Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Current Frontiers

Novel Drugs Targeting the SARS-CoV-2/COVID-19 Machinery

Author(s): Ariane Sternberg, Dwight L. McKee and Cord Naujokat*

Volume 20, Issue 16, 2020

Page: [1423 - 1433] Pages: 11

DOI: 10.2174/1568026620999200517043137

Abstract

Like other human pathogenic viruses, coronavirus SARS-CoV-2 employs sophisticated macromolecular machines for viral host cell entry, genome replication and protein processing. Such machinery encompasses SARS-CoV-2 envelope spike (S) glycoprotein required for host cell entry by binding to the ACE2 receptor, viral RNA-dependent RNA polymerase (RdRp) and 3-chymotrypsin-like main protease (3Clpro/Mpro). Under the pressure of the accelerating COVID-19 pandemic caused by the outbreak of SARS-CoV-2 in Wuhan, China in December 2019, novel and repurposed drugs were recently designed and identified for targeting the SARS-CoV-2 reproduction machinery, with the aim to limit the spread of SARS-CoV-2 and morbidity and mortality due to the COVID-19 pandemic.

Keywords: Coronavirus SARS-CoV-2, COVID-19, S protein, RNA polymerase, 3Clpro, Camostat, Remdesivir, α-Ketoamides.

Next »
Graphical Abstract

[1]
Yin, J.; Redovich, J. Kinetic modeling of virus growth in cells. Microbiol. Mol. Biol. Rev., 2018, 82(2), e00066-e00170.
[http://dx.doi.org/10.1128/MMBR.00066-17] [PMID: 29592895]
[2]
Greber, U.F. Virus and host mechanics support membrane penetration and cell entry. J. Virol., 2016, 90(8), 3802-3805.
[http://dx.doi.org/10.1128/JVI.02568-15] [PMID: 26842477]
[3]
Pellett, P.E.; Mitra, S.; Holland, T.C. Basics of virology. Handb. Clin. Neurol., 2014, 123, 45-66.
[http://dx.doi.org/10.1016/B978-0-444-53488-0.00002-X] [PMID: 25015480]
[4]
Menéndez-Arias, L.; Gago, F. Antiviral agents: structural basis of action and rational design. Subcell. Biochem., 2013, 68, 599-630.
[http://dx.doi.org/10.1007/978-94-007-6552-8_20] [PMID: 23737066]
[5]
Pawlotsky, J.M. The science of direct-acting antiviral and host-targeted agent therapy. Antivir. Ther. (Lond.), 2012, 17(6 Pt B), 1109-1117.
[http://dx.doi.org/10.3851/IMP2423] [PMID: 23188746]
[6]
Paul, D.; Madan, V.; Bartenschlager, R. Hepatitis C virus RNA replication and assembly: living on the fat of the land. Cell Host Microbe, 2014, 16(5), 569-579.
[http://dx.doi.org/10.1016/j.chom.2014.10.008] [PMID: 25525790]
[7]
Lou, Z.; Sun, Y.; Rao, Z. Current progress in antiviral strategies. Trends Pharmacol. Sci., 2014, 35(2), 86-102.
[http://dx.doi.org/10.1016/j.tips.2013.11.006] [PMID: 24439476]
[8]
Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; Niu, P.; Zhan, F.; Ma, X.; Wang, D.; Xu, W.; Wu, G.; Gao, G.F.; Tan, W. A novel coronavirus from patients with pneumonia in china, 2019. N. Engl. J. Med., 2020, 382(8), 727-733.
[http://dx.doi.org/10.1056/NEJMoa2001017] [PMID: 31978945]
[9]
Lu, R.; Zhao, X.; Li, J.; Niu, P.; Yang, B.; Wu, H.; Wang, W.; Song, H.; Huang, B.; Zhu, N.; Bi, Y.; Ma, X.; Zhan, F.; Wang, L.; Hu, T.; Zhou, H.; Hu, Z.; Zhou, W.; Zhao, L.; Chen, J.; Meng, Y.; Wang, J.; Lin, Y.; Yuan, J.; Xie, Z.; Ma, J.; Liu, W.J.; Wang, D.; Xu, W.; Holmes, E.C.; Gao, G.F.; Wu, G.; Chen, W.; Shi, W.; Tan, W. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet, 2020, 395(10224), 565-574.
[http://dx.doi.org/10.1016/S0140-6736(20)30251-8] [PMID: 32007145]
[10]
Tortorici, M.A.; Veesler, D. Structural insights into coronavirus entry. Adv. Virus Res., 2019, 105, 93-116.
[http://dx.doi.org/10.1016/bs.aivir.2019.08.002] [PMID: 31522710]
[11]
Walls, A.C.; Park, Y.J.; Tortorici, M.A.; Wall, A.; McGuire, A.T.; Veesler, D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell, 2020, 181(2), 281-292.e6.
[http://dx.doi.org/10.1016/j.cell.2020.02.058] [PMID: 32155444]
[12]
Morse, J.S.; Lalonde, T.; Xu, S.; Liu, W.R. Learning from the past: possible urgent prevention and treatment options for severe acute respiratory infections caused by 2019-nCoV. ChemBioChem, 2020, 21(5), 730-738.
[http://dx.doi.org/10.1002/cbic.202000047] [PMID: 32022370]
[13]
Hoffmann, M.; Kleine-Weber, H.; Pöhlmann, S. A multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells. Mol. Cell, 2020. [In Press].
[http://dx.doi.org/10.1016/j.molcel.2020.04.022] [PMID: 32362314]
[14]
Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.H.; Nitsche, A.; Müller, M.A.; Drosten, C.; Pöhlmann, S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 2020, 181(2), 271-280.e8.
[http://dx.doi.org/10.1016/j.cell.2020.02.052] [PMID: 32142651]
[15]
Matsuyama, S.; Nagata, N.; Shirato, K.; Kawase, M.; Takeda, M.; Taguchi, F. Efficient activation of the severe acute respiratory syndrome coronavirus spike protein by the transmembrane protease TMPRSS2. J. Virol., 2010, 84(24), 12658-12664.
[http://dx.doi.org/10.1128/JVI.01542-10] [PMID: 20926566]
[16]
Gao, Y.; Yan, L.; Huang, Y.; Liu, F.; Zhao, Y.; Cao, L.; Wang, T.; Sun, Q.; Ming, Z.; Zhang, L.; Ge, J.; Zheng, L.; Zhang, Y.; Wang, H.; Zhu, Y.; Zhu, C.; Hu, T.; Hua, T.; Zhang, B.; Yang, X.; Li, J.; Yang, H.; Liu, Z.; Xu, W.; Guddat, L.W.; Wang, Q.; Lou, Z.; Rao, Z. Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Science, 2020, 368(6492), 779-782.
[http://dx.doi.org/10.1126/science.abb7498] [PMID: 32277040]
[17]
Grein, J.; Ohmagari, N.; Shin, D.; Diaz, G.; Asperges, E.; Castagna, A.; Feldt, T.; Green, G.; Green, M.L.; Lescure, F.X.; Nicastri, E.; Oda, R.; Yo, K.; Quiros-Roldan, E.; Studemeister, A.; Redinski, J.; Ahmed, S.; Bernett, J.; Chelliah, D.; Chen, D.; Chihara, S.; Cohen, S.H.; Cunningham, J.; D’Arminio Monforte, A.; Ismail, S.; Kato, H.; Lapadula, G.; L’Her, E.; Maeno, T.; Majumder, S.; Massari, M.; Mora-Rillo, M.; Mutoh, Y.; Nguyen, D.; Verweij, E.; Zoufaly, A.; Osinusi, A.O.; DeZure, A.; Zhao, Y.; Zhong, L.; Chokkalingam, A.; Elboudwarej, E.; Telep, L.; Timbs, L.; Henne, I.; Sellers, S.; Cao, H.; Tan, S.K.; Winterbourne, L.; Desai, P.; Mera, R.; Gaggar, A.; Myers, R.P.; Brainard, D.M.; Childs, R.; Flanigan, T. Compassionate use of remdesivir for patients with severe covid-19. N. Engl. J. Med., 2020.
[http://dx.doi.org/10.1056/NEJMoa2007016] [PMID: 32275812]
[18]
Du, Y.X.; Chen, X.P. Favipiravir: pharmacokinetics and concerns about clinical trials for 2019- nCoV Infection. Clin. Pharmacol. Ther., 2020.
[http://dx.doi.org/10.1002/cpt.1844] [PMID: 32246834]
[19]
Anand, K.; Ziebuhr, J.; Wadhwani, P.; Mesters, J.R.; Hilgenfeld, R. Coronavirus main proteinase (3CLpro) structure: basis for design of anti-SARS drugs. Science, 2003, 300(5626), 1763-1767.
[http://dx.doi.org/10.1126/science.1085658] [PMID: 12746549]
[20]
Zhang, L.; Lin, D.; Sun, X.; Curth, U.; Drosten, C.; Sauerhering, L.; Becker, S.; Rox, K.; Hilgenfeld, R. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science, 2020, 368(6489), 409-412.
[http://dx.doi.org/10.1126/science.abb3405] [PMID: 32198291]
[21]
Anthony, S.J.; Johnson, C.K.; Greig, D.J.; Kramer, S.; Che, X.; Wells, H.; Hicks, A.L.; Joly, D.O.; Wolfe, N.D.; Daszak, P.; Karesh, W.; Lipkin, W.I.; Morse, S.S.; Mazet, J.A.K.; Goldstein, T. Global patterns in coronavirus diversity. Virus Evol., 2017, 3(1) vex012
[http://dx.doi.org/10.1093/ve/vex012] [PMID: 28630747]
[22]
Jin, Z.; Du, X.; Xu, Y.; Deng, Y.; Liu, M.; Zhao, Y.; Zhang, B.; Li, X.; Zhang, L.; Peng, C.; Duan, Y.; Yu, J.; Wang, L.; Yang, K.; Liu, F.; Jiang, R.; Yang, X.; You, T.; Liu, X.; Yang, X.; Bai, F.; Liu, H.; Liu, X.; Guddat, L.W.; Xu, W.; Xiao, G.; Qin, C.; Shi, Z.; Jiang, H.; Rao, Z.; Yang, H. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature, 2020.
[http://dx.doi.org/10.1038/s41586-020-2223-y] [PMID: 32272481]
[23]
Dai, W.; Zhang, B.; Su, H.; Li, J.; Zhao, Y.; Xie, X.; Jin, Z.; Liu, F.; Li, C.; Li, Y.; Bai, F.; Wang, H.; Cheng, X.; Cen, X.; Hu, S.; Yang, X.; Wang, J.; Liu, X.; Xiao, G.; Jiang, H.; Rao, Z.; Zhang, L.K.; Xu, Y.; Yang, H.; Liu, H. Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease. Science, 2020,. eabb4489
[http://dx.doi.org/10.1126/science.abb4489] [PMID: 32321856]
[24]
McKee, D.L.; Sternberg, A.; Stange, U.; Laufer, S.; Naujokat, C. Candidate drugs against SARS-CoV-2 and COVID-19. Pharmacol. Res., 2020, 157, 104859
[http://dx.doi.org/10.1016/j.phrs.2020.104859] [PMID: 32360480]
[25]
Bertram, S.; Heurich, A.; Lavender, H.; Gierer, S.; Danisch, S.; Perin, P.; Lucas, J.M.; Nelson, P.S.; Pöhlmann, S.; Soilleux, E.J. Influenza and SARS-coronavirus activating proteases TMPRSS2 and HAT are expressed at multiple sites in human respiratory and gastrointestinal tracts. PLoS One, 2012, 7(4) e35876
[http://dx.doi.org/10.1371/journal.pone.0035876] [PMID: 22558251]
[26]
Zhou, Y.; Vedantham, P.; Lu, K.; Agudelo, J.; Carrion, R., Jr; Nunneley, J.W.; Barnard, D.; Pöhlmann, S.; McKerrow, J.H.; Renslo, A.R.; Simmons, G. Protease inhibitors targeting coronavirus and filovirus entry. Antiviral Res., 2015, 116, 76-84.
[http://dx.doi.org/10.1016/j.antiviral.2015.01.011] [PMID: 25666761]
[27]
Yamaya, M.; Shimotai, Y.; Hatachi, Y.; Lusamba Kalonji, N.; Tando, Y.; Kitajima, Y.; Matsuo, K.; Kubo, H.; Nagatomi, R.; Hongo, S.; Homma, M.; Nishimura, H. The serine protease inhibitor camostat inhibits influenza virus replication and cytokine production in primary cultures of human tracheal epithelial cells. Pulm. Pharmacol. Ther., 2015, 33, 66-74.
[http://dx.doi.org/10.1016/j.pupt.2015.07.001] [PMID: 26166259]
[28]
Shulla, A.; Heald-Sargent, T.; Subramanya, G.; Zhao, J.; Perlman, S.; Gallagher, T. A transmembrane serine protease is linked to the severe acute respiratory syndrome coronavirus receptor and activates virus entry. J. Virol., 2011, 85(2), 873-882.
[http://dx.doi.org/10.1128/JVI.02062-10] [PMID: 21068237]
[29]
Glowacka, I.; Bertram, S.; Müller, M.A.; Allen, P.; Soilleux, E.; Pfefferle, S.; Steffen, I.; Tsegaye, T.S.; He, Y.; Gnirss, K.; Niemeyer, D.; Schneider, H.; Drosten, C.; Pöhlmann, S. Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response. J. Virol., 2011, 85(9), 4122-4134.
[http://dx.doi.org/10.1128/JVI.02232-10] [PMID: 21325420]
[30]
Kawase, M.; Shirato, K.; van der Hoek, L.; Taguchi, F.; Matsuyama, S. Simultaneous treatment of human bronchial epithelial cells with serine and cysteine protease inhibitors prevents severe acute respiratory syndrome coronavirus entry. J. Virol., 2012, 86(12), 6537-6545.
[http://dx.doi.org/10.1128/JVI.00094-12] [PMID: 22496216]
[31]
Ohkoshi, M.; Fujii, S. Effect of the synthetic protease inhibitor [N,N-dimethylcarbamoyl-methyl 4-(4-guanidinobenzoyloxy)-phenylacetate] methanesulfate on carcinogenesis by 3-methylcholanthrene in mouse skin. J. Natl. Cancer Inst., 1983, 71(5), 1053-1057.
[PMID: 6580482]
[32]
Ohkoshi, M.; Oka, T. Clinical experience with a protease inhibitor [N,N-dimethylcarbamoylmethyl 4-(4-guanidinobenzoyloxy)-phenylacetate] methanesulfate for prevention of recurrence of carcinoma of the mouth and in treatment of terminal carcinoma. J. Maxillofac. Surg., 1984, 12(4), 148-152.
[http://dx.doi.org/10.1016/S0301-0503(84)80235-0] [PMID: 6590712]
[33]
Ikeda, S.; Manabe, M.; Muramatsu, T.; Takamori, K.; Ogawa, H. Protease inhibitor therapy for recessive dystrophic epidermolysis bullosa. In vitro effect and clinical trial with camostat mesylate. J. Am. Acad. Dermatol., 1988, 18(6), 1246-1252.
[http://dx.doi.org/10.1016/S0190-9622(88)70130-9] [PMID: 3385039]
[34]
Göke, B.; Stöckmann, F.; Müller, R.; Lankisch, P.G.; Creutzfeldt, W. Effect of a specific serine protease inhibitor on the rat pancreas: systemic administration of camostate and exocrine pancreatic secretion. Digestion, 1984, 30(3), 171-178.
[http://dx.doi.org/10.1159/000199102] [PMID: 6209186]
[35]
Adler, G.; Müllenhoff, A.; Koop, I.; Bozkurt, T.; Göke, B.; Beglinger, C.; Arnold, R. Stimulation of pancreatic secretion in man by a protease inhibitor (camostate). Eur. J. Clin. Invest., 1988, 18(1), 98-104.
[http://dx.doi.org/10.1111/j.1365-2362.1988.tb01173.x] [PMID: 3130267]
[36]
Sai, J.K.; Suyama, M.; Kubokawa, Y.; Matsumura, Y.; Inami, K.; Watanabe, S. Efficacy of camostat mesilate against dyspepsia associated with non-alcoholic mild pancreatic disease. J. Gastroenterol., 2010, 45(3), 335-341.
[http://dx.doi.org/10.1007/s00535-009-0148-1] [PMID: 19876587]
[37]
Yamawaki, H.; Futagami, S.; Kaneko, K.; Agawa, S.; Higuchi, K.; Murakami, M.; Wakabayashi, M.; Sakasegawa, N.; Kodaka, Y.; Ueki, N.; Gudis, K.; Kawamoto, C.; Iwakiri, K. Camostat mesilate, pancrelipase, and rabeprazole combination therapy improves epigastric pain in early chronic pancreatitis and functional dyspepsia with pancreatic enzyme abnormalities. Digestion, 2019, 99(4), 283-292.
[http://dx.doi.org/10.1159/000492813] [PMID: 30391941]
[38]
Ramsey, M.L.; Nuttall, J.; Hart, P.A. A phase 1/2 trial to evaluate the pharmacokinetics, safety, and efficacy of NI-03 in patients with chronic pancreatitis: study protocol for a randomized controlled trial on the assessment of camostat treatment in chronic pancreatitis (TACTIC). Trials, 2019, 20(1), 501.
[http://dx.doi.org/10.1186/s13063-019-3606-y] [PMID: 31412955]
[39]
NCT02693093. ClinicalTrials.gov, 2016.
[40]
Iwaki, M.; Ino, Y.; Motoyoshi, A.; Ozeki, M.; Sato, T.; Kurumi, M.; Aoyama, T. Pharmacological studies of FUT-175, nafamostat mesilate. V. Effects on the pancreatic enzymes and experimental acute pancreatitis in rats. Jpn. J. Pharmacol., 1986, 41(2), 155-162.
[http://dx.doi.org/10.1254/jjp.41.155] [PMID: 2427760]
[41]
Hiraishi, M.; Yamazaki, Z.; Ichikawa, K.; Kanai, F.; Idezuki, Y.; Onishi, K.; Takahama, T.; Inoue, N. Plasma collection using nafamostat mesilate and dipyridamole as an anticoagulant. Int. J. Artif. Organs, 1988, 11(3), 212-216.
[http://dx.doi.org/10.1177/039139888801100316] [PMID: 3403059]
[42]
Hirota, M.; Shimosegawa, T.; Kitamura, K.; Takeda, K.; Takeyama, Y.; Mayumi, T.; Ito, T.; Takenaka, M.; Iwasaki, E.; Sawano, H.; Ishida, E.; Miura, S.; Masamune, A.; Nakai, Y.; Mitoro, A.; Maguchi, H.; Kimura, K.; Sanuki, T.; Ito, T.; Haradome, H.; Kozaka, K.; Gabata, T.; Kataoka, K.; Hirota, M.; Isaji, S.; Nakamura, R.; Yamagiwa, K.; Kayaba, C.; Ikeda, K. Continuous regional arterial infusion versus intravenous administration of the protease inhibitor nafamostat mesilate for predicted severe acute pancreatitis: a multicenter, randomized, open-label, phase 2 trial. J. Gastroenterol., 2020, 55(3), 342-352.
[http://dx.doi.org/10.1007/s00535-019-01644-z] [PMID: 31758329]
[43]
Yamamoto, M.; Matsuyama, S.; Li, X.; Takeda, M.; Kawaguchi, Y.; Inoue, J.I.; Matsuda, Z. Identification of nafamostat as a potent inhibitor of middle east respiratory syndrome coronavirus S protein-mediated membrane fusion using the split-protein-based cell-cell fusion assay. Antimicrob. Agents Chemother., 2016, 60(11), 6532-6539.
[http://dx.doi.org/10.1128/AAC.01043-16] [PMID: 27550352]
[44]
Wang, M.; Cao, R.; Zhang, L.; Yang, X.; Liu, J.; Xu, M.; Shi, Z.; Hu, Z.; Zhong, W.; Xiao, G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res., 2020, 30(3), 269-271.
[http://dx.doi.org/10.1038/s41422-020-0282-0] [PMID: 32020029]
[45]
Elmezayen, A.D.; Al-Obaidi, A.; Şahin, A.T.; Yelekçi, K. Drug repurposing for coronavirus (COVID-19): in silico screening of known drugs against coronavirus 3CL hydrolase and protease enzymes. J. Biomol. Struct. Dyn., 2020.
[http://dx.doi.org/10.1080/07391102.2020.1758791] [PMID: 32306862]
[46]
Clark, J.W. Rubitecan. Expert Opin. Investig. Drugs, 2006, 15(1), 71-79.
[http://dx.doi.org/10.1517/13543784.15.1.71] [PMID: 16370935]
[47]
Clark, B.G.; Jue, S.G.; Dawson, G.W.; Ward, A. Loprazolam. A preliminary review of its pharmacodynamic and pharmacokinetic properties and therapeutic efficacy in insomnia. Drugs, 1986, 31(6), 500-516.
[http://dx.doi.org/10.2165/00003495-198631060-00003] [PMID: 2874007]
[48]
Jonas, J.M.; Coleman, B.S.; Sheridan, A.Q.; Kalinske, R.W. Comparative clinical profiles of triazolam versus other shorter-acting hypnotics. J. Clin. Psychiatry, 1992, 53(Suppl.), 19-31.
[PMID: 1336776]
[49]
Kao, C.C.; Singh, P.; Ecker, D.J. De novo initiation of viral RNA-dependent RNA synthesis. Virology, 2001, 287(2), 251-260.
[http://dx.doi.org/10.1006/viro.2001.1039] [PMID: 11531403]
[50]
Jin, Z.; Leveque, V.; Ma, H.; Johnson, K.A.; Klumpp, K. Assembly, purification, and pre-steady-state kinetic analysis of active RNA-dependent RNA polymerase elongation complex. J. Biol. Chem., 2012, 287(13), 10674-10683.
[http://dx.doi.org/10.1074/jbc.M111.325530] [PMID: 22303022]
[51]
Lung, J.; Lin, Y.S.; Yang, Y.H.; Chou, Y.L.; Shu, L.H.; Cheng, Y.C.; Liu, H.T.; Wu, C.Y. The potential chemical structure of anti-SARS-CoV-2 RNA-dependent RNA polymerase. J. Med. Virol., 2020.
[http://dx.doi.org/10.1002/jmv.25761] [PMID: 32167173]
[52]
Chu, H.; Chan, J.F.W.; Wang, Y.; Yuen, T.T.T.; Chai, Y.; Hou, Y.; Shuai, H.; Yang, D.; Hu, B.; Huang, X.; Zhang, X.; Cai, J.P.; Zhou, J.; Yuan, S.; Kok, K.H.; To, K.K.W.; Chan, I.H.Y.; Zhang, A.J.; Sit, K.Y.; Au, W.K.; Yuen, K.Y. Comparative replication and immune activation profiles of SARS-CoV-2 and SARS-CoV in human lungs: an ex vivo study with implications for the pathogenesis of COVID-19. Clin. Infect. Dis., 2020,. ciaa410
[http://dx.doi.org/10.1093/cid/ciaa410] [PMID: 32270184]
[53]
GISAID. Available from:. https://www.gisaid.org/
[54]
Pachetti, M.; Marini, B.; Benedetti, F.; Giudici, F.; Mauro, E.; Storici, P.; Masciovecchio, C.; Angeletti, S.; Ciccozzi, M.; Gallo, R.C.; Zella, D.; Ippodrino, R. Emerging SARS-CoV-2 mutation hot spots include a novel RNA-dependent-RNA polymerase variant. J. Transl. Med., 2020, 18(1), 179.
[http://dx.doi.org/10.1186/s12967-020-02344-6] [PMID: 32321524]
[55]
Gordon, C.J.; Tchesnokov, E.P.; Woolner, E.; Perry, J.K.; Feng, J.Y.; Porter, D.P.; Götte, M. Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency. J. Biol. Chem., 2020.
[http://dx.doi.org/10.1074/jbc.RA120.013679] [PMID: 32284326]
[56]
Lo, M.K.; Jordan, R.; Arvey, A.; Sudhamsu, J.; Shrivastava-Ranjan, P.; Hotard, A.L.; Flint, M.; McMullan, L.K.; Siegel, D.; Clarke, M.O.; Mackman, R.L.; Hui, H.C.; Perron, M.; Ray, A.S.; Cihlar, T.; Nichol, S.T.; Spiropoulou, C.F. GS-5734 and its parent nucleoside analog inhibit Filo-, Pneumo-, and Paramyxoviruses. Sci. Rep., 2017, 7, 43395.
[http://dx.doi.org/10.1038/srep43395] [PMID: 28262699]
[57]
Sheahan, T.P.; Sims, A.C.; Graham, R.L.; Menachery, V.D.; Gralinski, L.E.; Case, J.B.; Leist, S.R.; Pyrc, K.; Feng, J.Y.; Trantcheva, I.; Bannister, R.; Park, Y.; Babusis, D.; Clarke, M.O.; Mackman, R.L.; Spahn, J.E.; Palmiotti, C.A.; Siegel, D.; Ray, A.S.; Cihlar, T.; Jordan, R.; Denison, M.R.; Baric, R.S. Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. Sci. Transl. Med., 2017, 9(396) eaal3653
[http://dx.doi.org/10.1126/scitranslmed.aal3653] [PMID: 28659436]
[58]
Agostini, M.L.; Andres, E.L.; Sims, A.C.; Graham, R.L.; Sheahan, T.P.; Lu, X.; Smith, E.C.; Case, J.B.; Feng, J.Y.; Jordan, R.; Ray, A.S.; Cihlar, T.; Siegel, D.; Mackman, R.L.O.; Clarke, M.O.; Baric, R.S.; Denison, M.R. Coronavirus susceptibility to the antiviral remdesivir (GS-5734) is mediated by the viral polymerase and the proofreading exoribonuclease. MBio, 2018, 9(2), e00221-e18.
[http://dx.doi.org/10.1128/mBio.00221-18] [PMID: 29511076]
[59]
Tchesnokov, E.P.; Feng, J.Y.; Porter, D.P.; Götte, M. Mechanism of inhibition of Ebola virus RNA-Dependent RNA polymerase by remdesivir. Viruses, 2019, 11(4), 326.
[http://dx.doi.org/10.3390/v11040326] [PMID: 30987343]
[60]
Gordon, C.J.; Tchesnokov, E.P.; Feng, J.Y.; Porter, D.P.; Götte, M. The antiviral compound remdesivir potently inhibits RNA-dependent RNA polymerase from Middle East respiratory syndrome coronavirus. J. Biol. Chem., 2020, 295(15), 4773-4779.
[http://dx.doi.org/10.1074/jbc.AC120.013056] [PMID: 32094225]
[61]
de Wit, E.; Feldmann, F.; Cronin, J.; Jordan, R.; Okumura, A.; Thomas, T.; Scott, D.; Cihlar, T.; Feldmann, H. Prophylactic and therapeutic remdesivir (GS-5734) treatment in the rhesus macaque model of MERS-CoV infection. Proc. Natl. Acad. Sci. USA, 2020, 117(12), 6771-6776.
[http://dx.doi.org/10.1073/pnas.1922083117] [PMID: 32054787]
[62]
Mulangu, S.; Dodd, L.E.; Davey, R.T., Jr; Tshiani Mbaya, O.; Proschan, M.; Mukadi, D.; Lusakibanza Manzo, M.; Nzolo, D.; Tshomba Oloma, A.; Ibanda, A.; Ali, R.; Coulibaly, S.; Levine, A.C.; Grais, R.; Diaz, J.; Lane, H.C.; Muyembe-Tamfum, J.J.; Sivahera, B.; Camara, M.; Kojan, R.; Walker, R.; Dighero-Kemp, B.; Cao, H.; Mukumbayi, P.; Mbala-Kingebeni, P.; Ahuka, S.; Albert, S.; Bonnett, T.; Crozier, I.; Duvenhage, M.; Proffitt, C.; Teitelbaum, M.; Moench, T.; Aboulhab, J.; Barrett, K.; Cahill, K.; Cone, K.; Eckes, R.; Hensley, L.; Herpin, B.; Higgs, E.; Ledgerwood, J.; Pierson, J.; Smolskis, M.; Sow, Y.; Tierney, J.; Sivapalasingam, S.; Holman, W.; Gettinger, N.; Vallée, D.; Nordwall, J. A Randomized, Controlled Trial of Ebola Virus Disease Therapeutics. N. Engl. J. Med., 2019, 381(24), 2293-2303.
[http://dx.doi.org/10.1056/NEJMoa1910993] [PMID: 31774950]
[63]
Grein, J.; Ohmagari, N.; Shin, D.; Diaz, G.; Asperges, E.; Castagna, A.; Feldt, T.; Green, G.; Green, M.L.; Lescure, F.X.; Nicastri, E.; Oda, R.; Yo, K.; Quiros-Roldan, E.; Studemeister, A.; Redinski, J.; Ahmed, S.; Bernett, J.; Chelliah, D.; Chen, D.; Chihara, S.; Cohen, S.H.; Cunningham, J.; D’Arminio Monforte, A.; Ismail, S.; Kato, H.; Lapadula, G.; L’Her, E.; Maeno, T.; Majumder, S.; Massari, M.; Mora-Rillo, M.; Mutoh, Y.; Nguyen, D.; Verweij, E.; Zoufaly, A.; Osinusi, O. A.; DeZure, A.; Zhao, Y.; Zhong, L.; Chokkalingam, A.; Elboudwarej, E.; Telep, L.; Timbs, L.; Henne, I.; Sellers, S.; Cao, H.; Tan, S.K.; Winterbourne, L.; Desai, P.; Mera, R.; Gaggar, R.; Myers, R.P.; Brainard, D.M.; Childs, R.; Flanigan, T. Compassionate use of remdesivir for patients with evere Covid-19. N. Engl. J. Med., 2020, 382(24), 2327-2336.
[http://dx.doi.org/10.1056/NEJMoa2007016] [PMID: 32275812]
[64]
A trial of remdesivir in adults with mild and moderate COVID-19. NCT04252664. Available From:. ClinicalTrials.gov, 2020.
[65]
A trial of remdesivir in adults with severe COVID-19. NCT04257656.. ClinicalTrials.gov, 2020.
[66]
Adaptive covid-19 treatment trial (ACTT). NCT04280705. Available From:. ClinicalTrials.gov, 2020.
[67]
Study to evaluate the safety and antiviral activity of remdesivir (gs-5734™) in participants with moderate coronavirus disease (covid-19) compared to standard of care treatment. NCT04292730. Available From:. ClinicalTrials.gov, 2020.
[68]
Study to evaluate the safety and antiviral activity of remdesivir (gs- 5734™) in participants with severe coronavirus disease (COVID- 19). NCT04292899. Available From:. ClinicalTrials.gov, 2020.
[69]
Expanded access remdesivir (RDV; GS-5734™). NCT04302766.. ClinicalTrials.gov, 2020.
[70]
Adverse events related to treatments used against coronavirus disease 2019 (covidtox). NCT04314817. Available From:. ClinicalTrials.gov, 2020.
[71]
Trial of treatments for covid-19 in hospitalized adults (discovery). NCT04315948. Available From:. ClinicalTrials.gov, 2020.
[72]
Furuta, Y.; Takahashi, K.; Fukuda, Y.; Kuno, M.; Kamiyama, T.; Kozaki, K.; Nomura, N.; Egawa, H.; Minami, S.; Watanabe, Y.; Narita, H.; Shiraki, K. In vitro and in vivo activities of anti-influenza virus compound T-705. Antimicrob. Agents Chemother., 2002, 46(4), 977-981.
[http://dx.doi.org/10.1128/AAC.46.4.977-981.2002] [PMID: 11897578]
[73]
Furuta, Y.; Komeno, T.; Nakamura, T. Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase. Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci., 2017, 93(7), 449-463.
[http://dx.doi.org/10.2183/pjab.93.027] [PMID: 28769016]
[74]
Jin, Z.; Smith, L.K.; Rajwanshi, V.K.; Kim, B.; Deval, J. The ambiguous base-pairing and high substrate efficiency of T-705 (Favipiravir) Ribofuranosyl 5′-triphosphate towards influenza A virus polymerase. PLoS One, 2013, 8(7) e68347
[http://dx.doi.org/10.1371/journal.pone.0068347] [PMID: 23874596]
[75]
Delang, L.; Abdelnabi, R.; Neyts, J. Favipiravir as a potential countermeasure against neglected and emerging RNA viruses. Antiviral Res., 2018, 153, 85-94.
[http://dx.doi.org/10.1016/j.antiviral.2018.03.003] [PMID: 29524445]
[76]
Furuta, Y.; Takahashi, K.; Shiraki, K.; Sakamoto, K.; Smee, D.F.; Barnard, D.L.; Gowen, B.B.; Julander, J.G.; Morrey, J.D. T-705 (favipiravir) and related compounds: Novel broad-spectrum inhibitors of RNA viral infections. Antiviral Res., 2009, 82(3), 95-102.
[http://dx.doi.org/10.1016/j.antiviral.2009.02.198] [PMID: 19428599]
[77]
Sissoko, D.; Laouenan, C.; Folkesson, E.; M’Lebing, A.B.; Beavogui, A.H.; Baize, S.; Camara, A.M.; Maes, P.; Shepherd, S.; Danel, C.; Carazo, S.; Conde, M.N.; Gala, J.L.; Colin, G.; Savini, H.; Bore, J.A.; Le Marcis, F.; Koundouno, F.R.; Petitjean, F.; Lamah, M.C.; Diederich, S.; Tounkara, A.; Poelart, G.; Berbain, E.; Dindart, J.M.; Duraffour, S.; Lefevre, A.; Leno, T.; Peyrouset, O.; Irenge, L.; Bangoura, N.; Palich, R.; Hinzmann, J.; Kraus, A.; Barry, T.S.; Berette, S.; Bongono, A.; Camara, M.S.; Chanfreau Munoz, V.; Doumbouya, L.; Souley Harouna, ; Kighoma, P.M.; Koundouno, F.R.; Réné Lolamou, ; Loua, C.M.; Massala, V.; Moumouni, K.; Provost, C.; Samake, N.; Sekou, C.; Soumah, A.; Arnould, I.; Komano, M.S.; Gustin, L.; Berutto, C.; Camara, D.; Camara, F.S.; Colpaert, J.; Delamou, L.; Jansson, L.; Kourouma, E.; Loua, M.; Malme, K.; Manfrin, E.; Maomou, A.; Milinouno, A.; Ombelet, S.; Sidiboun, A.Y.; Verreckt, I.; Yombouno, P.; Bocquin, A.; Carbonnelle, C.; Carmoi, T.; Frange, P.; Mely, S.; Nguyen, V.K.; Pannetier, D.; Taburet, A.M.; Treluyer, J.M.; Kolie, J.; Moh, R.; Gonzalez, M.C.; Kuisma, E.; Liedigk, B.; Ngabo, D.; Rudolf, M.; Thom, R.; Kerber, R.; Gabriel, M.; Di Caro, A.; Wölfel, R.; Badir, J.; Bentahir, M.; Deccache, Y.; Dumont, C.; Durant, J.F.; El Bakkouri, K.; Gasasira Uwamahoro, M.; Smits, B.; Toufik, N.; Van Cauwenberghe, S.; Ezzedine, K.; D’Ortenzio, E.; Pizarro, L.; Etienne, A.; Guedj, J.; Fizet, A.; Barte de Sainte Fare, E.; Murgue, B.; Tran-Minh, T.; Rapp, C.; Piguet, P.; Poncin, M.; Draguez, B.; Allaford Duverger, T.; Barbe, S.; Baret, G.; Defourny, I.; Carroll, M.; Raoul, H.; Augier, A.; Eholie, S.P.; Yazdanpanah, Y.; Levy-Marchal, C.; Antierrens, A.; Van Herp, M.; Günther, S.; de Lamballerie, X.; Keïta, S.; Mentre, F.; Anglaret, X.; Malvy, D. Experimental Treatment with Favipiravir for Ebola Virus Disease (the JIKI Trial): A Historically Controlled, Single-Arm Proof-of-Concept Trial in Guinea. PLoS Med., 2016, 13(3) e1001967
[http://dx.doi.org/10.1371/journal.pmed.1001967] [PMID: 26930627]
[78]
Favipiravir combined with tocilizumab in the treatment of corona virus disease 2019, NCT04310228. Available from:. ClinicalTrials.gov, 2020.
[79]
Various combination of protease inhibitors, oseltamivir, favipiravir, and hydroxychloroquine for treatment of covid-19: a randomized control trial (THDMS-COVID-19). NCT04303299. Available from:. ClinicalTrials.gov, 2020.
[80]
Zumla, A.; Chan, J.F.W.; Azhar, E.I.; Hui, D.S.C.; Yuen, K.Y. Coronaviruses - drug discovery and therapeutic options. Nat. Rev. Drug Discov., 2016, 15(5), 327-347.
[http://dx.doi.org/10.1038/nrd.2015.37] [PMID: 26868298]
[81]
Liu, S.; Zheng, Q.; Wang, Z. Potential covalent drugs targeting the main protease of the SARS-CoV-2 coronavirus. Bioinformatics, 2020.
[http://dx.doi.org/10.1093/bioinformatics/btaa224] [PMID: 32239142]
[82]
Kandeel, M.; Al-Nazawi, M. Virtual screening and repurposing of FDA approved drugs against COVID-19 main protease. Life Sci., 2020, 251, 117627
[http://dx.doi.org/10.1016/j.lfs.2020.117627] [PMID: 32251634]
[83]
Ton, A.T.; Gentile, F.; Hsing, M.; Ban, F.; Cherkasov, A. Rapid identification of potential inhibitors of SARS-CoV-2 main protease by deep docking of 1.3 billion compounds. Mol. Inform., 2020.
[http://dx.doi.org/10.1002/minf.202000028] [PMID: 32162456]
[84]
Khan, R.J.; Jha, R.K.; Amera, G.M.; Jain, M.; Singh, E.; Pathak, A.; Singh, R.P.; Muthukumaran, J.; Singh, A.K. Targeting SARS-CoV-2: a systematic drug repurposing approach to identify promising inhibitors against 3C-like proteinase and 2′-O-ribose methyltransferase. J. Biomol. Struct. Dyn., 2020.
[http://dx.doi.org/10.1080/07391102.2020.1753577] [PMID: 32266873]
[85]
Islam, R.; Parves, M.R.; Paul, A.S.; Uddin, N.; Rahman, M.S.; Mamun, A.A.; Hossain, M.N.; Ali, M.A.; Halim, M.A. A molecular modeling approach to identify effective antiviral phytochemicals against the main protease of SARS-CoV-2. J. Biomol. Struct. Dyn., 2020.
[http://dx.doi.org/10.1080/07391102.2020.1761883] [PMID: 32340562]
[86]
Coronavirus Resource Center. Available from: . https:// coronavirus.jhu.edu/map.html2020.
[87]
Wu, Y.C.; Chen, C.S.; Chan, Y.J. The outbreak of COVID-19: An overview. J. Chin. Med. Assoc., 2020, 83(3), 217-220.
[http://dx.doi.org/10.1097/JCMA.0000000000000270] [PMID: 32134861]
[88]
Kupferschmidt, K.; Cohen, J. Race to find COVID-19 treatments accelerates. Science, 2020, 367(6485), 1412-1413.
[http://dx.doi.org/10.1126/science.367.6485.1412] [PMID: 32217705]
[89]
Treatments for covid-19: canadian arm of the solidarity trial (CATCO). NCT04330690. Available from:. ClinicalTrials.gov, 2020.
[90]
Sheahan, T.P.; Sims, A.C.; Zhou, S.; Graham, R.L.; Pruijssers, A.J.; Agostini, M.L.; Leist, S.R.; Schäfer, A.; Dinnon, K.H., III; Stevens, L.J.; Chappell, J.D.; Lu, X.; Hughes, T.M.; George, A.S.; Hill, C.S.; Montgomery, S.A.; Brown, A.J.; Bluemling, G.R.; Natchus, M.G.; Saindane, M.; Kolykhalov, A.A.; Painter, G.; Harcourt, J.; Tamin, A.; Thornburg, N.J.; Swanstrom, R.; Denison, M.R.; Baric, R.S. An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in mice. Sci. Transl. Med., 2020, 12(541) eabb5883
[http://dx.doi.org/10.1126/scitranslmed.abb5883] [PMID: 32253226]

© 2024 Bentham Science Publishers | Privacy Policy