Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

Nanotechnology-enabled Chemodynamic Therapy and Immunotherapy

Author(s): Taixia Wang, Xiaohong Xu and Kun Zhang*

Volume 21, Issue 7, 2021

Published on: 19 February, 2021

Page: [545 - 557] Pages: 13

DOI: 10.2174/1568009621666210219101552

Price: $65

Abstract

High-level reactive oxygen species (ROS) have been reported to exert a robust anti-tumor effect by inducing cell apoptosis or necroptosis. Based on the Fenton reaction or Fenton-like reaction, a therapeutic strategy (i.e., chemodynamic therapy (CDT)) is proposed, where hydroxyl radicals (·OH) are one of the ROS that can be produced to kill tumors via the spontaneous activation by an endogenous stimulus. Moreover, high-level ROS can also facilitate tumor-associated antigen exposure, which benefits phagocytosis of corpses and debris by antigen-presenting cells (e.g., dendritic cells (DCs)) and further activates systematic immune responses. Great efforts have been made, wherein the development in the field of nanotechnology has been witnessed by the interdisciplinary communities. For providing a comprehensive understanding of CDT, state-of-theart strategies on nanotechnology-enabled CDT have been discussed in detail in this study. In particular, the combination of CDT with its augmented immunotherapy against tumors has been highlighted for overcoming the poor outcome of the mono-CDT. Moreover, the potential challenges have also been discussed.

Keywords: Reactive oxygen species, chemodynamic therapy, immunotherapy, nanotechnology, synergistic therapy, dendritic cells (DCs).

Next »
Graphical Abstract

[1]
Idelchik, M.D.P.S.; Begley, U.; Begley, T.J.; Melendez, J.A. Mitochondrial ROS control of cancer. Semin. Cancer Biol., 2017, 47, 57-66.
[http://dx.doi.org/10.1016/j.semcancer.2017.04.005] [PMID: 28445781]
[2]
Tang, Z.; Liu, Y.; He, M.; Bu, W. Chemodynamic therapy: Tumour microenvironment-mediated fenton and fenton-like reactions. Angew. Chem. Int. Ed. Engl., 2019, 58(4), 946-956.
[http://dx.doi.org/10.1002/anie.201805664] [PMID: 30048028]
[3]
Zhang, K.; Xu, H.; Chen, H.; Jia, X.; Zheng, S.; Cai, X.; Wang, R.; Mou, J.; Zheng, Y.; Shi, J. CO2 bubbling-based ‘nanobomb’ system for targetedly suppressing Panc-1 pancreatic tumor via low intensity ultrasound-activated inertial cavitation. Theranostics, 2015, 5(11), 1291-1302.
[http://dx.doi.org/10.7150/thno.12691] [PMID: 26379793]
[4]
Zhang, K.; Li, P.; Chen, H.; Bo, X.; Li, X.; Xu, H. Continuous cavitation designed for enhancing radiofrequency ablation via a special radiofrequency solidoid vaporization process. ACS Nano, 2016, 10(2), 2549-2558.
[http://dx.doi.org/10.1021/acsnano.5b07486] [PMID: 26800221]
[5]
Zhang, K.; Cheng, Y.; Ren, W.; Sun, L.; Liu, C.; Wang, D.; Guo, L.; Xu, H.; Zhao, Y. Coordination-responsive longitudinal relaxation tuning as a versatile MRI sensing protocol for malignancy targets. Adv. Sci. (Weinh.), 2018, 5(9), 1800021.
[http://dx.doi.org/10.1002/advs.201800021] [PMID: 30250780]
[6]
Zhang, K.; Li, H-Y.; Lang, J-Y.; Li, X-T.; Yue, W-W.; Yin, Y-F.; Du, D.; Fang, Y.; Wu, H.; Zhao, Y-X.; Xu, C. Quantum yield-engineered biocompatible probes illuminate lung tumor based on viscosity confinement-mediated antiaggregation. Adv. Funct. Mater., 2019, 29, 1905124.
[http://dx.doi.org/10.1002/adfm.201905124]
[7]
Chen, J.; Luo, H.; Liu, Y.; Zhang, W.; Li, H.; Luo, T.; Zhang, K.; Zhao, Y.; Liu, J. Oxygen-self-produced nanoplatform for relieving hypoxia and breaking resistance to sonodynamic treatment of pancreatic cancer. ACS Nano, 2017, 11(12), 12849-12862.
[http://dx.doi.org/10.1021/acsnano.7b08225] [PMID: 29236476]
[8]
Zhang, K.; Xu, H.; Jia, X.; Chen, Y.; Ma, M.; Sun, L.; Chen, H. Ultrasound-triggered nitric oxide release platform based on energy transformation for targeted inhibition of pancreatic tumor. ACS Nano, 2016, 10(12), 10816-10828.
[http://dx.doi.org/10.1021/acsnano.6b04921] [PMID: 28024356]
[9]
Lin, H.; Chen, Y.; Shi, J. Nanoparticle-triggered in situ catalytic chemical reactions for tumour-specific therapy. Chem. Soc. Rev., 2018, 47(6), 1938-1958.
[http://dx.doi.org/10.1039/C7CS00471K] [PMID: 29417106]
[10]
Zhang, C.; Bu, W.; Ni, D.; Zhang, S.; Li, Q.; Yao, Z.; Zhang, J.; Yao, H.; Wang, Z.; Shi, J. Synthesis of iron nanometallic glasses and their application in cancer therapy by a localized Fenton reaction. Angew. Chem. Int. Ed. Engl., 2016, 55(6), 2101-2106.
[http://dx.doi.org/10.1002/anie.201510031] [PMID: 26836344]
[11]
Fang, Y.; Li, H-Y.; Yin, H-H.; Xu, S-H.; Ren, W-W.; Ding, S-S.; Tang, W-Z.; Xiang, L-H.; Wu, R.; Guan, X.; Zhang, K. Radiofrequency-sensitive longitudinal relaxation tuning strategy enabling the visualization of radiofrequency ablation intensified by magnetic composite. ACS Appl. Mater. Interfaces, 2019, 11(12), 11251-11261.
[http://dx.doi.org/10.1021/acsami.9b02401] [PMID: 30874421]
[12]
Afzal, M.; Ameeduzzafar, ; Alharbi, K.S.; Alruwaili, N.K.; Al-Abassi, F.A.; Al-Malki, A.A.L.; Kazmi, I.; Kumar, V.; Kamal, M.A.; Nadeem, M.S.; Aslam, M.; Anwar, F. Nanomedicine in treatment of breast cancer - A challenge to conventional therapy. Semin. Cancer Biol., 2021, 69, 279-292.
[http://dx.doi.org/10.1016/j.semcancer.2019.12.016] [PMID: 31870940]
[13]
Lin, L.S.; Huang, T.; Song, J.; Ou, X.Y.; Wang, Z.; Deng, H.; Tian, R.; Liu, Y.; Wang, J.F.; Liu, Y.; Yu, G.; Zhou, Z.; Wang, S.; Niu, G.; Yang, H.H.; Chen, X. Synthesis of copper peroxide nanodots for H2O2 self-supplying chemodynamic therapy. J. Am. Chem. Soc., 2019, 141(25), 9937-9945.
[http://dx.doi.org/10.1021/jacs.9b03457] [PMID: 31199131]
[14]
Feng, W.; Han, X.; Wang, R.; Gao, X.; Hu, P.; Yue, W.; Chen, Y.; Shi, J. Nanocatalysts-augmented and photothermal-enhanced tumor-specific sequential nanocatalytic therapy in both NIR-I and NIR-II biowindows. Adv. Mater., 2019, 31(5), e1805919.
[PMID: 30536723]
[15]
Lin, L.S.; Song, J.; Song, L.; Ke, K.; Liu, Y.; Zhou, Z.; Shen, Z.; Li, J.; Yang, Z.; Tang, W.; Niu, G.; Yang, H.H.; Chen, X. Simultaneous fenton-like ion delivery and glutathione depletion by MnO2-based nanoagent to enhance chemodynamic therapy. Angew. Chem. Int. Ed. Engl., 2018, 57(18), 4902-4906.
[http://dx.doi.org/10.1002/anie.201712027] [PMID: 29488312]
[16]
Boulch, M.; Grandjean, C.L.; Cazaux, M.; Bousso, P. Tumor immunosurveillance and immunotherapies: A fresh look from intravital imaging. Trends Immunol., 2019, 40(11), 1022-1034.
[http://dx.doi.org/10.1016/j.it.2019.09.002] [PMID: 31668676]
[17]
Li, Q.; Zhang, D.; Zhang, J.; Jiang, Y.; Song, A.; Li, Z.; Luan, Y. A three-in-one immunotherapy nanoweapon via cascade-amplifying cancer-immunity cycle against tumor metastasis, relapse, and postsurgical regrowth. Nano Lett., 2019, 19(9), 6647-6657.
[http://dx.doi.org/10.1021/acs.nanolett.9b02923] [PMID: 31409072]
[18]
Riley, R.S.; June, C.H.; Langer, R.; Mitchell, M.J. Delivery technologies for cancer immunotherapy. Nat. Rev. Drug Discov., 2019, 18(3), 175-196.
[http://dx.doi.org/10.1038/s41573-018-0006-z] [PMID: 30622344]
[19]
Li, W.; Yang, J.; Luo, L.; Jiang, M.; Qin, B.; Yin, H.; Zhu, C.; Yuan, X.; Zhang, J.; Luo, Z.; Du, Y.; Li, Q.; Lou, Y.; Qiu, Y.; You, J. Targeting photodynamic and photothermal therapy to the endoplasmic reticulum enhances immunogenic cancer cell death. Nat. Commun., 2019, 10(1), 3349.
[http://dx.doi.org/10.1038/s41467-019-11269-8] [PMID: 31350406]
[20]
Yue, W.; Chen, L.; Yu, L.; Zhou, B.; Yin, H.; Ren, W.; Liu, C.; Guo, L.; Zhang, Y.; Sun, L.; Zhang, K.; Xu, H.; Chen, Y. Checkpoint blockade and nanosonosensitizer-augmented noninvasive sonodynamic therapy combination reduces tumour growth and metastases in mice. Nat. Commun., 2019, 10(1), 2025.
[http://dx.doi.org/10.1038/s41467-019-09760-3] [PMID: 31048681]
[21]
Zitvogel, L.; Kepp, O.; Senovilla, L.; Menger, L.; Chaput, N.; Kroemer, G. Immunogenic tumor cell death for optimal anticancer therapy: the calreticulin exposure pathway. Clin. Cancer Res., 2010, 16(12), 3100-3104.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-2891] [PMID: 20421432]
[22]
Chang, M.; Wang, M.; Wang, M.; Shu, M.; Ding, B.; Li, C.; Pang, M.; Cui, S.; Hou, Z.; Lin, J. A multifunctional cascade bioreactor based on hollow-structured Cu2MoS4 for synergetic cancer chemo- dynamic therapy/starvation therapy/phototherapy/immunotherapy with remarkably enhanced efficacy. Adv. Mater., 2019, 31, 1905271.
[http://dx.doi.org/10.1002/adma.201905271]
[23]
Bokare, A.D.; Choi, W. Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes. J. Hazard. Mater., 2014, 275, 121-135.
[http://dx.doi.org/10.1016/j.jhazmat.2014.04.054] [PMID: 24857896]
[24]
Zhou, B.; Zhang, J.Y.; Liu, X.S.; Chen, H.Z.; Ai, Y.L.; Cheng, K.; Sun, R.Y.; Zhou, D.; Han, J.; Wu, Q. Tom20 senses iron-activated ROS signaling to promote melanoma cell pyroptosis. Cell Res., 2018, 28(12), 1171-1185.
[http://dx.doi.org/10.1038/s41422-018-0090-y] [PMID: 30287942]
[25]
Chen, Q.; Liang, C.; Sun, X.; Chen, J.; Yang, Z.; Zhao, H.; Feng, L.; Liu, Z. H2O2-responsive liposomal nanoprobe for photoacoustic inflammation imaging and tumor theranostics via in vivo chromogenic assay. Proc. Natl. Acad. Sci. USA, 2017, 114(21), 5343-5348.
[http://dx.doi.org/10.1073/pnas.1701976114] [PMID: 28484000]
[26]
López-Lázaro, M. Dual role of hydrogen peroxide in cancer: possible relevance to cancer chemoprevention and therapy. Cancer Lett., 2007, 252(1), 1-8.
[http://dx.doi.org/10.1016/j.canlet.2006.10.029] [PMID: 17150302]
[27]
Ma, P.; Xiao, H.; Yu, C.; Liu, J.; Cheng, Z.; Song, H.; Zhang, X.; Li, C.; Wang, J.; Gu, Z.; Lin, J. Enhanced cisplatin chemotherapy by iron oxide nanocarrier-mediated generation of highly toxic reactive oxygen species. Nano Lett., 2017, 17(2), 928-937.
[http://dx.doi.org/10.1021/acs.nanolett.6b04269] [PMID: 28139118]
[28]
Sang, W.; Zhang, Z.; Dai, Y.; Chen, X. Recent advances in nanomaterial-based synergistic combination cancer immunotherapy. Chem. Soc. Rev., 2019, 48(14), 3771-3810.
[http://dx.doi.org/10.1039/C8CS00896E] [PMID: 31165801]
[29]
Liu, Y.; Ji, X.; Tong, W.W.L.; Askhatova, D.; Yang, T.; Cheng, H.; Wang, Y.; Shi, J. Shi, J. Engineering multifunctional RNAi nanomedicine to concurrently target cancer hallmarks for combinatorial therapy. Angew. Chem. Int. Ed. Engl., 2018, 57(6), 1510-1513.
[http://dx.doi.org/10.1002/anie.201710144] [PMID: 29276823]
[30]
Zhang, K.; Fang, Y.; He, Y.; Yin, H.; Guan, X.; Pu, Y.; Zhou, B.; Yue, W.; Ren, W.; Du, D.; Li, H.; Liu, C.; Sun, L.; Chen, Y.; Xu, H. Extravascular gelation shrinkage-derived internal stress enables tumor starvation therapy with suppressed metastasis and recurrence. Nat. Commun., 2019, 10(1), 5380.
[http://dx.doi.org/10.1038/s41467-019-13115-3] [PMID: 31772164]
[31]
Huo, M.; Wang, L.; Chen, Y.; Shi, J. Tumor-selective catalytic nanomedicine by nanocatalyst delivery. Nat. Commun., 2017, 8(1), 357.
[http://dx.doi.org/10.1038/s41467-017-00424-8] [PMID: 28842577]
[32]
Meister, A. Glutathione metabolism and its selective modification. J. Biol. Chem., 1988, 263(33), 17205-17208.
[http://dx.doi.org/10.1016/S0021-9258(19)77815-6] [PMID: 3053703]
[33]
Dong, Z.; Feng, L.; Chao, Y.; Hao, Y.; Chen, M.; Gong, F.; Han, X.; Zhang, R.; Cheng, L.; Liu, Z. Amplification of tumor oxidative stresses with liposomal fenton catalyst and glutathione inhibitor for enhanced cancer chemotherapy and radiotherapy. Nano Lett., 2019, 19(2), 805-815.
[http://dx.doi.org/10.1021/acs.nanolett.8b03905] [PMID: 30592897]
[34]
Shields, C.W.; Wang, L.L.; Evans, M.A.; Mitragotri, S. Materials for immunotherapy. Adv. Mater., 2019.
[http://dx.doi.org/10.1002/adma.201901633] [PMID: 31250498]
[35]
Granier, C.; De Guillebon, E.; Blanc, C.; Roussel, H.; Badoual, C.; Colin, E.; Saldmann, A.; Gey, A.; Oudard, S.; Tartour, E. Mechanisms of action and rationale for the use of checkpoint inhibitors in cancer. ESMO Open, 2017, 2(2), e000213.
[http://dx.doi.org/10.1136/esmoopen-2017-000213] [PMID: 28761757]
[36]
Pardoll, D.M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer, 2012, 12(4), 252-264.
[http://dx.doi.org/10.1038/nrc3239] [PMID: 22437870]
[37]
Ahmed, S.; Rai, K.R. Interferon in the treatment of hairy-cell leukemia. Best Pract. Res. Clin. Haematol., 2003, 16(1), 69-81.
[http://dx.doi.org/10.1016/S1521-6926(02)00084-1] [PMID: 12670466]
[38]
Lee, S.; Margolin, K. Cytokines in cancer immunotherapy. Cancers (Basel), 2011, 3(4), 3856-3893.
[http://dx.doi.org/10.3390/cancers3043856] [PMID: 24213115]
[39]
Lim, W.A.; June, C.H. The principles of engineering immune cells to treat cancer. Cell, 2017, 168(4), 724-740.
[http://dx.doi.org/10.1016/j.cell.2017.01.016] [PMID: 28187291]
[40]
Fesnak, A.D.; June, C.H.; Levine, B.L. Engineered T cells: The promise and challenges of cancer immunotherapy. Nat. Rev. Cancer, 2016, 16(9), 566-581.
[http://dx.doi.org/10.1038/nrc.2016.97] [PMID: 27550819]
[41]
Peggs, K.S.; Quezada, S.A.; Allison, J.P. Cancer immunotherapy: co-stimulatory agonists and co-inhibitory antagonists. Clin. Exp. Immunol., 2009, 157(1), 9-19.
[http://dx.doi.org/10.1111/j.1365-2249.2009.03912.x] [PMID: 19659765]
[42]
Srivatsan, S.; Patel, J.M.; Bozeman, E.N.; Imasuen, I.E.; He, S.; Daniels, D.; Selvaraj, P. Allogeneic tumor cell vaccines: The promise and limitations in clinical trials. Hum. Vaccin. Immunother., 2014, 10(1), 52-63.
[http://dx.doi.org/10.4161/hv.26568] [PMID: 24064957]
[43]
Chiang, C.L.; Coukos, G.; Kandalaft, L.E. Whole tumor antigen vaccines: Where are we? Vaccines (Basel), 2015, 3(2), 344-372.
[http://dx.doi.org/10.3390/vaccines3020344] [PMID: 26343191]
[44]
Goldberg, M.S. Improving cancer immunotherapy through nanotechnology. Nat. Rev. Cancer, 2019, 19(10), 587-602.
[http://dx.doi.org/10.1038/s41568-019-0186-9] [PMID: 31492927]
[45]
Chen, Q.; Wang, C.; Zhang, X.; Chen, G.; Hu, Q.; Li, H.; Wang, J.; Wen, D.; Zhang, Y.; Lu, Y.; Yang, G.; Jiang, C.; Wang, J.; Dotti, G.; Gu, Z. In situ sprayed bioresponsive immunotherapeutic gel for post-surgical cancer treatment. Nat. Nanotechnol., 2019, 14(1), 89-97.
[http://dx.doi.org/10.1038/s41565-018-0319-4] [PMID: 30531990]
[46]
Tang, L.; Zheng, Y.; Melo, M.B.; Mabardi, L.; Castaño, A.P.; Xie, Y.Q.; Li, N.; Kudchodkar, S.B.; Wong, H.C.; Jeng, E.K.; Maus, M.V.; Irvine, D.J. Enhancing T cell therapy through TCR-signaling-responsive nanoparticle drug delivery. Nat. Biotechnol., 2018, 36(8), 707-716.
[http://dx.doi.org/10.1038/nbt.4181] [PMID: 29985479]
[47]
Zheng, C.; Wang, Q.; Wang, Y.; Zhao, X.; Gao, K.; Liu, Q.; Zhao, Y.; Zhang, Z.; Zheng, Y.; Cao, J.; Chen, H.; Shi, L.; Kang, C.; Liu, Y.; Lu, Y. In situ modification of the tumor cell surface with immunomodulating nanoparticles for effective suppression of tumor growth in mice. Adv. Mater., 2019, 31(32), e1902542.
[http://dx.doi.org/10.1002/adma.201902542] [PMID: 31183900]
[48]
Chen, Q.; Chen, G.; Chen, J.; Shen, J.; Zhang, X.; Wang, J.; Chan, A.; Gu, Z. Bioresponsive protein complex of aPD1 and aCD47 Antibodies for enhanced immunotherapy. Nano Lett., 2019, 19(8), 4879-4889.
[http://dx.doi.org/10.1021/acs.nanolett.9b00584] [PMID: 31294571]
[49]
Huang, H.; Jiang, C.T.; Shen, S.; Liu, A.; Gan, Y.J.; Tong, Q.S.; Chen, S.B.; Gao, Z.X.; Du, J.Z.; Cao, J.; Wang, J. Nanoenabled reversal of IDO1-mediated immunosuppression synergizes with immunogenic chemotherapy for improved cancer therapy. Nano Lett., 2019, 19(8), 5356-5365.
[http://dx.doi.org/10.1021/acs.nanolett.9b01807] [PMID: 31286779]
[50]
Duan, X.; Chan, C.; Guo, N.; Han, W.; Weichselbaum, R.R.; Lin, W. Photodynamic therapy mediated by nontoxic core-shell nanoparticles synergizes with immune checkpoint blockade to elicit antitumor immunity and antimetastatic effect on breast cancer. J. Am. Chem. Soc., 2016, 138(51), 16686-16695.
[http://dx.doi.org/10.1021/jacs.6b09538] [PMID: 27976881]
[51]
Casares, N.; Pequignot, M.O.; Tesniere, A.; Ghiringhelli, F.; Roux, S.; Chaput, N.; Schmitt, E.; Hamai, A.; Hervas-Stubbs, S.; Obeid, M.; Coutant, F.; Métivier, D.; Pichard, E.; Aucouturier, P.; Pierron, G.; Garrido, C.; Zitvogel, L.; Kroemer, G. Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death. J. Exp. Med., 2005, 202(12), 1691-1701.
[http://dx.doi.org/10.1084/jem.20050915] [PMID: 16365148]
[52]
Tesniere, A.; Schlemmer, F.; Boige, V.; Kepp, O.; Martins, I.; Ghiringhelli, F.; Aymeric, L.; Michaud, M.; Apetoh, L.; Barault, L.; Mendiboure, J.; Pignon, J.P.; Jooste, V.; van Endert, P.; Ducreux, M.; Zitvogel, L.; Piard, F.; Kroemer, G. Immunogenic death of colon cancer cells treated with oxaliplatin. Oncogene, 2010, 29(4), 482-491.
[http://dx.doi.org/10.1038/onc.2009.356] [PMID: 19881547]
[53]
Feng, B.; Hou, B.; Xu, Z.; Saeed, M.; Yu, H.; Li, Y. Self-amplified drug delivery with light-inducible nanocargoes to enhance cancer immunotherapy. Adv. Mater., 2019, 31(40), e1902960.
[http://dx.doi.org/10.1002/adma.201902960] [PMID: 31423683]
[54]
Xu, C.; Yu, Y.; Sun, Y.; Kong, L.; Yang, C.; Hu, M.; Yang, T.; Zhang, J.; Hu, Q.; Zhang, Z. Transformable nanoparticle-enabled synergistic elicitation and promotion of immunogenic cell death for triple-negative breast cancer immunotherapy. Adv. Funct. Mater., 2019, 29, 1905213.
[http://dx.doi.org/10.1002/adfm.201905213]
[55]
Wen, M.; Ouyang, J.; Wei, C.; Li, H.; Chen, W.; Liu, Y.N. Artificial enzyme catalyzed cascade reactions: Antitumor immunotherapy reinforced by NIR-II light. Angew. Chem. Int. Ed. Engl., 2019, 58(48), 17425-17432.
[http://dx.doi.org/10.1002/anie.201909729] [PMID: 31552695]
[56]
Guan, X.; Yin, H.H.; Xu, X.H.; Xu, G.; Zhang, Y.; Zhou, B.G.; Yue, W.W.; Liu, C.; Sun, L.P.; Xu, H.X.; Zhang, K. Tumor metabolism-engineered composite nanoplatforms potentiate sonodynamic therapy via reshaping tumor microenvironment and facilitating electron-hole pairs separation. Adv. Funct. Mater., 2020, 30, 2000326.
[http://dx.doi.org/10.1002/adfm.202000326]
[57]
Yin, Y.; Jiang, X.; Sun, L.; Li, H.; Su, C.; Zhang, Y.; Xu, G.; Li, X.; Zhao, C.; Chen, Y.; Xu, H.; Zhang, K. Continuous inertial cavitation evokes massive ROS for reinforcing sonodynamic therapy and immunogenic cell death against breast carcinoma. Nano Today, 2021, 36, 101009.
[http://dx.doi.org/10.1016/j.nantod.2020.101009]
[58]
Fang, Y.; Xu, C.; Zhang, K. Nanotechnology-assisted starvation treatment against malignant tumors. J. Nutr. Oncol., 2019, 4, 31-39.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy