Brown-O’Sullivan, C.; Bruce, S.; Brunt, E.; Buchan, R.; Budd, W.; Bulbulia, Y.A.; Bull, M.; Burbage, J.; Burhan, H.; Burn, A.; Buttigieg, K.R.; Byard, N.; Cabera Puig, I.; Calderon, G.; Calvert, A.; Camara, S.; Cao, M.; Cappuccini, F.; Cardoso, J.R.; Carr, M.; Carroll, M.W.; Carson-Stevens, A.; Carvalho, Y. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet, 2021, 397(10269), 99-111.
[http://dx.doi.org/10.1016/S0140-6736(20)32661-1] [PMID: 33306989]
[10]
WHO Draft landscape and tracker of COVID-19 candidate vaccines., Available from: https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines(Accessed date: October 01, 2020)
[11]
Zhang, Y.; Zeng, G.; Pan, H.; Li, C.; Hu, Y.; Chu, K.; Han, W.; Chen, Z.; Tang, R.; Yin, W.; Chen, X. Articles safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine in healthy adults aged 18 – 59 years. Lancet Infect. Dis., 21(2), 181-192.
[http://dx.doi.org/10.1016/S1473-3099(20)30843-4] [PMID: 33217362]
[12]
U.S. National Library of Medicine. Clinical trial of efficacy, safety, and immunogenicity of gam-COVID-vac vaccine against COVID-19 (RESIST). Available from: https://clinicaltrials.gov/ct2/show/NCT04530396?term=Gam-COVID-Vac&draw=2(Accessed date: October 01, 2020)
[13]
Muik, A.; Wallisch, A-K.; Sänger, B.; Swanson, K.A.; Mühl, J.; Chen, W.; Cai, H.; Maurus, D.; Sarkar, R.; Türeci, Ö.; Dormitzer, P.R.; Şahin, U. Neutralization of SARS-CoV-2 lineage B.1.1.7 pseudovirus by BNT162b2 vaccine-elicited human sera. Science, 2021, 371(6534), 1152-1153.
[http://dx.doi.org/10.1126/science.abg6105] [PMID: 33514629]
[14]
Remuzzi, A.; Remuzzi, G. COVID-19 and Italy: what next? Lancet, 2020, 395(10231), 1225-1228.
[http://dx.doi.org/10.1016/S0140-6736(20)30627-9] [PMID: 32178769]
[15]
Saglietto, A.; D’Ascenzo, F.; Zoccai, G.B.; De Ferrari, G.M. COVID-19 in Europe: the Italian lesson. Lancet, 2020, 395(10230), 1110-1111.
[http://dx.doi.org/10.1016/S0140-6736(20)30690-5] [PMID: 32220279]
[16]
Dhama, K.; Sharun, K.; Tiwari, R.; Dadar, M.; Malik, Y.S.; Singh, K.P.; Chaicumpa, W. COVID-19, an emerging coronavirus infection: advances and prospects in designing and developing vaccines, immunotherapeutics, and therapeutics. Hum. Vaccin. Immunother., 2020, 16(6), 1232-1238.
[http://dx.doi.org/10.1080/21645515.2020.1735227] [PMID: 32186952]
[17]
Shah, B.; Modi, P.; Sagar, S.R. In silico studies on therapeutic agents for COVID-19: drug repurposing approach. Life Sci., 2020, 252(March)117652
[http://dx.doi.org/10.1016/j.lfs.2020.117652] [PMID: 32278693]
[18]
Warren, T.K.; Jordan, R.; Lo, M.K.; Ray, A.S.; Mackman, R.L.; Soloveva, V.; Siegel, D.; Perron, M.; Bannister, R.; Hui, H.C.; Larson, N.; Strickley, R.; Wells, J.; Stuthman, K.S.; Van Tongeren, S.A.; Garza, N.L.; Donnelly, G.; Shurtleff, A.C.; Retterer, C.J.; Gharaibeh, D.; Zamani, R.; Kenny, T.; Eaton, B.P.; Grimes, E.; Welch, L.S.; Gomba, L.; Wilhelmsen, C.L.; Nichols, D.K.; Nuss, J.E.; Nagle, E.R.; Kugelman, J.R.; Palacios, G.; Doerffler, E.; Neville, S.; Carra, E.; Clarke, M.O.; Zhang, L.; Lew, W.; Ross, B.; Wang, Q.; Chun, K.; Wolfe, L.; Babusis, D.; Park, Y.; Stray, K.M.; Trancheva, I.; Feng, J.Y.; Barauskas, O.; Xu, Y.; Wong, P.; Braun, M.R.; Flint, M.; McMullan, L.K.; Chen, S-S.; Fearns, R.; Swaminathan, S.; Mayers, D.L.; Spiropoulou, C.F.; Lee, W.A.; Nichol, S.T.; Cihlar, T.; Bavari, S. Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys. Nature, 2016, 531(7594), 381-385.
[http://dx.doi.org/10.1038/nature17180] [PMID: 26934220]
[19]
Tchesnokov, E.P.; Feng, J.Y.; Porter, D.P.; Götte, M. Mechanism of inhibition of Ebola virus RNA-dependent RNA polymerase by remdesivir. Viruses, 2019, 11(4), 326.
[http://dx.doi.org/10.3390/v11040326] [PMID: 30987343]
[20]
Goldman, J.D.; Lye, D.C.B.; Hui, D.S.; Marks, K.M.; Bruno, R.; Montejano, R.; Spinner, C.D.; Galli, M.; Ahn, M-Y.; Nahass, R.G.; Chen, Y-S.; SenGupta, D.; Hyland, R.H.; Osinusi, A.O.; Cao, H.; Blair, C.; Wei, X.; Gaggar, A.; Brainard, D.M.; Towner, W.J.; Muñoz, J.; Mullane, K.M.; Marty, F.M.; Tashima, K.T.; Diaz, G.; Subramanian, A. Remdesivir for 5 or 10 days in patients with severe COVID-19. N. Engl. J. Med., 2020, 383(19), 1827-1837.
[http://dx.doi.org/10.1056/NEJMoa2015301] [PMID: 32459919]
[21]
Beigel, J.H.; Tomashek, K.M.; Dodd, L.E.; Mehta, A.K.; Zingman, B.S.; Kalil, A.C.; Hohmann, E.; Chu, H.Y.; Luetkemeyer, A.; Kline, S.; Lopez de Castilla, D.; Finberg, R.W.; Dierberg, K.; Tapson, V.; Hsieh, L.; Patterson, T.F.; Paredes, R.; Sweeney, D.A.; Short, W.R.; Touloumi, G.; Lye, D.C.; Ohmagari, N.; Oh, M.; Ruiz-Palacios, G.M.; Benfield, T.; Fätkenheuer, G.; Kortepeter, M.G.; Atmar, R.L.; Creech, C.B.; Lundgren, J.; Babiker, A.G.; Pett, S.; Neaton, J.D.; Burgess, T.H.; Bonnett, T.; Green, M.; Makowski, M.; Osinusi, A.; Nayak, S.; Lane, H.C. Remdesivir for the treatment of COVID-19 — preliminary report. N. Engl. J. Med., 2020, 383(19), 1813-1826.
[http://dx.doi.org/10.1056/NEJMoa2007764] [PMID: 32445440 ]
[22]
WHO Solidarity Trial Consortium Pan, H.; Peto, R.; Henao-Restrepo, A.M.; Preziosi, M.P.; Sathiyamoorthy, V.; Abdool Karim, Q.; Alejandria, M.M.; Hernández García, C.; Kieny, M.P.; Malekzadeh, R.; Murthy, S.; Reddy, K.S.; Roses Periago, M.; Abi Hanna, P.; Ader, F.; Al-Bader, A.M.; Alhasawi, A.; Allum, E.; Alotaibi, A., Swaminathan, S. Repurposed antiviral drugs for COVID-19 –interim WHO SOLIDARITY trial results. N. Engl. J. Med., 2020, 384(6), 497-511.
[http://dx.doi.org/10.1056/NEJMoa2023184] [PMID: 33264556]
[23]
Edwards, A. What are the odds of finding a COVID-19 drug from a lab repurposing screen? J. Chem. Inf. Model., 2020, 60(12), 5727-5729.
[http://dx.doi.org/10.1021/acs.jcim.0c00861] [PMID: 32914973]
[24]
Din, O.S.; Woll, P.J. Treatment of gastrointestinal stromal tumor: focus on imatinib mesylate. Ther. Clin. Risk Manag., 2008, 4(1), 149-162.
[http://dx.doi.org/10.2147/TCRM.S1526] [PMID: 18728705]
[25]
Majid, M.; Fatemeh, M.; Shahrokh, S. An overview on coronaviruses family from past to COVID-19: introduce some inhibitors as antiviruses from Gillan’s plants. Biointerface Res. Appl. Chem., 2020, 10(3), 5575-5585.
[http://dx.doi.org/10.33263/BRIAC103.575585]
[26]
Chan, J.F-W.; Kok, K-H.; Zhu, Z.; Chu, H.; To, K.K-W.; Yuan, S.; Yuen, K-Y. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg. Microbes Infect., 2020, 9(1), 221-236.
[http://dx.doi.org/10.1080/22221751.2020.1719902] [PMID: 31987001]
[27]
Zhou, P.; Yang, X-L.; Wang, X-G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H-R.; Zhu, Y.; Li, B.; Huang, C-L.; Chen, H-D.; Chen, J.; Luo, Y.; Guo, H.; Jiang, R-D.; Liu, M-Q.; Chen, Y.; Shen, X-R.; Wang, X.; Zheng, X-S.; Zhao, K.; Chen, Q-J.; Deng, F.; Liu, L-L.; Yan, B.; Zhan, F-X.; Wang, Y-Y.; Xiao, G-F.; Shi, Z-L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020, 579(7798), 270-273.
[http://dx.doi.org/10.1038/s41586-020-2012-7] [PMID: 32015507]
[28]
Yao, H.; Song, Y.; Chen, Y.; Wu, N.; Xu, J.; Sun, C.; Zhang, J.; Weng, T.; Zhang, Z.; Wu, Z.; Cheng, L.; Shi, D.; Lu, X.; Lei, J.; Crispin, M.; Shi, Y.; Li, L.; Li, S. Molecular architecture of the SARS-CoV-2 virus. Cell, 2020, 183(3), 730-738.e13.
[http://dx.doi.org/10.1016/j.cell.2020.09.018] [PMID: 32979942]
[29]
Fehr, A.R.; Perlman, S. Coronaviruses: An Overview of Their Replication and Pathogenesis; Springer Protocolls, 2015, pp. 1-23.
[30]
Kim, D.; Lee, J.Y.; Yang, J.S.; Kim, J.W.; Kim, V.N.; Chang, H. The architecture of SARS-CoV-2 transcriptome. Cell, 2020, 181(4), 914-921.e10.
[http://dx.doi.org/10.1016/j.cell.2020.04.011] [PMID: 32330414]
[31]
Astuti, I. Ysrafil. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): an overview of viral structure and host response. Diabetes Metab. Syndr., 2020, 14(4), 407-412.
[http://dx.doi.org/10.1016/j.dsx.2020.04.020] [PMID: 32335367]
[32]
Bárcena, M.; Oostergetel, G.T.; Bartelink, W.; Faas, F.G.A.; Verkleij, A.; Rottier, P.J.M.; Koster, A.J.; Bosch, B.J. Cryo-electron tomography of mouse hepatitis virus: insights into the structure of the coronavirion. Proc. Natl. Acad. Sci. USA, 2009, 106(2), 582-587.
[http://dx.doi.org/10.1073/pnas.0805270106] [PMID: 19124777]
[33]
Neuman, B.W.; Adair, B.D.; Yoshioka, C.; Quispe, J.D.; Orca, G.; Kuhn, P.; Milligan, R.A.; Yeager, M.; Buchmeier, M.J. Supramolecular architecture of severe acute respiratory syndrome coronavirus revealed by electron cryomicroscopy. J. Virol., 2006, 80(16), 7918-7928.
[http://dx.doi.org/10.1128/JVI.00645-06] [PMID: 16873249]
[34]
Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The protein data bank. Nucleic Acids Res., 2000, 28(1), 235-242.
[http://dx.doi.org/10.1093/nar/28.1.235] [PMID: 10592235]
[35]
Lukassen, S.; Chua, R.L.; Trefzer, T.; Kahn, N.C.; Schneider, M.A.; Muley, T.; Winter, H.; Meister, M.; Veith, C.; Boots, A.W.; Hennig, B.P.; Kreuter, M.; Conrad, C.; Eils, R. SARS-CoV-2 receptor ACE2 and TMPRSS2 are primarily expressed in bronchial transient secretory cells. EMBO J., 2020, 39(10)e105114
[http://dx.doi.org/10.15252/embj.2020105114] [PMID: 32246845]
[36]
Lan, J.; Ge, J.; Yu, J.; Shan, S.; Zhou, H.; Fan, S.; Zhang, Q.; Shi, X.; Wang, Q.; Zhang, L.; Wang, X. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature, 2020, 581(7807), 215-220.
[http://dx.doi.org/10.1038/s41586-020-2180-5] [PMID: 32225176]
[37]
Shang, J.; Ye, G.; Shi, K.; Wan, Y.; Luo, C.; Aihara, H.; Geng, Q.; Auerbach, A.; Li, F. Structural basis of receptor recognition by SARS-CoV-2. Nature, 2020, 581(7807), 221-224.
[http://dx.doi.org/10.1038/s41586-020-2179-y] [PMID: 32225175]
[38]
Shin, D.; Mukherjee, R.; Grewe, D.; Bojkova, D.; Baek, K.; Bhattacharya, A.; Schulz, L.; Widera, M.; Mehdipour, A.R.; Tascher, G.; Geurink, P.P.; Wilhelm, A.; van der Heden van Noort, G.J.; Ovaa, H.; Müller, S.; Knobeloch, K-P.; Rajalingam, K.; Schulman, B.A.; Cinatl, J.; Hummer, G.; Ciesek, S.; Dikic, I. Papain-like protease regulates SARS-CoV-2 viral spread and innate immunity. Nature, 2020, 587(7835), 657-662.
[http://dx.doi.org/10.1038/s41586-020-2601-5] [PMID: 32726803]
[39]
Harcourt, B.H.; Jukneliene, D.; Kanjanahaluethai, A.; Bechill, J.; Severson, K.M.; Smith, C.M.; Rota, P.A.; Baker, S.C. Identification of severe acute respiratory syndrome coronavirus replicase products and characterization of papain-like protease activity. J. Virol., 2004, 78(24), 13600-13612.
[http://dx.doi.org/10.1128/JVI.78.24.13600-13612.2004] [PMID: 15564471]
[40]
Chen, S.; Jonas, F.; Shen, C.; Hilgenfeld, R. Liberation of SARS-CoV main protease from the viral polyprotein: N-terminal autocleavage does not depend on the mature dimerization mode. Protein Cell, 2010, 1(1), 59-74.
[http://dx.doi.org/10.1007/s13238-010-0011-4] [PMID: 21203998]
[41]
Ziebuhr, J. Molecular biology of severe acute respiratory syndrome coronavirus. Curr. Opin. Microbiol., 2004, 7(4), 412-419.
[http://dx.doi.org/10.1016/j.mib.2004.06.007] [PMID: 15358261]
[42]
Toelzer, C.; Gupta, K.; Yadav, S.K.N.; Borucu, U.; Davidson, A.D.; Kavanagh Williamson, M.; Shoemark, D.K.; Garzoni, F.; Staufer, O.; Milligan, R.; Capin, J.; Mulholland, A.J.; Spatz, J.; Fitzgerald, D.; Berger, I.; Schaffitzel, C. Free fatty acid binding pocket in the locked structure of SARS-CoV-2 spike protein. Science, 2020, 370(6517), 725-730.
[http://dx.doi.org/10.1126/science.abd3255] [PMID: 32958580]
[43]
Jin, Z.; Du, X.; Xu, Y.; Deng, Y.; Liu, M.; Zhao, Y.; Zhang, B.; Li, X.; Zhang, L.; Peng, C.; Duan, Y.; Yu, J.; Wang, L.; Yang, K.; Liu, F.; Jiang, R.; Yang, X.; You, T.; Liu, X.; Yang, X.; Bai, F.; Liu, H.; Liu, X.; Guddat, L.W.; Xu, W.; Xiao, G.; Qin, C.; Shi, Z.; Jiang, H.; Rao, Z.; Yang, H. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature, 2020, 582(7811), 289-293.
[http://dx.doi.org/10.1038/s41586-020-2223-y] [PMID: 32272481]
[44]
Klemm, T.; Ebert, G.; Calleja, D.J.; Allison, C.C.; Richardson, L.W.; Bernardini, J.P.; Lu, B.G.; Kuchel, N.W.; Grohmann, C.; Shibata, Y.; Gan, Z.Y.; Cooney, J.P.; Doerflinger, M.; Au, A.E.; Blackmore, T.R.; van der Heden van Noort, G.J.; Geurink, P.P.; Ovaa, H.; Newman, J.; Riboldi-Tunnicliffe, A.; Czabotar, P.E.; Mitchell, J.P.; Feltham, R.; Lechtenberg, B.C.; Lowes, K.N.; Dewson, G.; Pellegrini, M.; Lessene, G.; Komander, D. Mechanism and inhibition of the papain-like protease, PLpro, of SARS-CoV-2. EMBO J., 2020, 39(18)e106275
[http://dx.doi.org/10.15252/embj.2020106275] [PMID: 32845033]
[45]
Barile, E.; Baggio, C.; Gambini, L.; Shiryaev, S.A.; Strongin, A.Y.; Pellecchia, M. Potential therapeutic targeting of coronavirus spike glycoprotein priming. Molecules, 2020, 25(10), 2424.
[http://dx.doi.org/10.3390/molecules25102424] [PMID: 32455942]
[46]
Rahman, N.; Basharat, Z.; Yousuf, M.; Castaldo, G.; Rastrelli, L.; Khan, H. Virtual screening of natural products against type II transmembrane serine protease (TMPRSS2), the priming agent of coronavirus 2 (SARS-CoV-2). Molecules, 2020, 25(10), 2271.
[http://dx.doi.org/10.3390/molecules25102271] [PMID: 32408547]
[47]
Xia, S.; Lan, Q.; Su, S.; Wang, X.; Xu, W.; Liu, Z.; Zhu, Y.; Wang, Q.; Lu, L.; Jiang, S. The role of furin cleavage site in SARS-CoV-2 spike protein-mediated membrane fusion in the presence or absence of trypsin. Signal Transduct. Target. Ther., 2020, 5(1), 92.
[http://dx.doi.org/10.1038/s41392-020-0184-0] [PMID: 32532959]
[48]
Jaimes, J. A.; Millet, J. K.; Whittaker, G. R. Proteolytic cleavage of the SARS-CoV-2 spike protein and the role of the novel S1/S2 Site. iScience, 2020, 23(6) 101212
[49]
Wrapp, D.; Wang, N.; Corbett, K.S.; Goldsmith, J.A.; Hsieh, C-L.; Abiona, O.; Graham, B.S.; McLellan, J.S. Cryo-EM structure of the 2019-NCoV spike in the prefusion conformation. Science, 2020, 367(6483), 1260-1263.
[http://dx.doi.org/10.1126/science.abb2507] [PMID: 32075877]
[50]
Watanabe, Y.; Allen, J.D.; Wrapp, D.; McLellan, J.S.; Crispin, M. Site-specific glycan analysis of the SARS-CoV-2 spike. Science, 2020, 369(6501), 330-333.
[http://dx.doi.org/10.1126/science.abb9983] [PMID: 32366695]
[51]
Tan, L.; Wang, Q.; Zhang, D.; Ding, J.; Huang, Q.; Tang, Y.Q.; Wang, Q.; Miao, H. Lymphopenia predicts disease severity of COVID-19: a descriptive and predictive study. Signal Transduct. Target. Ther., 2020, 5(1), 16-18.
[http://dx.doi.org/10.1038/s41392-020-0148-4] [PMID: 32296041]
[52]
White, J.M.; Delos, S.E.; Brecher, M.; Schornberg, K. Structures and mechanisms of viral membrane fusion proteins: multiple variations on a common theme. Crit. Rev. Biochem. Mol. Biol., 2008, 43(3), 189-219.
[http://dx.doi.org/10.1080/10409230802058320] [PMID: 18568847]
[53]
Tortorici, M.A.; Walls, A.C.; Lang, Y.; Wang, C.; Li, Z.; Koerhuis, D.; Boons, G.J.; Bosch, B.J.; Rey, F.A.; de Groot, R.J.; Veesler, D. Structural basis for human coronavirus attachment to sialic acid receptors. Nat. Struct. Mol. Biol., 2019, 26(6), 481-489.
[http://dx.doi.org/10.1038/s41594-019-0233-y] [PMID: 31160783]
[54]
Yang, J.; Petitjean, S.J.L.; Koehler, M.; Zhang, Q.; Dumitru, A.C.; Chen, W.; Derclaye, S.; Vincent, S.P.; Soumillion, P.; Alsteens, D. Molecular interaction and inhibition of SARS-CoV-2 binding to the ACE2 receptor. Nat. Commun., 2020, 11(1), 4541.
[http://dx.doi.org/10.1038/s41467-020-18319-6] [PMID: 32917884]
[55]
Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.H.; Nitsche, A.; Müller, M.A.; Drosten, C.; Pöhlmann, S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 2020, 181(2), 271-280.e8.
[http://dx.doi.org/10.1016/j.cell.2020.02.052] [PMID: 32142651]
[56]
Hamming, I.; Timens, W.; Bulthuis, M.L.; Lely, A.T.; Navis, G.; van Goor, H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J. Pathol., 2004, 203(2), 631-637.
[http://dx.doi.org/10.1002/path.1570] [PMID: 15141377]
[57]
Becerra-Flores, M.; Cardozo, T. SARS-CoV-2 viral spike G614 mutation exhibits higher case fatality rate. Int. J. Clin. Pract., 2020, 74(8)e13525
[http://dx.doi.org/10.1111/ijcp.13525] [PMID: 32374903]
[58]
Wang, C.; Liu, Z.; Chen, Z.; Huang, X.; Xu, M.; He, T.; Zhang, Z. The establishment of reference sequence for SARS-CoV-2 and variation analysis. J. Med. Virol., 2020, 92(6), 667-674.
[http://dx.doi.org/10.1002/jmv.25762] [PMID: 32167180]
[59]
Jaimes, J.A; Millet, J.K.; Whittaker, GR. Proteolytic cleavage of the SARS-CoV-2 spike protein and the role of the novel S1/S2 site. iScience 2020, 23(6) 101212
[http://dx.doi.org/10.1016/j.isci.2020.101212] [PMID: 32512386]
[60]
Barrett, C.T.; Dutch, R.E. Viral membrane fusion and the transmembrane domain. Viruses, 2020, 12(7), 693.
[http://dx.doi.org/10.3390/v12070693] [PMID: 32604992]
[61]
Jaimes, J.A.; Whittaker, G.R. Feline coronavirus: insights into viral pathogenesis based on the spike protein structure and function. Virology, 2018, 517, 108-121.
[http://dx.doi.org/10.1016/j.virol.2017.12.027] [PMID: 29329682]
[62]
Seidah, N.G.; Day, R.; Marcinkiewicz, M.; Chretien, M. Precursor convertases: an evolutionary ancient, cell-specific, combinatorial mechanism yielding diverse bioactive peptides and proteins. Ann. N. Y. Acad. Sci., 1998, 839(1), 9-24.
[http://dx.doi.org/10.1111/j.1749-6632.1998.tb10727.x] [PMID: 9629127]
[63]
Seidah, N.G.; Prat, A. The biology and therapeutic targeting of the proprotein convertases. Nat. Rev. Drug Discov., 2012, 11(5), 367-383.
[http://dx.doi.org/10.1038/nrd3699] [PMID: 22679642]
[64]
Jaaks, P.; Bernasconi, M. The proprotein convertase furin in tumour progression. Int. J. Cancer, 2017, 141(4), 654-663.
[http://dx.doi.org/10.1002/ijc.30714] [PMID: 28369813]
[65]
Steiner, D.F. The proprotein convertases. Curr. Opin. Chem. Biol., 1998, 2(1), 31-39.https://doi.org/https://doi.org/10.1016/S1367-5931(98)80033-1
[PMID: 9667917]
[66]
Zhou, A.; Martin, S.; Lipkind, G.; LaMendola, J.; Steiner, D.F. Regulatory roles of the P domain of the subtilisin-like prohormone convertases. J. Biol. Chem., 1998, 273(18), 11107-11114.
[http://dx.doi.org/10.1074/jbc.273.18.11107] [PMID: 9556596]
[67]
Thacker, C.; Rose, A.M. A look at the caenorhabditis elegans Kex2/subtilisin-like proprotein convertase family. BioEssays, 2000, 22(6), 545-553.
[http://dx.doi.org/10.1002/(SICI)1521-1878(200006)22:6< 545:AID-BIES7>3.0.CO;2-F] [PMID: 10842308]
[68]
Thomas, G. Furin at the cutting edge: from protein traffic to embryogenesis and disease. Nat. Rev. Mol. Cell Biol., 2002, 3(10), 753-766.
[http://dx.doi.org/10.1038/nrm934] [PMID: 12360192]
[69]
Dahms, S.O.; Hardes, K.; Steinmetzer, T.; Than, M.E. X-ray Structures of the proprotein convertase furin bound with substrate analogue inhibitors reveal substrate specificity determinants beyond the S4 Pocket. Biochemistry, 2018, 57(6), 925-934.
[http://dx.doi.org/10.1021/acs.biochem.7b01124] [PMID: 29314830]
[70]
Roebroek, A.J.M.; Schalken, J.A.; Bussemakers, M.J.G.; van Heerikhuizen, H.; Onnekink, C.; Debruyne, F.M.J.; Bloemers, H.P.J.; Van de Ven, W.J.M. Characterization of human c-fes/fps reveals a new transcription unit (fur) in the immediately upstream region of the proto-oncogene. Mol. Biol. Rep., 1986, 11(2), 117-125.
[http://dx.doi.org/10.1007/BF00364823] [PMID: 3488499]
[71]
Rehemtulla, A.; Dorner, A.J.; Kaufman, R.J. Regulation of PACE propeptide-processing activity: requirement for a post-endoplasmic reticulum compartment and autoproteolytic activation. Proc. Natl. Acad. Sci. USA, 1992, 89(17), 8235-8239.
[http://dx.doi.org/10.1073/pnas.89.17.8235] [PMID: 1325651]
[72]
Anderson, E.D.; Molloy, S.S.; Jean, F.; Fei, H.; Shimamura, S.; Thomas, G. The ordered and compartment-specfific autoproteolytic removal of the furin intramolecular chaperone is required for enzyme activation. J. Biol. Chem., 2002, 277(15), 12879-12890.
[http://dx.doi.org/10.1074/jbc.M108740200] [PMID: 11799113]
[73]
Davey, J.; Davis, K.; Imai, Y.; Yamamoto, M.; Matthews, G. Isolation and characterization of krp, a dibasic endopeptidase required for cell viability in the fission yeast schizosaccharomyces pombe. EMBO J., 1994, 13(24), 5910-5921.
[http://dx.doi.org/10.1002/j.1460-2075.1994.tb06936.x] [PMID: 7813430]
[74]
Molloy, S.S.; Thomas, L.; VanSlyke, J.K.; Stenberg, P.E.; Thomas, G. Intracellular trafficking and activation of the furin proprotein convertase: localization to the TGN and recycling from the cell surface. EMBO J., 1994, 13(1), 18-33.
[http://dx.doi.org/10.1002/j.1460-2075.1994.tb06231.x] [PMID: 7508380]
[75]
Bresnahan, P.A.; Leduc, R.; Thomas, L.; Thorner, J.; Gibson, H.L.; Brake, A.J.; Barr, P.J.; Thomas, G. Human fur gene encodes a yeast KEX2-like endoprotease that cleaves pro-beta-NGF in vivo. J. Cell Biol., 1990, 111(6 Pt 2), 2851-2859.
[http://dx.doi.org/10.1083/jcb.111.6.2851] [PMID: 2269657]
[76]
Takahashi, S.; Nakagawa, T.; Kasai, K.; Banno, T.; Duguay, S.J. Van de Ven, Wim J.M.; Murakami, K.; Nakayama, K. A Second mutant allele of furin in the processing-incompetent cell line, LoVo evidence for involvement of the homo B domain in autocatalytic activation. J. Biol. Chem., 1995, 270(44), 26565-26569.
[http://dx.doi.org/10.1074/jbc.270.44.26565] [PMID: 7592877]
[77]
Creemers, J.W.; Siezen, R.J.; Roebroek, A.J.; Ayoubi, T.A.; Huylebroeck, D.; Van de Ven, W.J. Modulation of furin-mediated proprotein processing activity by site-directed mutagenesis. J. Biol. Chem., 1993, 268(29), 21826-21834.
[http://dx.doi.org/10.1016/S0021-9258(20)80616-4] [PMID: 8408037]
[78]
Leduc, R.; Molloy, S.S.; Thorne, B.A.; Thomas, G. Activation of human furin precursor processing endoprotease occurs by an intramolecular autoproteolytic cleavage. J. Biol. Chem., 1992, 267(20), 14304-14308.
[http://dx.doi.org/10.1016/S0021-9258(19)49712-3] [PMID: 1629222]
[79]
Than, M.E.; Henrich, S.; Bourenkov, G.P.; Bartunik, H.D.; Huber, R.; Bode, W. The endoproteinase furin contains two essential Ca2+ ions stabilizing its N-terminus and the unique S1 specificity pocket. Acta Crystallogr. D Biol. Crystallogr., 2005, 61(Pt 5), 505-512.
[http://dx.doi.org/10.1107/S0907444905002556] [PMID: 15858259]
[80]
Dahms, S.O.; Arciniega, M.; Steinmetzer, T.; Huber, R.; Than, M.E. Structure of the unliganded form of the proprotein convertase furin suggests activation by a substrate-induced mechanism. Proc. Natl. Acad. Sci. USA, 2016, 113(40), 11196-11201.
[http://dx.doi.org/10.1073/pnas.1613630113] [PMID: 27647913]
[81]
Seidah, N.G.; Chrétien, M. Proprotein and prohormone convertases: a family of subtilases generating diverse bioactive polypeptides. Brain Res., 1999, 848(1-2), 45-62.
[http://dx.doi.org/10.1016/S0006-8993(99)01909-5] [PMID: 10701998]
[82]
Molloy, S.S.; Bresnahan, P.A.; Leppla, S.H.; Klimpel, K.R.; Thomas, G. Human furin is a calcium-dependent serine endoprotease that recognizes the sequence Arg-X-X-Arg and efficiently cleaves anthrax toxin protective antigen. J. Biol. Chem., 1992, 267(23), 16396-16402.
[http://dx.doi.org/10.1016/S0021-9258(18)42016-9] [PMID: 1644824]
[83]
Walker, J.A.; Molloy, S.S.; Thomas, G.; Sakaguchi, T.; Yoshida, T.; Chambers, T.M.; Kawaoka, Y. Sequence specificity of furin, a proprotein-processing endoprotease, for the hemagglutinin of a virulent avian influenza virus. J. Virol., 1994, 68(2), 1213-1218.
[http://dx.doi.org/10.1128/jvi.68.2.1213-1218.1994] [PMID: 8289354]
[84]
Molloy, S.S.; Anderson, E.D.; Jean, F.; Thomas, G. Bi-cycling the furin pathway: from TGN localization to pathogen activation and embryogenesis. Trends Cell Biol., 1999, 9(1), 28-35.
[http://dx.doi.org/10.1016/S0962-8924(98)01382-8] [PMID: 10087614]
[85]
Russell, D.W. The enzymes, regulation, and genetics of bile acid synthesis. Annu. Rev. Biochem., 2003, 72(1), 137-174.
[http://dx.doi.org/10.1146/annurev.biochem.72.121801.161712] [PMID: 12543708]
[86]
Wu, Y.; Yakar, S.; Zhao, L.; Hennighausen, L.; LeRoith, D. Circulating insulin-like growth factor-I levels regulate colon cancer growth and metastasis. Cancer Res., 2002, 62(4), 1030-1035.
[PMID: 11861378]
[87]
Klimpel, K.R.; Molloy, S.S.; Thomas, G.; Leppla, S.H. Anthrax toxin protective antigen is activated by a cell surface protease with the sequence specificity and catalytic properties of furin. Proc. Natl. Acad. Sci. USA, 1992, 89(21), 10277-10281.
[http://dx.doi.org/10.1073/pnas.89.21.10277] [PMID: 1438214]
[88]
Gordon, V.M.; Benz, R.; Fujii, K.; Leppla, S.H.; Tweten, R.K. Clostridium septicum alpha-toxin is proteolytically activated by furin. Infect. Immun., 1997, 65(10), 4130-4134.
[http://dx.doi.org/10.1128/iai.65.10.4130-4134.1997] [PMID: 9317018]
[89]
Jin, W.; Fuki, I.V.; Seidah, N.G.; Benjannet, S.; Glick, J.M.; Rader, D.J. Proprotein convertases [corrected] are responsible for proteolysis and inactivation of endothelial lipase. J. Biol. Chem., 2005, 280(44), 36551-36559.
[http://dx.doi.org/10.1074/jbc.M502264200] [PMID: 16109723]
[90]
Essalmani, R.; Susan-Resiga, D.; Chamberland, A.; Abifadel, M.; Creemers, J.W.; Boileau, C.; Seidah, N.G.; Prat, A. In vivo evidence that furin from hepatocytes inactivates PCSK9. J. Biol. Chem., 2011, 286(6), 4257-4263.
[http://dx.doi.org/10.1074/jbc.M110.192104] [PMID: 21147780]
[91]
Roebroek, A.J.M.; Umans, L.; Pauli, I.G.L.; Robertson, E.J.; van Leuven, F.; Van de Ven, W.J.M.; Constam, D.B. Failure of ventral closure and axial rotation in embryos lacking the proprotein convertase Furin. Development, 1998, 125(24), 4863-4876.
[http://dx.doi.org/10.1242/dev.125.24.4863] [PMID: 9811571]
[92]
Lee, R. Regulation of cell survival by secreted proneurotrophins. Science, 2001, 294(5548), 1945-1948.
[http://dx.doi.org/10.1126/science.1065057] [PMID: 11729324]
[93]
Bassi, D.E.; Mahloogi, H.; Al-Saleem, L.; Lopez De Cicco, R.; Ridge, J.A.; Klein-Szanto, A.J.P. Elevated furin expression in aggressive human head and neck tumors and tumor cell lines. Mol. Carcinog., 2001, 31(4), 224-232.
[http://dx.doi.org/10.1002/mc.1057] [PMID: 11536372]
[94]
Mbikay, M.; Sirois, F.; Yao, J.; Seidah, N.G.; Chrétien, M. Comparative analysis of expression of the proprotein convertases furin, PACE4, PC1 and PC2 in human lung tumours. Br. J. Cancer, 1997, 75(10), 1509-1514.
[http://dx.doi.org/10.1038/bjc.1997.258] [PMID: 9166946]
[95]
Braun, E.; Sauter, D. Furin-mediated protein processing in infectious diseases and cancer. Clin. Transl. Immunology, 2019, 8(8)e1073
[http://dx.doi.org/10.1002/cti2.1073] [PMID: 31406574]
[96]
Hallenberger, S.; Bosch, V.; Angliker, H.; Shaw, E.; Klenk, H-D.; Garten, W. Inhibition of furin-mediated cleavage activation of HIV-1 glycoprotein gp160. Nature, 1992, 360(6402), 358-361.
[http://dx.doi.org/10.1038/360358a0] [PMID: 1360148]
[97]
Rabaan, A.A.; Al-Ahmed, S.H.; Haque, S.; Sah, R.; Tiwari, R.; Malik, Y.S.; Dhama, K.; Yatoo, M.I.; Bonilla-Aldana, D.K.; Rodriguez-Morales, A.J. SARS-CoV-2, SARS-CoV, and MERS-COV: a comparative overview. Infez. Med., 2020, 28(2), 174-184.
[PMID: 32275259]
[98]
Rossi, G.A.; Sacco, O.; Mancino, E.; Cristiani, L.; Midulla, F. Differences and similarities between SARS-CoV and SARS-CoV-2: spike receptor-binding domain recognition and host cell infection with support of cellular serine proteases. Infection, 2020, 48(5), 665-669.
[http://dx.doi.org/10.1007/s15010-020-01486-5] [PMID: 32737833]
[99]
Chen, Y.; Liu, Q.; Guo, D. Emerging coronaviruses: genome structure, replication, and pathogenesis. J. Med. Virol., 2020, 92(4), 418-423.
[http://dx.doi.org/10.1002/jmv.25681] [PMID: 31967327]
[100]
Tortorici, M.A.; Veesler, D. Structural insights into coronavirus entry. Adv. Virus Res., 2019, 105, 93-116.
[http://dx.doi.org/10.1016/bs.aivir.2019.08.002] [PMID: 31522710]
[101]
Izaguirre, G. The proteolytic regulation of virus cell entry by furin and other proprotein convertases. Viruses, 2019, 11(9), 837.
[http://dx.doi.org/10.3390/v11090837] [PMID: 31505793]
[102]
Shang, J.; Wan, Y.; Luo, C.; Ye, G.; Geng, Q.; Auerbach, A.; Li, F. Cell entry mechanisms of SARS-CoV-2. Proc. Natl. Acad. Sci. USA, 2020, 117(21), 11727-11734.
[http://dx.doi.org/10.1073/pnas.2003138117] [PMID: 32376634]
[103]
Coutard, B.; Valle, C.; de Lamballerie, X.; Canard, B.; Seidah, N.G.; Decroly, E. The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade. Antiviral Res., 2020, 176104742
[http://dx.doi.org/10.1016/j.antiviral.2020.104742] [PMID: 32057769]
[104]
Hoffmann, M.; Kleine-Weber, H.; Pöhlmann, S. A Multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells. Mol. Cell, 2020, 78(4), 779-784.e5.
[http://dx.doi.org/10.1016/j.molcel.2020.04.022] [PMID: 32362314]
[105]
Millet, J.K.; Whittaker, G.R. Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein. Proc. Natl. Acad. Sci. USA, 2014, 111(42), 15214-15219.
[http://dx.doi.org/10.1073/pnas.1407087111] [PMID: 25288733]
[106]
Henrich, S.; Cameron, A.; Bourenkov, G.P.; Kiefersauer, R.; Huber, R.; Lindberg, I.; Bode, W.; Than, M.E. The crystal structure of the proprotein processing proteinase furin explains its stringent specificity. Nat. Struct. Biol., 2003, 10(7), 520-526.
[http://dx.doi.org/10.1038/nsb941] [PMID: 12794637]
[107]
Cheng, Y-W.; Chao, T-L.; Li, C-L.; Chiu, M-F.; Kao, H-C.; Wang, S-H.; Pang, Y-H.; Lin, C-H.; Tsai, Y-M.; Lee, W.-H.; Tao, M-H.; Ho, T-C.; Wu, P-Y.; Jang, L-T.; Chen, P-J.; Chang, S-Y.; Yeh, S-H. Furin inhibitors block SARS-CoV-2 spike protein cleavage to suppress virus production and cytopathic effects. Cell Rep., 2020, 33(2)108254
[http://dx.doi.org/10.1016/j.celrep.2020.108254] [PMID: 33007239]
[108]
Remacle, A.G.; Shiryaev, S.A.; Oh, E.S.; Cieplak, P.; Srinivasan, A.; Wei, G.; Liddington, R.C.; Ratnikov, B.I.; Parent, A.; Desjardins, R.; Day, R.; Smith, J.W.; Lebl, M.; Strongin, A.Y. Substrate cleavage analysis of furin and related proprotein convertases. A comparative study. J. Biol. Chem., 2008, 283(30), 20897-20906.
[http://dx.doi.org/10.1074/jbc.M803762200] [PMID: 18505722]
[109]
Shieh, W.J.; Hsiao, C.H.; Paddock, C.D.; Guarner, J.; Goldsmith, C.S.; Tatti, K.; Packard, M.; Mueller, L.; Wu, M.Z.; Rollin, P.; Su, I.J.; Zaki, S.R. Immunohistochemical, in situ hybridization, and ultrastructural localization of SARS-associated coronavirus in lung of a fatal case of severe acute respiratory syndrome in Taiwan. Hum. Pathol., 2005, 36(3), 303-309.
[http://dx.doi.org/10.1016/j.humpath.2004.11.006] [PMID: 15791576]
[110]
Komiyama, T.; Swanson, J.A.; Fuller, R.S. Protection from anthrax toxin-mediated killing of macrophages by the combined effects of furin inhibitors and chloroquine. Antimicrob. Agents Chemother., 2005, 49(9), 3875-3882.
[http://dx.doi.org/10.1128/AAC.49.9.3875-3882.2005] [PMID: 16127065]
[111]
Willstätter, R.; Bemann, E. Über die proteasen der magenschleimhaut. Physiol. Chem., 1929, 180, 127-143.
[http://dx.doi.org/10.1515/bchm2.1929.180.1-3.127]
[112]
Otto, H.H.; Schirmeister, T. Cysteine proteases and their inhibitors. Chem. Rev., 1997, 97(1), 133-172.
[http://dx.doi.org/10.1021/cr950025u] [PMID: 11848867]
[113]
McGrath, M.E. The lysosomal cysteine proteases. Annu. Rev. Biophys. Biomol. Struct., 1999, 28, 181-204.
[http://dx.doi.org/10.1146/annurev.biophys.28.1.181] [PMID: 10410800]
[114]
Rawlings, N.D.; Barrett, A.J. Families of cysteine peptidases. Methods Enzymol., 1994, 244, 461-486.
[http://dx.doi.org/10.1016/0076-6879(94)44034-4] [PMID: 7845226]
[115]
Simmons, G.; Bertram, S.; Glowacka, I.; Steffen, I.; Chaipan, C.; Agudelo, J.; Lu, K.; Rennekamp, A.J.; Hofmann, H.; Bates, P.; Pöhlmann, S. Different host cell proteases activate the SARS-coronavirus spike-protein for cell-cell and virus-cell fusion. Virology, 2011, 413(2), 265-274.
[http://dx.doi.org/10.1016/j.virol.2011.02.020] [PMID: 21435673]
[116]
Simmons, G.; Gosalia, D.N.; Rennekamp, A.J.; Reeves, J.D.; Diamond, S.L.; Bates, P. Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry. Proc. Natl. Acad. Sci. USA, 2005, 102(33), 11876-11881.
[http://dx.doi.org/10.1073/pnas.0505577102] [PMID: 16081529]
[117]
Simmons, G.; Zmora, P.; Gierer, S.; Heurich, A.; Pöhlmann, S. Proteolytic activation of the SARS-coronavirus spike protein: cutting enzymes at the cutting edge of antiviral research. Antiviral Res., 2013, 100(3), 605-614.
[http://dx.doi.org/10.1016/j.antiviral.2013.09.028] [PMID: 24121034]
[118]
Huang, I-C.; Bosch, B.J.; Li, F.; Li, W.; Lee, K.H.; Ghiran, S.; Vasilieva, N.; Dermody, T.S.; Harrison, S.C.; Dormitzer, P.R.; Farzan, M.; Rottier, P.J.M.; Choe, H. SARS coronavirus, but not human coronavirus NL63, utilizes cathepsin L to infect ACE2-expressing cells. J. Biol. Chem., 2006, 281(6), 3198-3203.
[http://dx.doi.org/10.1074/jbc.M508381200] [PMID: 16339146]
[119]
Millet, J.K.; Whittaker, G.R. Host cell proteases: critical determinants of coronavirus tropism and pathogenesis. Virus Res., 2015, 202, 120-134.
[http://dx.doi.org/10.1016/j.virusres.2014.11.021] [PMID: 25445340]
[120]
Mason, R.W.; Green, G.D.J.; Barrett, A.J. Human liver cathepsin L. Biochem. J., 1985, 226(1), 233-241.
[http://dx.doi.org/10.1042/bj2260233] [PMID: 3977867]
[121]
Chauhan, S.S.; Popescu, N.C.; Ray, D.; Fleischmann, R.; Gottesman, M.M.; Troen, B.R. Cloning, genomic organization, and chromosomal localization of human cathepsin L. J. Biol. Chem., 1993, 268(2), 1039-1045.
[http://dx.doi.org/10.1016/S0021-9258(18)54038-2] [PMID: 8419312]
[122]
Kirschke, H. Cathepsin L. Handb. Proteolytic Enzym., 2013, 2, pp. 1808-1817.
[http://dx.doi.org/10.1016/B978-0-12-382219-2.00410-5]
[123]
Dana, D.; Pathak, S.K. A review of small molecule inhibitors and functional probes of human cathepsin L. Molecules, 2020, 25(3), 698.
[http://dx.doi.org/10.3390/molecules25030698] [PMID: 32041276]
[124]
Saito, S.; Takahashi-Sasaki, N.; Araki, W. Identification and characterization of a novel human APH-1b splice variant lacking exon 4. Biochem. Biophys. Res. Commun., 2005, 330(4), 1068-1072.
[http://dx.doi.org/10.1016/j.bbrc.2005.03.096] [PMID: 15823552]
[125]
Caserman, S.; Kenig, S.; Sloane, B.F.; Lah, T.T.; Cathepsin, L. Cathepsin L splice variants in human breast cell lines. Biol. Chem., 2006, 387(5), 629-634.
[http://dx.doi.org/10.1515/BC.2006.080] [PMID: 16740135]
[126]
Jean, D.; Guillaume, N.; Frade, R.; Inserm, U.; Inserm, C.; Saint-antoine, H.; Saint-antoine, F. Characterization of human cathepsin L promoter and identification of binding sites for NF-Y, Sp1 and Sp3 that are essential for its activity. Biochem. J., 2002, 361(Pt 1), 173-184.
[http://dx.doi.org/10.1042/bj3610173] [PMID: 11742542]
[127]
Sansanwal, P.; Shukla, A.A.; Das, T.K.; Chauhan, S.S. Truncated human cathepsin L, encoded by a novel splice variant, exhibits altered subcellular localization and cytotoxicity. Protein Pept. Lett., 2010, 17(2), 238-245.
[http://dx.doi.org/10.2174/092986610790225932] [PMID: 19663777]
[128]
Seth, P.; Mahajan, V.S.; Chauhan, S.S. Transcription of human cathepsin L mRNA species hCATL B from a novel alternative promoter in the first intron of its gene. Gene, 2003, 321(1–2), 83-91.
[http://dx.doi.org/10.1016/S0378-1119(03)00838-2] [PMID: 14636995]
[129]
Rescheleit, D.K.; Rommerskirch, W.J.; Wiederanders, B. Sequence analysis and distribution of two new human cathepsin L splice variants. FEBS Lett., 1996, 394(3), 345-348.
[http://dx.doi.org/10.1016/0014-5793(96)00986-6] [PMID: 8830671]
[130]
Lang, L.; Reitman, M.; Tang, J.; Roberts, R.M.; Kornfeld, S. Lysosomal enzyme phosphorylation. Recognition of a protein-dependent determinant allows specific phosphorylation of oligosaccharides present on lysosomal enzymes. J. Biol. Chem., 1984, 259(23), 14663-14671.
[http://dx.doi.org/10.1016/S0021-9258(17)42654-8] [PMID: 6094568]
[131]
Carmona, E.; Dufour, E.; Plouffe, C.; Takebe, S.; Mason, P.; Mort, J.S.; Ménard, R. Potency and selectivity of the cathepsin L propeptide as an inhibitor of cysteine proteases. Biochemistry, 1996, 35(25), 8149-8157.
[http://dx.doi.org/10.1021/bi952736s] [PMID: 8679567]
[132]
Salminen, A.; Gottesman, M.M. Inhibitor studies indicate that active cathepsin L is probably essential to its own processing in cultured fibroblasts. Biochem. J., 1990, 272(1), 39-44.
[http://dx.doi.org/10.1042/bj2720039] [PMID: 2264836]
[133]
Jerala, R.; Zerovnik, E.; Kidric, J.; Turk, V. pH-induced conformational transitions of the propeptide of human cathepsin L. A role for a molten globule state in zymogen activation. J. Biol. Chem., 1998, 273(19), 11498-11504.
[http://dx.doi.org/10.1074/jbc.273.19.11498] [PMID: 9565563]
[134]
Mason, R.W.; Gal, S.; Gottesman, M.M. The identification of the major excreted protein (MEP) from a transformed mouse fibroblast cell line as a catalytically active precursor form of cathepsin L. Biochem. J., 1987, 248(2), 449-454.
[http://dx.doi.org/10.1042/bj2480449] [PMID: 3435459]
[135]
McDonald, J.K.; Kadkhodayan, S.; Cathepsin, L. Cathepsin L--a latent proteinase in guinea pig sperm. Biochem. Biophys. Res. Commun., 1988, 151(2), 827-835.
[http://dx.doi.org/10.1016/S0006-291X(88)80356-5] [PMID: 3348813]
[136]
McDonald, J.K.; Emerick, J.M.C. Purification and characterization of procathepsin L, a self-processing zymogen of guinea pig spermatozoa that acts on a cathepsin D assay substrate. Arch. Biochem. Biophys., 1995, 323(2), 409-422.
[http://dx.doi.org/10.1006/abbi.1995.0062] [PMID: 7487106]
[137]
Fairhead, M.; Kelly, S.M.; van der Walle, C.F. A heparin binding motif on the pro-domain of human procathepsin L mediates zymogen destabilization and activation. Biochem. Biophys. Res. Commun., 2008, 366(3), 862-867.
[http://dx.doi.org/10.1016/j.bbrc.2007.12.062] [PMID: 18086562]
[138]
Kihara, M.; Kakegawa, H.; Matano, Y.; Murata, E.; Tsuge, H.; Kido, H.; Katunuma, N. Chondroitin sulfate proteoglycan is a potent enhancer in the processing of procathepsin L. Biol. Chem., 2002, 383(12), 1925-1929.
[http://dx.doi.org/10.1515/BC.2002.216] [PMID: 12553729]
[139]
Mason, R.W.; Massey, S.D. Surface activation of pro-cathepsin L. Biochem. Biophys. Res. Commun., 1992, 189(3), 1659-1666.
[http://dx.doi.org/10.1016/0006-291X(92)90268-P] [PMID: 1482371]
[140]
Nishimura, Y.; Kawabata, T.; Furuno, K.; Kato, K. Evidence that aspartic proteinase is involved in the proteolytic processing event of procathepsin L in lysosomes. Arch. Biochem. Biophys., 1989, 271(2), 400-406.
[http://dx.doi.org/10.1016/0003-9861(89)90289-0] [PMID: 2658811]
[141]
Wiederanders, B.; Kirschke, H. The processing of a cathepsin L precursor in vitro. Arch. Biochem. Biophys., 1989, 272(2), 516-521.
[http://dx.doi.org/10.1016/0003-9861(89)90247-6] [PMID: 2751313]
[142]
Hara, K.; Kominami, E.; Katunuma, N. Effect of proteinase inhibitors on intracellular processing of cathepsin B, H and L in rat macrophages. FEBS Lett., 1988, 231(1), 229-231.
[http://dx.doi.org/10.1016/0014-5793(88)80737-3] [PMID: 3360127]
[143]
Ritonja, A.; Popović, T.; Kotnik, M.; Machleidt, W.; Turk, V. Amino acid sequences of the human kidney cathepsins H and L. FEBS Lett., 1988, 228(2), 341-345.
[http://dx.doi.org/10.1016/0014-5793(88)80028-0] [PMID: 3342889]
[144]
Ishidoh, K.; Kominami, E. Multi-step processing of procathepsin L in vitro. FEBS Lett., 1994, 352(3), 281-284.
[http://dx.doi.org/10.1016/0014-5793(94)00924-4] [PMID: 7925987]
[145]
Nishimura, Y.; Furuno, K.; Kato, K. Biosynthesis and processing of lysosomal cathepsin L in primary cultures of rat hepatocytes. Arch. Biochem. Biophys., 1988, 263(1), 107-116.
[http://dx.doi.org/10.1016/0003-9861(88)90618-2] [PMID: 3369855]
[146]
Coulombe, R.; Grochulski, P.; Sivaraman, J.; Ménard, R.; Mort, J.S.; Cygler, M. Structure of human procathepsin L reveals the molecular basis of inhibition by the prosegment. EMBO J., 1996, 15(20), 5492-5503.
[http://dx.doi.org/10.1002/j.1460-2075.1996.tb00934.x] [PMID: 8896443]
[147]
Brömme, D.; Bonneau, P.R.; Lachance, P.; Storer, A.C. Engineering the S2 subsite specificity of human cathepsin S to a cathepsin L- and cathepsin B-like specificity. J. Biol. Chem., 1994, 269(48), 30238-30242.
[http://dx.doi.org/10.1016/S0021-9258(18)43803-3] [PMID: 7982933]
[148]
Gal, S.; Gottesman, M.M. The major excreted protein (MEP) of transformed mouse cells and cathepsin L have similar protease specificity. Biochem. Biophys. Res. Commun., 1986, 139(1), 156-162.
[http://dx.doi.org/10.1016/S0006-291X(86)80093-6] [PMID: 3533059]
[149]
Kärgel, H-J.; Dettmer, R.; Etzold, G.; Kirschke, H.; Bohley, P.; Langner, J. Action of cathepsin L on the oxidized B-chain of bovine insulin. FEBS Lett., 1980, 114(2), 257-260.
[http://dx.doi.org/10.1016/0014-5793(80)81128-8] [PMID: 6993230]
[150]
Kirschke, H.; Kembhavi, A.A.; Bohley, P.; Barrett, A.J. Action of rat liver cathepsin L on collagen and other substrates. Biochem. J., 1982, 201(2), 367-372.
[http://dx.doi.org/10.1042/bj2010367] [PMID: 7082295]
[151]
Portaro, F.C.V.; Santos, A.B.F.; Cezari, M.H.S.; Juliano, M.A.; Juliano, L.; Carmona, E. Probing the specificity of cysteine proteinases at subsites remote from the active site: analysis of P4, P3, P2′ and P3′ variations in extended substrates. Biochem. J., 2000, 347(Pt 1), 123-129.
[http://dx.doi.org/10.1042/bj3470123] [PMID: 10727410]
[152]
Rawlings, N.D.; Barrett, A.J.; Bateman, A. MEROPS: the peptidase database. Nucleic Acids Res., 2010, 38(Database issue)(Suppl. 1), D227-D233.
[http://dx.doi.org/10.1093/nar/gkp971] [PMID: 19892822]
[153]
Choe, Y.; Leonetti, F.; Greenbaum, D.C.; Lecaille, F.; Bogyo, M.; Brömme, D.; Ellman, J.A.; Craik, C.S. Substrate profiling of cysteine proteases using a combinatorial peptide library identifies functionally unique specificities. J. Biol. Chem., 2006, 281(18), 12824-12832.
[http://dx.doi.org/10.1074/jbc.M513331200] [PMID: 16520377]
[154]
Bohley, P.; Seglen, P.O. Proteases and proteolysis in the lysosome. Experientia, 1992, 48(2), 151-157.
[http://dx.doi.org/10.1007/BF01923508] [PMID: 1740187]
[155]
Petermann, I.; Mayer, C.; Stypmann, J.; Biniossek, M.L.; Tobin, D.J.; Engelen, M.A.; Dandekar, T.; Grune, T.; Schild, L.; Peters, C.; Reinheckel, T. Lysosomal, cytoskeletal, and metabolic alterations in cardiomyopathy of cathepsin L knockout mice. FASEB J., 2006, 20(8), 1266-1268.
[http://dx.doi.org/10.1096/fj.05-5517fje] [PMID: 16636100]
[156]
Spira, D.; Stypmann, J.; Tobin, D.J.; Petermann, I.; Mayer, C.; Hagemann, S.; Vasiljeva, O.; Günther, T.; Schüle, R.; Peters, C.; Reinheckel, T. Cell type-specific functions of the lysosomal protease cathepsin L in the heart. J. Biol. Chem., 2007, 282(51), 37045-37052.
[http://dx.doi.org/10.1074/jbc.M703447200] [PMID: 17942402]
[157]
Tang, Q.; Cai, J.; Shen, D.; Bian, Z.; Yan, L.; Wang, Y.X.; Lan, J.; Zhuang, G.Q.; Ma, W.Z.; Wang, W. Lysosomal cysteine peptidase cathepsin L protects against cardiac hypertrophy through blocking AKT/GSK3β signaling. J. Mol. Med. (Berl.), 2009, 87(3), 249-260.
[http://dx.doi.org/10.1007/s00109-008-0423-2] [PMID: 19096818]
[158]
Stypmann, J.; Gläser, K.; Roth, W.; Tobin, D.J.; Petermann, I.; Matthias, R.; Mönnig, G.; Haverkamp, W.; Breithardt, G.; Schmahl, W.; Peters, C.; Reinheckel, T. Dilated cardiomyopathy in mice deficient for the lysosomal cysteine peptidase cathepsin L. Proc. Natl. Acad. Sci. USA, 2002, 99(9), 6234-6239.
[http://dx.doi.org/10.1073/pnas.092637699] [PMID: 11972068]
[159]
Nakagawa, T.; Roth, W.; Wong, P.; Nelson, A.; Farr, A.; Deussing, J.; Villadangos, J.A.; Ploegh, H.; Peters, C.; Rudensky, A.Y.; Cathepsin, L. Cathepsin L: critical role in Ii degradation and CD4 T cell selection in the thymus. Science, 1998, 280(5362), 450-453.
[http://dx.doi.org/10.1126/science.280.5362.450] [PMID: 9545226]
[160]
Hsieh, C.S.; deRoos, P.; Honey, K.; Beers, C.; Rudensky, A.Y. A role for cathepsin L and cathepsin S in peptide generation for MHC class II presentation. J. Immunol., 2002, 168(6), 2618-2625.
[http://dx.doi.org/10.4049/jimmunol.168.6.2618] [PMID: 11884425]
[161]
Lombardi, G.; Burzyn, D.; Mundin, J.; Berguer, P.; Bekinschtein, P.; Costa, H.; Castillo, L.F.; Goldman, A.; Meiss, R.; Piazzon, I.; Nepomnaschy, I. Thymic output and of peripheral T cell number 1. J. Immunol., 2005, 17, 7022-7032.
[http://dx.doi.org/10.4049/jimmunol.174.11.7022] [PMID: 15905545]
[162]
Sevenich, L.; Hagemann, S.; Stoeckle, C.; Tolosa, E.; Peters, C.; Reinheckel, T. Expression of human cathepsin L or human cathepsin V in mouse thymus mediates positive selection of T helper cells in cathepsin L knock-out mice. Biochimie, 2010, 92(11), 1674-1680.
[http://dx.doi.org/10.1016/j.biochi.2010.03.014] [PMID: 20347002]
[163]
Hsing, L.C.; Kirk, E.A.; McMillen, T.S.; Hsiao, S.H.; Caldwell, M.; Houston, B.; Rudensky, A.Y.; LeBoeuf, R.C. Roles for cathepsins S, L, and B in insulitis and diabetes in the NOD mouse. J. Autoimmun., 2010, 34(2), 96-104.
[http://dx.doi.org/10.1016/j.jaut.2009.07.003] [PMID: 19664906]
[164]
Maehr, R.; Mintern, J.D.; Herman, A.E.; Lennon-Duménil, A.M.; Mathis, D.; Benoist, C.; Ploegh, H.L. Cathepsin L is essential for onset of autoimmune diabetes in NOD mice. J. Clin. Invest., 2005, 115(10), 2934-2943.
[http://dx.doi.org/10.1172/JCI25485] [PMID: 16184198]
[165]
Yamada, A.; Ishimaru, N.; Arakaki, R.; Katunuma, N.; Hayashi, Y.; Cathepsin, L. Cathepsin L inhibition prevents murine autoimmune diabetes via suppression of CD8(+) T cell activity. PLoS One, 2010, 5(9)e12894
[http://dx.doi.org/10.1371/journal.pone.0012894] [PMID: 20877570]
[166]
Delaissé, J.M.; Ledent, P.; Vaes, G. Collagenolytic cysteine proteinases of bone tissue. Cathepsin B, (pro)cathepsin L and a cathepsin L-like 70 kDa proteinase. Biochem. J., 1991, 279(Pt 1), 167-174.
[http://dx.doi.org/10.1042/bj2790167] [PMID: 1930136]
[167]
Delaissé, J-M.; Eeckhout, Y.; Vaes, G. In vivo and in vitro evidence for the involvement of cysteine proteinases in bone resorption. Biochem. Biophys. Res. Commun., 1984, 125(2), 441-447.
[http://dx.doi.org/10.1016/0006-291X(84)90560-6] [PMID: 6393977]
[168]
Debari, K.; Sasaki, T.; Udagawa, N.; Rifkin, B.R. An ultrastructural evaluation of the effects of cysteine-proteinase inhibitors on osteoclastic resorptive functions. Calcif. Tissue Int., 1995, 56(6), 566-570.
[http://dx.doi.org/10.1007/BF00298591] [PMID: 7648488]
[169]
Reinheckel, T.; Hagemann, S.; Dollwet-Mack, S.; Martinez, E.; Lohmüller, T.; Zlatkovic, G.; Tobin, D.J.; Maas-Szabowski, N.; Peters, C. The lysosomal cysteine protease cathepsin L regulates keratinocyte proliferation by control of growth factor recycling. J. Cell Sci., 2005, 118(Pt 15), 3387-3395.
[http://dx.doi.org/10.1242/jcs.02469] [PMID: 16079282]
[170]
Hagemann, S.; Günther, T.; Dennemärker, J.; Lohmüller, T.; Brömme, D.; Schüle, R.; Peters, C.; Reinheckel, T. The human cysteine protease cathepsin V can compensate for murine cathepsin L in mouse epidermis and hair follicles. Eur. J. Cell Biol., 2004, 83(11-12), 775-780.
[http://dx.doi.org/10.1078/0171-9335-00404] [PMID: 15679121]
[171]
Luft, F.C. From furless to heartless-unraveling the diverse functions of cathepsin L. J. Mol. Med. (Berl.), 2009, 87(3), 225-227.
[http://dx.doi.org/10.1007/s00109-009-0438-3] [PMID: 19169657]
[172]
Roth, W.; Deussing, J.; Botchkarev, V.A.; Pauly-Evers, M.; Saftig, P.; Hafner, A.; Schmidt, P.; Schmahl, W.; Scherer, J.; Anton-Lamprecht, I.; Von Figura, K.; Paus, R.; Peters, C. Cathepsin L deficiency as molecular defect of furless: hyperproliferation of keratinocytes and pertubation of hair follicle cycling. FASEB J., 2000, 14(13), 2075-2086.
[http://dx.doi.org/10.1096/fj.99-0970com] [PMID: 11023992]
[173]
Tobin, D.J.; Foitzik, K.; Reinheckel, T.; Mecklenburg, L.; Botchkarev, V.A.; Peters, C.; Paus, R. The lysosomal protease cathepsin L is an important regulator of keratinocyte and melanocyte differentiation during hair follicle morphogenesis and cycling. Am. J. Pathol., 2002, 160(5), 1807-1821.
[http://dx.doi.org/10.1016/S0002-9440(10)61127-3] [PMID: 12000732]
[174]
Zeeuwen, P.L.J.M.; van Vlijmen-Willems, I.M.J.J.; Cheng, T.; Rodijk-Olthuis, D.; Hitomi, K.; Hara-Nishimura, I.; John, S.; Smyth, N.; Reinheckel, T.; Hendriks, W.J.A.J.; Schalkwijk, J.; Cst, C.M.E. The cystatin M/E-cathepsin L balance is essential for tissue homeostasis in epidermis, hair follicles, and cornea. FASEB J., 2010, 24(10), 3744-3755.
[http://dx.doi.org/10.1096/fj.10-155879] [PMID: 20495178]
[175]
Kawase, M.; Shirato, K.; van der Hoek, L.; Taguchi, F.; Matsuyama, S. Simultaneous treatment of human bronchial epithelial cells with serine and cysteine protease inhibitors prevents severe acute respiratory syndrome coronavirus entry. J. Virol., 2012, 86(12), 6537-6545.
[http://dx.doi.org/10.1128/JVI.00094-12] [PMID: 22496216]
[176]
Shirato, K.; Kawase, M.; Matsuyama, S. Middle East respiratory syndrome coronavirus infection mediated by the transmembrane serine protease TMPRSS2. J. Virol., 2013, 87(23), 12552-12561.
[http://dx.doi.org/10.1128/JVI.01890-13] [PMID: 24027332]
[177]
Guo, X.Q.; Qiu, K.Y.; De Feng, X. Studies on the Kinetics and Initiation Mechanism of acrylamide polymerization using persulfatehliphatic diamine systems as initiator. Makromol. Chem., 1990, 587, 577-587.
[http://dx.doi.org/10.1002/macp.1990.021910313]
[178]
Ou, X.; Liu, Y.; Lei, X.; Li, P.; Mi, D.; Ren, L.; Guo, L.; Guo, R.; Chen, T.; Hu, J.; Xiang, Z.; Mu, Z.; Chen, X.; Chen, J.; Hu, K.; Jin, Q.; Wang, J.; Qian, Z. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat. Commun., 2020, 11(1), 1620.
[http://dx.doi.org/10.1038/s41467-020-15562-9] [PMID: 32221306]
[179]
Elshabrawy, H.A.; Fan, J.; Haddad, C.S.; Ratia, K.; Broder, C.C.; Caffrey, M.; Prabhakar, B.S. Identification of a broad-spectrum antiviral small molecule against severe acute respiratory syndrome coronavirus and Ebola, Hendra, and Nipah viruses by using a novel high-throughput screening assay. J. Virol., 2014, 88(8), 4353-4365.
[http://dx.doi.org/10.1128/JVI.03050-13] [PMID: 24501399]
[180]
Vargas-Alarcón, G.; Posadas-Sánchez, R.; Ramírez-Bello, J. Variability in genes related to SARS-CoV-2 entry into host cells (ACE2, TMPRSS2, TMPRSS11A, ELANE, and CTSL) and its potential use in association studies. Life Sci., 2020, 260118313
[http://dx.doi.org/10.1016/j.lfs.2020.118313] [PMID: 32835700]
[181]
Bertram, S.; Glowacka, I.; Müller, M.A.; Lavender, H.; Gnirss, K.; Nehlmeier, I.; Niemeyer, D.; He, Y.; Simmons, G.; Drosten, C.; Soilleux, E.J.; Jahn, O.; Steffen, I.; Pöhlmann, S. Cleavage and activation of the severe acute respiratory syndrome coronavirus spike protein by human airway trypsin-like protease. J. Virol., 2011, 85(24), 13363-13372.
[http://dx.doi.org/10.1128/JVI.05300-11] [PMID: 21994442]
[182]
Mingo, R.M.; Simmons, J.A.; Shoemaker, C.J.; Nelson, E.A.; Schornberg, K.L.; D’Souza, R.S.; Casanova, J.E.; White, J.M. Ebola virus and severe acute respiratory syndrome coronavirus display late cell entry kinetics: evidence that transport to NPC1+ endolysosomes is a rate-defining step. J. Virol., 2015, 89(5), 2931-2943.
[http://dx.doi.org/10.1128/JVI.03398-14] [PMID: 25552710]
[183]
Blaess, M.; Kaiser, L.; Sauer, M.; Csuk, R.; Deigner, H.P. COVID-19/SARS-CoV-2 infection: lysosomes and lysosomotropism implicate new treatment strategies and personal risks. Int. J. Mol. Sci., 2020, 21(14), 4953.
[http://dx.doi.org/10.3390/ijms21144953] [PMID: 32668803]
[184]
Liu, T.; Luo, S.; Libby, P.; Shi, G.P. Cathepsin L-selective inhibitors: a potentially promising treatment for COVID-19 patients. Pharmacol. Ther., 2020, 213107587
[http://dx.doi.org/10.1016/j.pharmthera.2020.107587] [PMID: 32470470]
[185]
Shenoy, R.T.; Sivaraman, J. Structural basis for reversible and irreversible inhibition of human cathepsin L by their respective dipeptidyl glyoxal and diazomethylketone inhibitors. J. Struct. Biol., 2011, 173(1), 14-19.
[http://dx.doi.org/10.1016/j.jsb.2010.09.007] [PMID: 20850545]
[186]
Gupta, A.; Pradhan, A.; Maurya, V.K.; Kumar, S.; Theengh, A.; Puri, B.; Saxena, S.K. Therapeutic approaches for SARS-CoV-2 infection. Methods, 2021, 195, 29-43.
[http://dx.doi.org/10.1016/j.ymeth.2021.04.026] [PMID: 33962011]
[187]
Zhou, Y.; Vedantham, P.; Lu, K.; Agudelo, J.; Carrion, R., Jr; Nunneley, J.W.; Barnard, D.; Pöhlmann, S.; McKerrow, J.H.; Renslo, A.R.; Simmons, G. Protease inhibitors targeting coronavirus and filovirus entry. Antiviral Res., 2015, 116, 76-84.
[http://dx.doi.org/10.1016/j.antiviral.2015.01.011] [PMID: 25666761]
[188]
Adedeji, A.O.; Severson, W.; Jonsson, C.; Singh, K.; Weiss, S.R.; Sarafianos, S.G. Novel inhibitors of severe acute respiratory syndrome coronavirus entry that act by three distinct mechanisms. J. Virol., 2013, 87(14), 8017-8028.
[http://dx.doi.org/10.1128/JVI.00998-13] [PMID: 23678171]
[189]
Shah, P.P.; Wang, T.; Kaletsky, R.L.; Myers, M.C.; Purvis, J.E.; Jing, H.; Huryn, D.M.; Greenbaum, D.C.; Smith, A.B., III; Bates, P.; Diamond, S.L. A small-molecule oxocarbazate inhibitor of human cathepsin L blocks severe acute respiratory syndrome and Ebola pseudotype virus infection into human embryonic kidney 293T cells. Mol. Pharmacol., 2010, 78(2), 319-324.
[http://dx.doi.org/10.1124/mol.110.064261] [PMID: 20466822]
[190]
Chen, Z.; Du, R.; Galvan Achi, J.M.; Rong, L.; Cui, Q. SARS-CoV-2 cell entry and targeted antiviral development. Acta Pharm. Sin. B, 2021, 11(12), 3879-3888.
[http://dx.doi.org/10.1016/j.apsb.2021.05.007] [PMID: 34002130]
[191]
Kamboj, R.C.; Raghav, N.; Mittal, A.; Khurana, S.; Sadana, R.; Singh, H. Effects of some antituberculous and anti-leprotic drugs on cathepsins B, H and L. Indian J. Clin. Biochem., 2003, 18(2), 39-47.
[http://dx.doi.org/10.1007/BF02867366] [PMID: 23105391]
[192]
Cai, J.; Zhong, H.; Wu, J.; Chen, R.F.; Yang, H.; Al-Abed, Y.; Li, Y.; Li, X.; Jiang, W.; Montenegro, M.F.; Yuan, H.; Billiar, T.; Chen, A.F.; Cathepsin, L. Cathepsin L promotes vascular intimal hyperplasia after arterial injury. Mol. Med., 2017, 23, 92-100.
[http://dx.doi.org/10.2119/molmed.2016.00222] [PMID: 28332696]
[193]
Ting, P.; F, H.; Jun, L.; Weiwei, L.; Yingtong, L.; Yaochang, Y.; Tao, Y.; Rong, L.; Xu, Z.; Fan, Z.; Bingfeng, L.; Kai, D.; Xin, H.; Hui, Z.; Yiwen, Z. Teicoplanin potently blocks the cell entry of 2019-NCoV. PREPRINT-bioRxiv, 2020. ID: ppbiorxiv-935387.
[194]
Zhou, N.; Pan, T.; Zhang, J.; Li, Q.; Zhang, X.; Bai, C.; Huang, F.; Peng, T.; Zhang, J.; Liu, C.; Tao, L.; Zhang, H. Glycopeptide antibiotics potently inhibit cathepsin L in the late endosome/lysosome and block the entry of Ebola virus, Middle East respiratory syndrome coronavirus (MERS-CoV), and severe acute respiratory syndrome coronavirus (SARS-CoV). J. Biol. Chem., 2016, 291(17), 9218-9232.
[http://dx.doi.org/10.1074/jbc.M116.716100] [PMID: 26953343]
[195]
Wang, M.; Cao, R.; Zhang, L.; Yang, X.; Liu, J.; Xu, M.; Shi, Z.; Hu, Z.; Zhong, W.; Xiao, G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res., 2020, 30(3), 269-271.
[http://dx.doi.org/10.1038/s41422-020-0282-0] [PMID: 32020029]
[196]
Tang, T.T.; Lv, L.L.; Pan, M.M.; Wen, Y.; Wang, B.; Li, Z.L.; Wu, M.; Wang, F.M.; Crowley, S.D.; Liu, B.C. Hydroxychloroquine attenuates renal ischemia/reperfusion injury by inhibiting cathepsin mediated NLRP3 inflammasome activation. Cell Death Dis., 2018, 9(3), 351.
[http://dx.doi.org/10.1038/s41419-018-0378-3] [PMID: 29500339]
[197]
Shivanna, V.; Kim, Y.; Chang, K.O.S. Endosomal acidification and cathepsin L activity is required for calicivirus replication. Virology, 2014, 464-465, 287-295.
[http://dx.doi.org/10.1016/j.virol.2014.07.025] [PMID: 25108379]
[198]
Porotto, M.; Orefice, G.; Yokoyama, C.C.; Mungall, B.A.; Realubit, R.; Sganga, M.L.; Aljofan, M.; Whitt, M.; Glickman, F.; Moscona, A. Simulating henipavirus multicycle replication in a screening assay leads to identification of a promising candidate for therapy. J. Virol., 2009, 83(10), 5148-5155.
[http://dx.doi.org/10.1128/JVI.00164-09] [PMID: 19264786]
[199]
Tönnesmann, E.; Kandolf, R.; Lewalter, T. Chloroquine cardiomyopathy - a review of the literature. Immunopharmacol. Immunotoxicol., 2013, 35(3), 434-442.
[http://dx.doi.org/10.3109/08923973.2013.780078] [PMID: 23635029]
[200]
Craik, C.S.; Largman, C.; Fletcher, T.; Roczniak, S.; Barr, P.J.; Fletterick, R.; Rutter, W.J. Redesigning trypsin: alteration of substrate specificity. Science, 1985, 228, 291-297.
[http://dx.doi.org/10.1126/science.3838593] [PMID: 3838593]
[201]
Schellenberger, V.; Turck, C.W.; Rutter, W.J. Role of the S′ subsites in serine protease catalysis. Active-site mapping of rat chymotrypsin, rat trypsin, α-lytic protease, and cercarial protease from Schistosoma mansoni. Biochemistry, 1994, 33(14), 4251-4257.
[http://dx.doi.org/10.1021/bi00180a020] [PMID: 8155642]
[202]
Corey, D.R.; McGrath, M.E.; Vásquez, J.R.; Fletterick, R.J.; Craik, C.S. An alternate geometry for the catalytic triad of serine proteases. J. Am. Chem. Soc., 1992, 114(12), 4905-4907.
[http://dx.doi.org/10.1021/ja00038a067 ]
[203]
Baird, T.T.; Craik, C.S. Trypsin. Handb. Proteolytic Enzym., 1983, 2013(3), 2594-2600.
[http://dx.doi.org/10.1016/B978-0-12-382219-2.00575-5]
[204]
Harris, J.L.; Backes, B.J.; Leonetti, F.; Mahrus, S.; Ellman, J.A.; Craik, C.S. Rapid and general profiling of protease specificity by using combinatorial fluorogenic substrate libraries. Proc. Natl. Acad. Sci. USA, 2000, 97(14), 7754-7759.
[http://dx.doi.org/10.1073/pnas.140132697] [PMID: 10869434]
[205]
Huber, R.; Kukla, D.; Bode, W.; Schwager, P.; Bartels, K.; Deisenhofer, J.; Steigemann, W. Structure of the complex formed by bovine trypsin and bovine pancreatic trypsin inhibitor. II. Crystallographic refinement at 1.9 a resolution. J. Mol. Biol., 1974, 89(1), 73-101.
[http://dx.doi.org/10.1016/0022-2836(74)90163-6] [PMID: 4475115]
[206]
Stroud, R.M.; Kay, L.M.; Dickerson, R.E. The structure of bovine trypsin: electron density maps of the inhibited enzyme at 5 angstrom and at 2-7 angstron resolution. J. Mol. Biol., 1974, 83(2), 185-208.
[http://dx.doi.org/10.1016/0022-2836(74)90387-8] [PMID: 4821870]
[207]
Delbaere, L.T.J.; Hutcheon, W.L.B.; James, M.N.G.; Thiessen, W.E. Tertiary structural differences between microbial serine proteases and pancreatic serine enzymes. Nature, 1975, 257(5529), 758-763.
[http://dx.doi.org/10.1038/257758a0] [PMID: 1186854]
[208]
Bode, W.; Schwager, P.; Huber, R. The transition of bovine trypsinogen to a trypsin-like state upon strong ligand binding. The refined crystal structures of the bovine trypsinogen-pancreatic trypsin inhibitor complex and of its ternary complex with Ile-Val at 1.9 a resolution. J. Mol. Biol., 1978, 118(1), 99-112.
[http://dx.doi.org/10.1016/0022-2836(78)90246-2] [PMID: 625059]
[209]
Matsuyama, S.; Ujike, M.; Morikawa, S.; Tashiro, M.; Taguchi, F. Protease-mediated enhancement of severe acute respiratory syndrome coronavirus infection. Proc. Natl. Acad. Sci. USA, 2005, 102(35), 12543-12547.
[http://dx.doi.org/10.1073/pnas.0503203102] [PMID: 16116101]
[210]
Kaur, U.; Chakrabarti, S.S.; Ojha, B.; Pathak, B.K.; Singh, A.; Saso, L.; Chakrabarti, S. Targeting host cell proteases to prevent SARS-CoV-2 invasion. Curr. Drug Targets, 2021, 22(2), 192-201.
[http://dx.doi.org/10.2174/1389450121666200924113243] [PMID: 32972339]
[211]
Bojkova, D.; McGreig, J.E.; McLaughlin, K-M.; Masterson, S.; Widera, M.; Krähling, V.; Ciesek, S.; Wass, M.; Michaelis, M.; Cinatl, J. SARS-CoV-2 and SARS-CoV differ in their cell tropism and drug sensitivity profiles. bioRxiv, 2020. preprint
[http://dx.doi.org/10.1101/2020.04.03.024257]
[212]
Böttcher, E.; Matrosovich, T.; Beyerle, M.; Klenk, H-D.; Garten, W.; Matrosovich, M. Proteolytic activation of influenza viruses by serine proteases TMPRSS2 and HAT from human airway epithelium. J. Virol., 2006, 80(19), 9896-9898.
[http://dx.doi.org/10.1128/JVI.01118-06] [PMID: 16973594]
[213]
Shulla, A.; Heald-Sargent, T.; Subramanya, G.; Zhao, J.; Perlman, S.; Gallagher, T. A transmembrane serine protease is linked to the severe acute respiratory syndrome coronavirus receptor and activates virus entry. J. Virol., 2011, 85(2), 873-882.
[http://dx.doi.org/10.1128/JVI.02062-10] [PMID: 21068237]
[214]
Bestle, D.; Heindl, M.R.; Limburg, H.; Van, T.V.L.; Pilgram, O.; Moulton, H.; Stein, D.; Hardes, K.; Eickmann, M.; Dolnik, O.; Rohde, C.; Becker, S.; Klenk, H-D.; Garten, W.; Steinmetzer, T.; Böttcher-Friebertshäuser, E. TMPRSS2 and furin are both essential for proteolytic activation and spread of SARS-CoV-2 in human airway epithelial cells and provide promising drug targets. Life Sci Alliance, 2020, 3(9)e202000786
[http://dx.doi.org/10.26508/lsa.202000786] [PMID: 32703818]
[215]
Konttinen, Y.T.; Porola, P.; Konttinen, L.; Laine, M.; Poduval, P. Immunohistopathology of Sjögren’s syndrome. Autoimmun. Rev., 2006, 6(1), 16-20.
[http://dx.doi.org/10.1016/j.autrev.2006.03.003] [PMID: 17110311]
[216]
Paoloni-Giacobino, A.; Chen, H.; Peitsch, M.C.; Rossier, C.; Antonarakis, S.E. Cloning of the TMPRSS2 gene, which encodes a novel serine protease with transmembrane, LDLRA, and SRCR domains and maps to 21q22.3. Genomics, 1997, 44(3), 309-320.
[http://dx.doi.org/10.1006/geno.1997.4845] [PMID: 9325052]
[217]
Yamaoka, K.; Masuda, K.; Ogawa, H.; Takagi, K.; Umemoto, N.; Yasuoka, S. Cloning and characterization of the cDNA for human airway trypsin-like protease. J. Biol. Chem., 1998, 273(19), 11895-11901.
[http://dx.doi.org/10.1074/jbc.273.19.11895] [PMID: 9565616]
[218]
Hattori, M.; Fujiyama, A.; Taylor, T.D.; Watanabe, H.; Yada, T.; Park, H.S.; Toyoda, A.; Ishii, K.; Totoki, Y.; Choi, D.K.; Groner, Y.; Soeda, E.; Ohki, M.; Takagi, T.; Sakaki, Y.; Taudien, S.; Blechschmidt, K.; Polley, A.; Menzel, U.; Delabar, J.; Kumpf, K.; Lehmann, R.; Patterson, D.; Reichwald, K.; Rump, A.; Schillhabel, M.; Schudy, A.; Zimmermann, W.; Rosenthal, A.; Kudoh, J.; Schibuya, K.; Kawasaki, K.; Asakawa, S.; Shintani, A.; Sasaki, T.; Nagamine, K.; Mitsuyama, S.; Antonarakis, S.E.; Minoshima, S.; Shimizu, N.; Nordsiek, G.; Hornischer, K.; Brant, P.; Scharfe, M.; Schon, O.; Desario, A.; Reichelt, J.; Kauer, G.; Blocker, H.; Ramser, J.; Beck, A.; Klages, S.; Hennig, S.; Riesselmann, L.; Dagand, E.; Haaf, T.; Wehrmeyer, S.; Borzym, K.; Gardiner, K.; Nizetic, D.; Francis, F.; Lehrach, H.; Reinhardt, R.; Yaspo, M.L. The DNA sequence of human chromosome 21. Nature, 2000, 405(6784), 311-319.
[http://dx.doi.org/10.1038/35012518] [PMID: 10830953]
[219]
Hooper, J.D.; Clements, J.A.; Quigley, J.P.; Antalis, T.M. Type II transmembrane serine proteases. Insights into an emerging class of cell surface proteolytic enzymes. J. Biol. Chem., 2001, 276(2), 857-860.
[http://dx.doi.org/10.1074/jbc.R000020200] [PMID: 11060317]
[220]
Rawlings, N.D.; Barrett, A.J.; Finn, R. Twenty years of the MEROPS database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res., 2016, 44(D1), D343-D350.
[http://dx.doi.org/10.1093/nar/gkv1118] [PMID: 26527717]
[221]
Netzel-Arnett, S.; Hooper, J.D.; Szabo, R.; Madison, E.L.; Quigley, J.P.; Bugge, T.H.; Antalis, T.M. Membrane anchored serine proteases: a rapidly expanding group of cell surface proteolytic enzymes with potential roles in cancer. Cancer Metastasis Rev., 2003, 22(2-3), 237-258.
[http://dx.doi.org/10.1023/A:1023003616848] [PMID: 12784999]
[222]
Jacquinet, E.; Rao, N.V.; Rao, G.V.; Zhengming, W.; Albertine, K.H.; Hoidal, J.R. Cloning and characterization of the cDNA and gene for human epitheliasin. Eur. J. Biochem., 2001, 268(9), 2687-2699.
[http://dx.doi.org/10.1046/j.1432-1327.2001.02165.x] [PMID: 11322890]
[223]
Jacquinet, E.; Rao, N.V.; Rao, G.V.; Hoidal, J.R. Cloning, genomic organization, chromosomal assignment and expression of a novel mosaic serine proteinase: epitheliasin. FEBS Lett., 2000, 468(1), 93-100.
[http://dx.doi.org/10.1016/S0014-5793(00)01196-0] [PMID: 10683448]
[224]
Krieger, M.; Herz, J. Structures and functions of multiligand lipoprotein receptors: macrophage scavenger receptors and LDL receptor-related protein (LRP). Annu. Rev. Biochem., 1994, 63, 601-637.
[http://dx.doi.org/10.1146/annurev.bi.63.070194.003125] [PMID: 7979249]
[225]
Resnick, D.; Chatterton, J.E.; Schwartz, K.; Slayter, H.; Krieger, M. Structures of class A macrophage scavenger receptors. Electron microscopic study of flexible, multidomain, fibrous proteins and determination of the disulfide bond pattern of the scavenger receptor cysteine-rich domain. J. Biol. Chem., 1996, 271(43), 26924-26930.
[http://dx.doi.org/10.1074/jbc.271.43.26924] [PMID: 8900177]
[226]
Hohenester, E.; Sasaki, T.; Timpl, R. Crystal structure of a scavenger receptor cysteine-rich domain sheds light on an ancient superfamily. Nat. Struct. Biol., 1999, 6(3), 228-232.
[http://dx.doi.org/10.1038/6669] [PMID: 10074941]
[227]
Liu, L.; Yang, J.; Qiu, L.; Wang, L.; Zhang, H.; Wang, M.; Vinu, S.S.; Song, L. A novel scavenger receptor-cysteine-rich (SRCR) domain containing scavenger receptor identified from mollusk mediated PAMP recognition and binding. Dev. Comp. Immunol., 2011, 35(2), 227-239.
[http://dx.doi.org/10.1016/j.dci.2010.09.010] [PMID: 20888856]
[228]
Afar, D.E.H.; Vivanco, I.; Hubert, R.S.; Kuo, J.; Chen, E.; Saffran, D.C.; Raitano, A.B.; Jakobovits, A. Catalytic cleavage of the androgen-regulated TMPRSS2 protease results in its secretion by prostate and prostate cancer epithelia. Cancer Res., 2001, 61(4), 1686-1692.
[PMID: 11245484]
[229]
Zhirnov, O.P.; Ikizler, M.R.; Wright, P.F. Cleavage of influenza a virus hemagglutinin in human respiratory epithelium is cell associated and sensitive to exogenous antiproteases. J. Virol., 2002, 76(17), 8682-8689.
[http://dx.doi.org/10.1128/JVI.76.17.8682-8689.2002] [PMID: 12163588]
[230]
Chi, M.; Shi, X.; Huo, X.; Wu, X.; Zhang, P.; Wang, G. Dexmedetomidine promotes breast cancer cell migration through Rab11-mediated secretion of exosomal TMPRSS2. Ann. Transl. Med., 2020, 8(8), 531-531.
[http://dx.doi.org/10.21037/atm.2020.04.28] [PMID: 32411754]
[231]
Lu, D.; Fütterer, K.; Korolev, S.; Zheng, X.; Tan, K.; Waksman, G.; Sadler, J.E. Crystal structure of enteropeptidase light chain complexed with an analog of the trypsinogen activation peptide. J. Mol. Biol., 1999, 292(2), 361-373.
[http://dx.doi.org/10.1006/jmbi.1999.3089] [PMID: 10493881]
[232]
Friedrich, R.; Fuentes-Prior, P.; Ong, E.; Coombs, G.; Hunter, M.; Oehler, R.; Pierson, D.; Gonzalez, R.; Huber, R.; Bode, W.; Madison, E.L. Catalytic domain structures of MT-SP1/matriptase, a matrix-degrading transmembrane serine proteinase. J. Biol. Chem., 2002, 277(3), 2160-2168.
[http://dx.doi.org/10.1074/jbc.M109830200] [PMID: 11696548]
[233]
Schechter, I.; Berger, A. On the size of the active site in proteases. I. Papain. Biochem. Biophys. Res. Commun., 1967, 27(2), 157-162.
[http://dx.doi.org/10.1016/S0006-291X(67)80055-X] [PMID: 6035483]
[234]
Perona, J.J.; Craik, C.S. Evolutionary divergence of substrate specificity within the chymotrypsin-like serine protease fold. J. Biol. Chem., 1997, 272(48), 29987-29990.
[http://dx.doi.org/10.1074/jbc.272.48.29987] [PMID: 9374470]
[235]
Meyer, D.; Sielaff, F.; Hammami, M.; Böttcher-Friebertshäuser, E.; Garten, W.; Steinmetzer, T. Identification of the first synthetic inhibitors of the type II transmembrane serine protease TMPRSS2 suitable for inhibition of influenza virus activation. Biochem. J., 2013, 452(2), 331-343.
[http://dx.doi.org/10.1042/BJ20130101] [PMID: 23527573]
[236]
Lin, B.; Ferguson, C.; White, J.T.; Wang, S.; Vessella, R.; True, L.D.; Hood, L.; Nelson, P.S. Prostate-localized and androgen-regulated expression of the membrane-bound serine protease TMPRSS2. Cancer Res., 1999, 59(17), 4180-4184.
[PMID: 10485450]
[237]
Donaldson, S.H.; Hirsh, A.; Li, D.C.; Holloway, G.; Chao, J.; Boucher, R.C.; Gabriel, S.E. Regulation of the epithelial sodium channel by serine proteases in human airways. J. Biol. Chem., 2002, 277(10), 8338-8345.
[http://dx.doi.org/10.1074/jbc.M105044200] [PMID: 11756432]
[238]
Kim, T.S.; Heinlein, C.; Hackman, R.C.; Nelson, P.S. Phenotypic analysis of mice lacking the Tmprss2-encoded protease. Mol. Cell. Biol., 2006, 26(3), 965-975.
[http://dx.doi.org/10.1128/MCB.26.3.965-975.2006] [PMID: 16428450]
[239]
Garty, H.; Palmer, L.G. Epithelial sodium channels: function, structure, and regulation. Physiol. Rev., 1997, 77(2), 359-396.
[http://dx.doi.org/10.1152/physrev.1997.77.2.359] [PMID: 9114818]
[240]
Wu, Q.; Type, I.I. Type II transmembrane serine proteases. Curr. Top. Dev. Biol., 2003, 54, 167-206.
[http://dx.doi.org/10.1016/S0070-2153(03)54009-1] [PMID: 12696750]
[241]
Brown, M.S.; Herz, J.; Goldstein, J.L. LDL-receptor structure. Calcium cages, acid baths and recycling receptors. Nature, 1997, 388(6643), 629-630.
[http://dx.doi.org/10.1038/41672] [PMID: 9262394]
[242]
Nykjaer, A.; Conese, M.; Christensen, E.I.; Olson, D.; Cremona, O.; Gliemann, J.; Blasi, F. Recycling of the urokinase receptor upon internalization of the uPA:serpin complexes. EMBO J., 1997, 16(10), 2610-2620.
[http://dx.doi.org/10.1093/emboj/16.10.2610] [PMID: 9184208]
[243]
Kounnas, M.Z.; Church, F.C.; Argraves, W.S.; Strickland, D.K. Cellular internalization and degradation of antithrombin III-thrombin, heparin cofactor II-thrombin, and alpha 1-antitrypsin-trypsin complexes is mediated by the low density lipoprotein receptor-related protein. J. Biol. Chem., 1996, 271(11), 6523-6529.
[http://dx.doi.org/10.1074/jbc.271.11.6523] [PMID: 8626456]
[244]
Lam, D.K.; Dang, D.; Flynn, A.N.; Hardt, M.; Schmidt, B.L. TMPRSS2, a novel membrane-anchored mediator in cancer pain. Pain, 2015, 156(5), 923-930.
[http://dx.doi.org/10.1097/j.pain.0000000000000130] [PMID: 25734995]
[245]
Vaarala, M.H.; Porvari, K.; Kyllönen, A.; Lukkarinen, O.; Vihko, P. The TMPRSS2 gene encoding transmembrane serine protease is overexpressed in a majority of prostate cancer patients: detection of mutated TMPRSS2 form in a case of aggressive disease. Int. J. Cancer, 2001, 94(5), 705-710.
[http://dx.doi.org/10.1002/ijc.1526] [PMID: 11745466]
[246]
Lubieniecka, J.M.; Cheteri, M.K.; Stanford, J.L.; Ostrander, E.A. Met160Val polymorphism in the TRMPSS2 gene and risk of prostate cancer in a population-based case-control study. Prostate, 2004, 59(4), 357-359.
[http://dx.doi.org/10.1002/pros.20005] [PMID: 15065083]
[247]
Wilson, S.; Greer, B.; Hooper, J.; Zijlstra, A.; Walker, B.; Quigley, J.; Hawthorne, S. The membrane-anchored serine protease, TMPRSS2, activates PAR-2 in prostate cancer cells. Biochem. J., 2005, 388(Pt 3), 967-972.
[http://dx.doi.org/10.1042/BJ20041066] [PMID: 15537383]
[248]
Bahou, W.F. Protease-activated receptors. Curr. Top. Dev. Biol., 2003, 54, 343-369.
[http://dx.doi.org/10.1016/S0070-2153(03)54014-5] [PMID: 12696755]
[249]
Lazarowitz, S.G.; Choppin, P.W. Enhancement of the infectivity of influenza A and B viruses by proteolytic cleavage of the hemagglutinin polypeptide. Virology, 1975, 68(2), 440-454.
[http://dx.doi.org/10.1016/0042-6822(75)90285-8] [PMID: 128196]
[250]
Klenk, H.D.; Rott, R.; Orlich, M.; Blödorn, J. Activation of influenza A viruses by trypsin treatment. Virology, 1975, 68(2), 426-439.
[http://dx.doi.org/10.1016/0042-6822(75)90284-6] [PMID: 173078]
[251]
Shirogane, Y.; Takeda, M.; Iwasaki, M.; Ishiguro, N.; Takeuchi, H.; Nakatsu, Y.; Tahara, M.; Kikuta, H.; Yanagi, Y. Efficient multiplication of human metapneumovirus in vero cells expressing the transmembrane serine protease TMPRSS2. J. Virol., 2008, 82(17), 8942-8946.
[http://dx.doi.org/10.1128/JVI.00676-08] [PMID: 18562527]
[252]
van den Hoogen, B.G.; Bestebroer, T.M.; Osterhaus, A.D.M.E.; Fouchier, R.A.M. Analysis of the genomic sequence of a human metapneumovirus. Virology, 2002, 295(1), 119-132.
[http://dx.doi.org/10.1006/viro.2001.1355] [PMID: 12033771]
[253]
Shirato, K.; Matsuyama, S.; Ujike, M.; Taguchi, F. Role of proteases in the release of porcine epidemic diarrhea virus from infected cells. J. Virol., 2011, 85(15), 7872-7880.
[http://dx.doi.org/10.1128/JVI.00464-11] [PMID: 21613395]
[254]
Li, F.; Berardi, M.; Li, W.; Farzan, M.; Dormitzer, P.R.; Harrison, S.C. Conformational states of the severe acute respiratory syndrome coronavirus spike protein ectodomain. J. Virol., 2006, 80(14), 6794-6800.
[http://dx.doi.org/10.1128/JVI.02744-05] [PMID: 16809285]
[255]
Belouzard, S.; Chu, V.C.; Whittaker, G.R. Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites. Proc. Natl. Acad. Sci. USA, 2009, 106(14), 5871-5876.
[http://dx.doi.org/10.1073/pnas.0809524106] [PMID: 19321428]
[256]
Bosch, B.J.; van der Zee, R.; de Haan, C.A.M.; Rottier, P.J.M. The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex. J. Virol., 2003, 77(16), 8801-8811.
[http://dx.doi.org/10.1128/JVI.77.16.8801-8811.2003] [PMID: 12885899]
[257]
Kam, Y.W.; Okumura, Y.; Kido, H.; Ng, L.F.P.; Bruzzone, R.; Altmeyer, R. Cleavage of the SARS coronavirus spike glycoprotein by airway proteases enhances virus entry into human bronchial epithelial cells in vitro. PLoS One, 2009, 4(11)e7870
[http://dx.doi.org/10.1371/journal.pone.0007870] [PMID: 19924243]
[258]
Glowacka, I.; Bertram, S.; Müller, M.A.; Allen, P.; Soilleux, E.; Pfefferle, S.; Steffen, I.; Tsegaye, T.S.; He, Y.; Gnirss, K.; Niemeyer, D.; Schneider, H.; Drosten, C.; Pöhlmann, S. Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response. J. Virol., 2011, 85(9), 4122-4134.
[http://dx.doi.org/10.1128/JVI.02232-10] [PMID: 21325420]
[259]
Perdue, M.L.; García, M.; Senne, D.; Fraire, M. Virulence-associated sequence duplication at the hemagglutinin cleavage site of avian influenza viruses. Virus Res., 1997, 49(2), 173-186.
[http://dx.doi.org/10.1016/S0168-1702(97)01468-8] [PMID: 9213392]
[260]
Tian, X.; Li, C.; Huang, A.; Xia, S.; Lu, S.; Shi, Z.; Lu, L.; Jiang, S.; Yang, Z.; Wu, Y.; Ying, T. Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody. Emerg. Microbes Infect., 2020, 9(1), 382-385.
[http://dx.doi.org/10.1080/22221751.2020.1729069] [PMID: 32065055]
[261]
Moore, M.J.; Dorfman, T.; Li, W.; Wong, S.K.; Li, Y.; Kuhn, J.H.; Coderre, J.; Vasilieva, N.; Han, Z.; Greenough, T.C.; Farzan, M.; Choe, H. Retroviruses pseudotyped with the severe acute respiratory syndrome coronavirus spike protein efficiently infect cells expressing angiotensin-converting enzyme 2. J. Virol., 2004, 78(19), 10628-10635.
[http://dx.doi.org/10.1128/JVI.78.19.10628-10635.2004] [PMID: 15367630]
[262]
Li, F.; Li, W.; Farzan, M.; Harrison, S.C. Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science, 2005, 309(5472), 1864-1868.
[http://dx.doi.org/10.1126/science.1116480] [PMID: 16166518]
[263]
Beniac, D.R.; deVarennes, S.L.; Andonov, A.; He, R.; Booth, T.F. Conformational reorganization of the SARS coronavirus spike following receptor binding: implications for membrane fusion. PLoS One, 2007, 2(10)e1082
[http://dx.doi.org/10.1371/journal.pone.0001082] [PMID: 17957264]
[264]
Sui, J.; Li, W.; Murakami, A.; Tamin, A.; Matthews, L.J.; Wong, S.K.; Moore, M.J.; Tallarico, A.S.C.; Olurinde, M.; Choe, H.; Anderson, L.J.; Bellini, W.J.; Farzan, M.; Marasco, W.A. Potent neutralization of severe acute respiratory syndrome (SARS) coronavirus by a human mAb to S1 protein that blocks receptor association. Proc. Natl. Acad. Sci. USA, 2004, 101(8), 2536-2541.
[http://dx.doi.org/10.1073/pnas.0307140101] [PMID: 14983044]
[265]
Li, W.; Moore, M.J.; Vasilieva, N.; Sui, J.; Wong, S.K.; Berne, M.A.; Somasundaran, M.; Sullivan, J.L.; Luzuriaga, K.; Greenough, T.C.; Choe, H.; Farzan, M. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature, 2003, 426(6965), 450-454.
[http://dx.doi.org/10.1038/nature02145] [PMID: 14647384]
[266]
Nicholls, J.M.; Bourne, A.J.; Chen, H.; Guan, Y.; Peiris, J.S. Sialic acid receptor detection in the human respiratory tract: evidence for widespread distribution of potential binding sites for human and avian influenza viruses. Respir. Res., 2007, 8, 73.
[http://dx.doi.org/10.1186/1465-9921-8-73] [PMID: 17961210]
[267]
Bertram, S.; Heurich, A.; Lavender, H.; Gierer, S.; Danisch, S.; Perin, P.; Lucas, J.M.; Nelson, P.S.; Pöhlmann, S.; Soilleux, E.J. Influenza and SARS-coronavirus activating proteases TMPRSS2 and HAT are expressed at multiple sites in human respiratory and gastrointestinal tracts. PLoS One, 2012, 7(4)e35876
[http://dx.doi.org/10.1371/journal.pone.0035876] [PMID: 22558251]
[268]
Iwata-Yoshikawa, N.; Okamura, T.; Shimizu, Y.; Hasegawa, H.; Takeda, M.; Nagata, N. TMPRSS2 Contributes to virus spread and immunopathology in the airways of murine models after coronavirus infection. J. Virol., 2019, 93(6), 1-15.
[http://dx.doi.org/10.1128/JVI.01815-18] [PMID: 30626688]
[269]
Montopoli, M.; Zumerle, S.; Vettor, R.; Rugge, M.; Zorzi, M.; Catapano, C.V.; Carbone, G.M.; Cavalli, A.; Pagano, F.; Ragazzi, E.; Prayer-Galetti, T.; Alimonti, A. Androgen-deprivation therapies for prostate cancer and risk of infection by SARS-CoV-2: a population-based study (N = 4532). Ann. Oncol., 2020, 31(8), 1040-1045.
[http://dx.doi.org/10.1016/j.annonc.2020.04.479] [PMID: 32387456]
[270]
Hawthorne, S.; Hamilton, R.; Walker, B.J.; Walker, B. Utilization of biotinylated diphenyl phosphonates for disclosure of serine proteases. Anal. Biochem., 2004, 326(2), 273-275.
[http://dx.doi.org/10.1016/j.ab.2003.12.002] [PMID: 15003568]
[271]
Böttcher, E.; Freuer, C.; Steinmetzer, T.; Klenk, H.D.; Garten, W. MDCK cells that express proteases TMPRSS2 and HAT provide a cell system to propagate influenza viruses in the absence of trypsin and to study cleavage of HA and its inhibition. Vaccine, 2009, 27(45), 6324-6329.
[http://dx.doi.org/10.1016/j.vaccine.2009.03.029] [PMID: 19840668]
[272]
Zhirnov, O.P.; Klenk, H.D.; Wright, P.F. Aprotinin and similar protease inhibitors as drugs against influenza. Antiviral Res., 2011, 92(1), 27-36.
[http://dx.doi.org/10.1016/j.antiviral.2011.07.014] [PMID: 21802447]
[273]
Dittmann, M.; Hoffmann, H-H.; Scull, M.A.; Gilmore, R.H.; Bell, K.L.; Ciancanelli, M.; Wilson, S.J.; Crotta, S.; Yu, Y.; Flatley, B.; Xiao, J.W.; Casanova, J.L.; Wack, A.; Bieniasz, P.D.; Rice, C.M. A serpin shapes the extracellular environment to prevent influenza A virus maturation. Cell, 2015, 160(4), 631-643.
[http://dx.doi.org/10.1016/j.cell.2015.01.040] [PMID: 25679759]
[274]
Faller, N.; Gautschi, I.; Schild, L. Functional analysis of a missense mutation in the serine protease inhibitor SPINT2 associated with congenital sodium diarrhea. PLoS One, 2014, 9(4)e94267
[http://dx.doi.org/10.1371/journal.pone.0094267] [PMID: 24722141]
[275]
Szabo, R.; Hobson, J.P.; List, K.; Molinolo, A.; Lin, C.Y.; Bugge, T.H. Potent inhibition and global co-localization implicate the transmembrane Kunitz-type serine protease inhibitor hepatocyte growth factor activator inhibitor-2 in the regulation of epithelial matriptase activity. J. Biol. Chem., 2008, 283(43), 29495-29504.
[http://dx.doi.org/10.1074/jbc.M801970200] [PMID: 18713750]
[276]
Sielaff, F.; Böttcher-Friebertshäuser, E.; Meyer, D.; Saupe, S.M.; Volk, I.M.; Garten, W.; Steinmetzer, T. Development of substrate analogue inhibitors for the human airway trypsin-like protease HAT. Bioorg. Med. Chem. Lett., 2011, 21(16), 4860-4864.
[http://dx.doi.org/10.1016/j.bmcl.2011.06.033] [PMID: 21741839]
[277]
Sisay, M.T.; Steinmetzer, T.; Stirnberg, M.; Maurer, E.; Hammami, M.; Bajorath, J.; Gütschow, M. Identification of the first low-molecular-weight inhibitors of matriptase-2. J. Med. Chem., 2010, 53(15), 5523-5535.
[http://dx.doi.org/10.1021/jm100183e] [PMID: 20684597]
[278]
Biela, A.; Sielaff, F.; Terwesten, F.; Heine, A.; Steinmetzer, T.; Klebe, G. Ligand binding stepwise disrupts water network in thrombin: enthalpic and entropic changes reveal classical hydrophobic effect. J. Med. Chem., 2012, 55(13), 6094-6110.
[http://dx.doi.org/10.1021/jm300337q] [PMID: 22612268]
[279]
Steinmetzer, T.; Schweinitz, A.; Stürzebecher, A.; Dönnecke, D.; Uhland, K.; Schuster, O.; Steinmetzer, P.; Müller, F.; Friedrich, R.; Than, M.E.; Bode, W.; Stürzebecher, J. Secondary amides of sulfonylated 3-amidinophenylalanine. New potent and selective inhibitors of matriptase. J. Med. Chem., 2006, 49(14), 4116-4126.
[http://dx.doi.org/10.1021/jm051272l] [PMID: 16821772]
[280]
Hammami, M.; Rühmann, E.; Maurer, E.; Heine, A.; Gütschow, M.; Klebe, G.; Steinmetzer, T. New 3-amidinophenylalanine-derived inhibitors of matriptase. MedChemComm, 2012, 3(7), 807-813.
[http://dx.doi.org/10.1039/c2md20074k]
[281]
Steinmetzer, T.; Dönnecke, D.; Korsonewski, M.; Neuwirth, C.; Steinmetzer, P.; Schulze, A.; Saupe, S.M.; Schweinitz, A. Modification of the N-terminal sulfonyl residue in 3-amidinophenylalanine-based matriptase inhibitors. Bioorg. Med. Chem. Lett., 2009, 19(1), 67-73.
[http://dx.doi.org/10.1016/j.bmcl.2008.11.019] [PMID: 19036586]
[282]
Lucas, J.M.; Heinlein, C.; Kim, T.; Hernandez, S.A.; Malik, M.S.; True, L.D.; Morrissey, C.; Corey, E.; Montgomery, B.; Mostaghel, E.; Clegg, N.; Coleman, I.; Brown, C.M.; Schneider, E.L.; Craik, C.; Simon, J.A.; Bedalov, A.; Nelson, P.S. The androgen-regulated protease TMPRSS2 activates a proteolytic cascade involving components of the tumor microenvironment and promotes prostate cancer metastasis. Cancer Discov., 2014, 4(11), 1310-1325.
[http://dx.doi.org/10.1158/2159-8290.CD-13-1010] [PMID: 25122198]
[283]
Shrimp, J.H.; Kales, S.C.; Sanderson, P.E.; Simeonov, A.; Shen, M.; Hall, M.D. An enzymatic TMPRSS2 assay for assessment of clinical candidates and discovery of inhibitors as potential treatment of COVID-19. bioRxiv, 2020. preprint
[http://dx.doi.org/10.1101/2020.06.23.167544] [PMID: 32596694]
[284]
NIH Clinical Trials of Bromhexine for COVID19. Available from: https://833 19&term=bromhexine&cntry=&state=&city=&dist=&Se(Accessed date: October 01, 2020)
[285]
Böttcher-Friebertshäuser, E.; Stein, D.A.; Klenk, H-D.; Garten, W. Inhibition of influenza virus infection in human airway cell cultures by an antisense peptide-conjugated morpholino oligomer targeting the hemagglutinin-activating protease TMPRSS2. J. Virol., 2011, 85(4), 1554-1562.
[http://dx.doi.org/10.1128/JVI.01294-10] [PMID: 21123387]
[286]
Matsuyama, S.; Nagata, N.; Shirato, K.; Kawase, M.; Takeda, M.; Taguchi, F. Efficient activation of the severe acute respiratory syndrome coronavirus spike protein by the transmembrane protease TMPRSS2. J. Virol., 2010, 84(24), 12658-12664.
[http://dx.doi.org/10.1128/JVI.01542-10] [PMID: 20926566]
[287]
Simmons, G.; Reeves, J.D.; Rennekamp, A.J.; Amberg, S.M.; Piefer, A.J.; Bates, P. Characterization of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) spike glycoprotein-mediated viral entry. Proc. Natl. Acad. Sci. USA, 2004, 101(12), 4240-4245.
[http://dx.doi.org/10.1073/pnas.0306446101] [PMID: 15010527]
[288]
Talukdar, R.; Tandon, R.K. Pancreatic stellate cells: new target in the treatment of chronic pancreatitis. J. Gastroenterol. Hepatol., 2008, 23(1), 34-41.
[http://dx.doi.org/10.1111/j.1440-1746.2007.05206.x] [PMID: 17995943]
[289]
Sai, J.K.; Suyama, M.; Kubokawa, Y.; Matsumura, Y.; Inami, K.; Watanabe, S. Efficacy of camostat mesilate against dyspepsia associated with non-alcoholic mild pancreatic disease. J. Gastroenterol., 2010, 45(3), 335-341.
[http://dx.doi.org/10.1007/s00535-009-0148-1] [PMID: 19876587]
[290]
Okuno, M.; Kojima, S.; Akita, K.; Matsushima-Nishiwaki, R.; Adachi, S.; Sano, T.; Takano, Y.; Takai, K.; Obora, A.; Yasuda, I.; Shiratori, Y.; Okano, Y.; Shimada, J.; Suzuki, Y.; Muto, Y.; Moriwaki, Y. Retinoids in liver fibrosis and cancer. Front. Biosci., 2002, 7, d204-d218.
[http://dx.doi.org/10.2741/okuno] [PMID: 11779708]
[291]
Shirato, K.; Kawase, M.; Matsuyama, S. Wild-type human coronaviruses prefer cell-surface TMPRSS2 to endosomal cathepsins for cell entry. Virology, 2018, 517(517), 9-15.
[http://dx.doi.org/10.1016/j.virol.2017.11.012] [PMID: 29217279]
[292]
Lee, M.G.; Kim, K.H.; Park, K.Y.; Kim, J.S. Evaluation of anti-influenza effects of camostat in mice infected with non-adapted human influenza viruses. Arch. Virol., 1996, 141(10), 1979-1989.
[http://dx.doi.org/10.1007/BF01718208] [PMID: 8920829]
[293]
Yamaya, M.; Shimotai, Y.; Hatachi, Y.; Lusamba Kalonji, N.; Tando, Y.; Kitajima, Y.; Matsuo, K.; Kubo, H.; Nagatomi, R.; Hongo, S.; Homma, M.; Nishimura, H. The serine protease inhibitor camostat inhibits influenza virus replication and cytokine production in primary cultures of human tracheal epithelial cells. Pulm. Pharmacol. Ther., 2015, 33, 66-74.
[http://dx.doi.org/10.1016/j.pupt.2015.07.001] [PMID: 26166259]
[294]
NIH Clinical Trials of Camostat for COVID-19. Available from: https://clinicaltrials.gov/ct2/results?cond= Covid19&term=camostat&cntry=&state=&city=&dist=(Accessed date: October 01, 2020)
[295]
Midgley, I.; Hood, A.J.; Proctor, P.; Chasseaud, L.F.; Irons, S.R.; Cheng, K.N.; Brindley, C.J.; Bonn, R. Metabolic fate of 14C-camostat mesylate in man, rat and dog after intravenous administration. Xenobiotica, 1994, 24(1), 79-92.
[http://dx.doi.org/10.3109/00498259409043223] [PMID: 8165824]
[296]
Yamamoto, M.; Matsuyama, S.; Li, X.; Takeda, M.; Kawaguchi, Y.; Inoue, J.I.; Matsuda, Z. Identification of nafamostat as a potent inhibitor of middle east respiratory syndrome coronavirus S protein-mediated membrane fusion using the split-protein-based cell-cell fusion assay. Antimicrob. Agents Chemother., 2016, 60(11), 6532-6539.
[http://dx.doi.org/10.1128/AAC.01043-16] [PMID: 27550352]
[297]
Chen, X.; Xu, Z.; Zeng, S.; Wang, X.; Liu, W.; Qian, L.; Wei, J.; Yang, X.; Shen, Q.; Gong, Z.; Yan, Y. The molecular aspect of antitumor effects of protease inhibitor nafamostat mesylate and its role in potential clinical applications. Front. Oncol., 2019, 9, 852.
[http://dx.doi.org/10.3389/fonc.2019.00852] [PMID: 31552177]
[298]
Sadahiro, T.; Yuzawa, H.; Kimura, T.; Oguchi, M.; Morito, T.; Mizushima, S.; Hirose, Y. Current practices in acute blood purification therapy in japan and topics for further study. Contrib. Nephrol., 2018, 196, 209-214.
[http://dx.doi.org/10.1159/000485724] [PMID: 30041229]
[299]
NIH Clinical Trials for Nafamostat for COVID-19 Available at: https://clinicaltrials.gov/ct2/results?cond= Clinical+Trials+for+Nafamostat+for+COVID-19.&term=&cntry=&state=&city=&dist=(Accessed date: October 01, 2020)
[300]
Spraggon, G.; Hornsby, M.; Shipway, A.; Tully, D.C.; Bursulaya, B.; Danahay, H.; Harris, J.L.; Lesley, S.A. Active site conformational changes of prostasin provide a new mechanism of protease regulation by divalent cations. Protein Sci., 2009, 18(5), 1081-1094.
[http://dx.doi.org/10.1002/pro.118] [PMID: 19388054]
[301]
Millies, B.; von Hammerstein, F.; Gellert, A.; Hammerschmidt, S.; Barthels, F.; Göppel, U.; Immerheiser, M.; Elgner, F.; Jung, N.; Basic, M.; Kersten, C.; Kiefer, W.; Bodem, J.; Hildt, E.; Windbergs, M.; Hellmich, U.A.; Schirmeister, T. Proline-based allosteric inhibitors of zika and dengue virus NS2B/NS3 proteases. J. Med. Chem., 2019, 62(24), 11359-11382.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01697] [PMID: 31769670]
[302]
Matthews, D.A.; Dragovich, P.S.; Webber, S.E.; Fuhrman, S.A.; Patick, A.K.; Zalman, L.S.; Hendrickson, T.F.; Love, R.A.; Prins, T.J.; Marakovits, J.T.; Zhou, R.; Tikhe, J.; Ford, C.E.; Meador, J.W.; Ferre, R.A.; Brown, E.L.; Binford, S.L.; Brothers, M.A.; DeLisle, D.M.; Worland, S.T. Structure-assisted design of mechanism-based irreversible inhibitors of human rhinovirus 3C protease with potent antiviral activity against multiple rhinovirus serotypes. Proc. Natl. Acad. Sci. USA, 1999, 96(20), 11000-11007.
[http://dx.doi.org/10.1073/pnas.96.20.11000] [PMID: 10500114]
[303]
Deeks, S.G.; Smith, M.; Holodniy, M.; Kahn, J.O. HIV-1 protease inhibitors. A review for clinicians. JAMA, 1997, 277(2), 145-153.
[http://dx.doi.org/10.1001/jama.1997.03540260059037] [PMID: 8990341]
[304]
de Leuw, P.; Stephan, C. Protease inhibitors for the treatment of hepatitis C virus infection. GMS Infect. Dis., 2017, 5, Doc08.
[http://dx.doi.org/10.3205/id000034] [PMID: 30671330]
[305]
Welker, A.; Kersten, C.; Müller, C.; Madhugiri, R.; Zimmer, C.; Müller, P.; Zimmermann, R.; Hammerschmidt, S.; Maus, H.; Ziebuhr, J.; Sotriffer, C.; Schirmeister, T. Structure-activity relationships of benzamides and isoindolines designed as SARS-CoV protease inhibitors effective against SARS-CoV-2. ChemMedChem, 2020.
[http://dx.doi.org/10.1002/cmdc.202000548] [PMID: 32930481]
[306]
Báez-Santos, Y.M.; St John, S.E.; Mesecar, A.D. The SARS-coronavirus papain-like protease: structure, function and inhibition by designed antiviral compounds. Antiviral Res., 2015, 115, 21-38.
[http://dx.doi.org/10.1016/j.antiviral.2014.12.015] [PMID: 25554382]
[307]
McKee, D.L.; Sternberg, A.; Stange, U.; Laufer, S.; Naujokat, C. Candidate drugs against SARS-CoV-2 and COVID-19. Pharmacol. Res., 2020, 157104859
[http://dx.doi.org/10.1016/j.phrs.2020.104859] [PMID: 32360480]
[308]
Declercq, J.; Creemers, J.W.M. Therapeutic potential of furin inhibition: an evaluation using a conditional furin knockout mouse model. Colloq. Ser. Protein Act. Cancer, 2012, 1(4), 1-30.
[http://dx.doi.org/10.4199/C00068ED1V01Y201211PAC004]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy