Review Article

Design of New Improved Curcumin Derivatives to Multi-targets of Cancer and Inflammation

Author(s): A. Harikrishnan, Sunali Khanna and V. Veena*

Volume 22, Issue 5, 2021

Published on: 04 August, 2020

Page: [573 - 589] Pages: 17

DOI: 10.2174/1389450121666200804113745

Price: $65

Abstract

Background: Curcumin is a major active principle of Curcuma longa. There are more than 1700 citations in the Medline, reflecting various biological effects of curcumin. Most of these biological activities are associated with the antioxidant, anti-inflammatory and antitumor activity of the molecule. Several reports suggest various targets of natural curcumin that include growth factors, growth factor receptor, cytokines, enzymes and gene regulators of apoptosis. This review focuses on the improved curcumin derivatives that target the cancer and inflammation.

Methodology: In this present review, we explored the anticancer drugs with curcumin-based drugs under pre-clinical and clinical studies with critical examination. Based on the strong scientific reports of patentable and non-patented literature survey, we have investigated the mode of the interactions of curcumin-based molecules with the target molecules.

Results: Advanced studies have added new dimensions of the molecular response of cancer cells to curcumin at the genomic level. However, poor bioavailability of the molecule seems to be the major limitation of the curcumin. Several researchers have been involved to improve the curcumin derivatives to overcome this limitation. Sufficient data of clinical trials to various cancers that include multiple myeloma, pancreatic cancer and colon cancer, have also been discussed.

Conclusion: The detailed analysis of the structure-activity relationship (SAR) and common synthesis of curcumin-based derivatives have been discussed in the review. Utilising the predictions of in silico coupled with validation reports of in vitro and in vivo studies have concluded many targets for curcumin. Among them, cancer-related inflammation genes regulating curcumin-based molecules are a very promising target to overcome hurdles in the multimodality therapy of cancer.

Keywords: Cancer related inflammations, drug targets, anti-inflammatory, anticancer activity, curcumin derivatives, relationship (SAR).

Graphical Abstract

[1]
Aggarwal BB, Bhatt ID, Ichikawa H, et al. Curcumin: Biological and Medicinal propertiesTurmeric: The genus Curcuma. New York, NY, USA: CRC Press 2007; pp. 297-368.
[2]
Goel A, Kunnumakkara AB, Aggarwal BB. Curcumin as “Curecumin”: from kitchen to clinic. Biochem Pharmacol 2008; 75(4): 787-809.
[http://dx.doi.org/10.1016/j.bcp.2007.08.016] [PMID: 17900536]
[3]
Hatcher H, Planalp R, Cho J, Torti FM, Torti SV. Curcumin: from ancient medicine to current clinical trials. Cell Mol Life Sci 2008; 65(11): 1631-52.
[http://dx.doi.org/10.1007/s00018-008-7452-4] [PMID: 18324353]
[4]
Lao CD, Ruffin MT IV, Normolle D, et al. Dose escalation of a curcuminoid formulation. BMC Complement Altern Med 2006; 6: 10.
[http://dx.doi.org/10.1186/1472-6882-6-10] [PMID: 16545122]
[5]
Chainani-Wu N. Safety and anti-inflammatory activity of curcumin: a component of tumeric (Curcuma longa). J Altern Complement Med 2003; 9(1): 161-8.
[http://dx.doi.org/10.1089/107555303321223035] [PMID: 12676044]
[6]
Cheng AL, Hsu CH, Lin JK, et al. Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res 2001; 21(4B): 2895-900.
[PMID: 11712783]
[7]
Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin 2011; 61(2): 69-90.
[http://dx.doi.org/10.3322/caac.20107] [PMID: 21296855]
[8]
Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 2010; 127(12): 2893-917.
[http://dx.doi.org/10.1002/ijc.25516] [PMID: 21351269]
[9]
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin 2019; 69(1): 7-34.
[http://dx.doi.org/10.3322/caac.21551] [PMID: 30620402]
[10]
Floor SL, Dumont JE, Maenhaut C, Raspe E. Hallmarks of cancer: of all cancer cells, all the time? Trends Mol Med 2012; 18(9): 509-15.
[http://dx.doi.org/10.1016/j.molmed.2012.06.005] [PMID: 22795735]
[11]
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011; 144(5): 646-74.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[12]
Kundu JK, Surh YJ. Emerging avenues linking inflammation and cancer. Free Rad Biol in Medi 2012; pp. 2013-37.
[13]
Harikrishnan A, Veena V. Therapeutic molecules for fumigating inflammatory tumor environment. Curr Signal Transduct Ther 2018; 1-24.
[14]
Wendel HG, De Stanchina E, Fridman JS, et al. Survival signalling by Akt and eIF4E in oncogenesis and cancer therapy. Nature 2004; 428(6980): 332-7.
[http://dx.doi.org/10.1038/nature02369] [PMID: 15029198]
[15]
Tokunaga E, Kataoka A, Kimura Y, et al. The association between Akt activation and resistance to hormone therapy in metastatic breast cancer. Eur J Cancer 2006; 42(5): 629-35.
[http://dx.doi.org/10.1016/j.ejca.2005.11.025] [PMID: 16464571]
[16]
Al-Bazz YO, Underwood JCE, Brown BL, Dobson PRM. Prognostic significance of Akt, phospho-Akt and BAD expression in primary breast cancer. Eur J Cancer 2009; 45(4): 694-704.
[http://dx.doi.org/10.1016/j.ejca.2008.11.044] [PMID: 19138840]
[17]
Fouad YA, Aanei C. Revisiting the hallmarks of cancer. Am J Cancer Res 2017; 7(5): 1016-36.
[PMID: 28560055]
[18]
Spaeth E, Klopp A, Dembinski J, Andreeff M, Marini F. Inflammation and tumor microenvironments: defining the migratory itinerary of mesenchymal stem cells. Gene Ther 2008; 15(10): 730-8.
[http://dx.doi.org/10.1038/gt.2008.39] [PMID: 18401438]
[19]
Pietras K, Ostman A. Hallmarks of cancer: interactions with the tumor stroma. Exp Cell Res 2010; 316(8): 1324-31.
[http://dx.doi.org/10.1016/j.yexcr.2010.02.045] [PMID: 20211171]
[20]
Colotta F, Allavena P, Sica A, Garlanda C, Mantovani A. Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis 2009; 30(7): 1073-81.
[http://dx.doi.org/10.1093/carcin/bgp127] [PMID: 19468060]
[21]
Coussens LM, Werb Z. Inflammatory cells and cancer: think different! J Experi Medi 2001; F23-6
[22]
Coussens LM, Werb Z. Inflammation and cancer Nat 2002 860-7
[http://dx.doi.org/10.1038/nature01322]
[23]
Demaria S, Pikarsky E, Karin M, et al. Cancer and inflammation: promise for biologic therapy. J Immunother 2010; 33(4): 335-51.
[http://dx.doi.org/10.1097/CJI.0b013e3181d32e74] [PMID: 20386472]
[24]
Mantovani A. Cancer: Inflaming metastasis. Nature 2009; 457(7225): 36-7.
[http://dx.doi.org/10.1038/457036b] [PMID: 19122629]
[25]
Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation Nat 2008.436-4.
[http://dx.doi.org/10.1038/nature07205]
[26]
Nelson D, Ganss R. Tumor growth or regression: powered by inflammation. J Leuko Biol 2006; pp. 685-90.
[27]
Rivkin TL, Liubomirski Y, Bernstein B, Meshel T, Ben-Baruch A. Inflammatory Factors of the Tumor microenvironment induce plasticity in non-transformed breast epithelial cells: EMT, invasion, and collapse of normally organized Breast. Neoplasia 2013; 1330-46.
[http://dx.doi.org/10.1593/neo.131688]
[28]
Shigdar S, Li Y, Bhattacharya S, et al. Inflammation and cancer stem cells. Canc Lett 2014; pp. 271-8.
[29]
Sica A, Allavena P, Mantovani A. Cancer related inflammation: the macrophage connection. Canc Lett 2008; pp. 204-15.
[30]
Allavena P, Garlanda C, Borrello MG, Sica A, Mantovani A. Pathways connecting inflammation and cancer. Curr Opin Genetic Diver 2008; pp. 3-10.
[31]
Balkwill F, Coussens LM. An inflammatory link Nat 2004; 406-7.
[http://dx.doi.org/10.1038/431405a]
[32]
Balkwill FR, Capasso M, Hagemann T. The tumor microenvironment at a glance. J Cell Sci 2012; 125(Pt 23): 5591-6.
[http://dx.doi.org/10.1242/jcs.116392] [PMID: 23420197]
[33]
Hu M, Polyak K. Microenvironmental regulation of cancer development. Curr Opin Genetic Divers 2008; pp. 27-34.
[34]
Mbeunkui F, Johann DJ Jr. Cancer and the tumor microenvironment: a review of an essential relationship. Cancer Chemother Pharmacol 2009; 63(4): 571-82.
[http://dx.doi.org/10.1007/s00280-008-0881-9] [PMID: 19083000]
[35]
Gattazzo F, Urciuolo A, Bonaldo P. Extracellular matrix: a dynamic microenvironment for stem cell niche. Biochim Biophys Acta 2014; 1840(8): 2506-19.
[http://dx.doi.org/10.1016/j.bbagen.2014.01.010] [PMID: 24418517]
[36]
Brooks SA, Lomax-Browne HJ, Carter TM, Kinch CE, Hall DMS. Molecular interactions in cancer cell metastasis. Acta Histochem 2010; 112(1): 3-25.
[http://dx.doi.org/10.1016/j.acthis.2008.11.022] [PMID: 19162308]
[37]
Feller L, Kramer B, Lemmer J. Pathobiology of cancer metastasis: a short account. Cancer Cell Int 2012; 12(1): 24.
[http://dx.doi.org/10.1186/1475-2867-12-24] [PMID: 22676510]
[38]
Kim Y, Stolarska MA, Othmer HG. The role of the microenvironment in tumor growth and invasion. Prog Biophys Mol Biol 2011; 106(2): 353-79.
[http://dx.doi.org/10.1016/j.pbiomolbio.2011.06.006] [PMID: 21736894]
[39]
Meacham CE, Morrison SJ. Tumour heterogeneity and cancer cell plasticity Nat 2013; 328-7.
[40]
Joyce JA. Therapeutic targeting of the tumor microenvironment. Cancer Cell 2005; 7(6): 513-20.
[http://dx.doi.org/10.1016/j.ccr.2005.05.024] [PMID: 15950901]
[41]
Greten FR, Karin M. The IKK/NF-kappaB activation pathway-a target for prevention and treatment of cancer. Cancer Lett 2004; 206(2): 193-9.
[http://dx.doi.org/10.1016/j.canlet.2003.08.029] [PMID: 15013524]
[42]
Karnoub AE, Dash AB, Vo AP, et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis Nat 2007; 557-63.
[http://dx.doi.org/10.1038/nature06188]
[43]
Riss J, Khanna C, Koo S, Chandramouli GV, Yang H H. Cancers as wounds that do not heal: differences and similarities between renal regeneration/repair and renal cell carcinoma Can Res 2006; 7216-24
[44]
Klopp AH, Spaeth EL, Dembinski JL, et al. Tumor irradiation increases the recruitment of circulating mesenchymal stem cells into the tumor microenvironment. Can Res 2007; pp. 11687-95.
[45]
Kracht M. Targeting strategies to modulate the NF-κB and JNK signal transduction network. Antiinflamm Antiallergy Agents Med Chem 2007; 71-84.
[http://dx.doi.org/10.2174/187152307779939705]
[46]
Makarov SS. NF-kB as a therapeutic target in chronic inflammation: recent advances. Mol Med Tod 2003; pp. 441-8.
[47]
Dvorak HF. Tumors: Wounds that do not heal—Redox. Cancer Immnol Res 2015; pp. 1-11.
[48]
Byun JS. Cardner. Wounds that will not heal Pervasive Cellular Reprogramming in cancer ASIP Centennial Review. Am J Pathol 2013; 1056-64.
[49]
Hua Y, Bergers G. Tumors vs. chronic wounds: an immune cell’s perspective. Front Immunol 2019; 10: 2178-8.
[http://dx.doi.org/10.3389/fimmu.2019.02178] [PMID: 31572387]
[50]
Novak K. A healing Process. Nat Rev Cancer 2005; 244: 1-10.
[51]
Luqman S, Pezzuto JM. NFkappaB: a promising target for natural products in cancer chemoprevention. Phytother Res 2010; 24(7): 949-63.
[PMID: 20577970]
[52]
Yan L, Rosen N, Arteaga C. Targeted cancer therapies. Chin J Cancer 2011; 30(1): 1-4.
[http://dx.doi.org/10.5732/cjc.010.10553] [PMID: 21192839]
[53]
Kehm RD, Hopper JL, John EM, et al. kConFab Investigators. Regular use of aspirin and other non-steroidal anti-inflammatory drugs and breast cancer risk for women at familial or genetic risk: a cohort study. Breast Cancer Res 2019; 21(1): 52.
[http://dx.doi.org/10.1186/s13058-019-1135-y] [PMID: 30999962]
[54]
Basnet P, Skalko-Basnet N. Curcumin: an anti-inflammatory molecule from a curry spice on the path to cancer treatment. Molecules 2011; 16(6): 4567-98.
[http://dx.doi.org/10.3390/molecules16064567] [PMID: 21642934]
[55]
Stolfi C, De Simone V, Pallone F, Monteleone G. Mechanisms of action of non-steroidal anti-inflammatory drugs (NSAIDs) and mesalazine in the chemoprevention of colorectal cancer. Int J Mol Sci 2013; 14(9): 17972-85.
[http://dx.doi.org/10.3390/ijms140917972] [PMID: 24005861]
[56]
Kondratyuk TP, Park EJ, Yu R, et al. Novel marine phenazines as potential cancer chemopreventive and anti-inflammatory agents. Mar Drugs 2012; 10(2): 451-64.
[http://dx.doi.org/10.3390/md10020451] [PMID: 22412812]
[57]
Baudino TA. Targeted cancer therapy: the next generation of cancer treatment. Curr Drug Discov Technol 2015; 12(1): 3-20.
[http://dx.doi.org/10.2174/1570163812666150602144310] [PMID: 26033233]
[58]
Chari RVJ. Targeted cancer therapy: conferring specificity to cytotoxic drugs. Acc Chem Res 2008; 41(1): 98-107.
[http://dx.doi.org/10.1021/ar700108g] [PMID: 17705444]
[59]
Sugiyama Y, Kawakishi S, Osawa T. Involvement of the beta-diketone moiety in the antioxidative mechanism of tetrahydrocurcumin. Biochem Pharmacol 1996; 52(4): 519-25.
[http://dx.doi.org/10.1016/0006-2952(96)00302-4] [PMID: 8759023]
[60]
Sandur SK, Pandey MK, Sung B, et al. Curcumin, demethoxycurcumin, bisdemethoxycurcumin, tetrahydrocurcumin and turmerones differentially regulate anti-inflammatory and anti-proliferative responses through a ROS-independent mechanism. Carcinogenesis 2007; 28(8): 1765-73.
[http://dx.doi.org/10.1093/carcin/bgm123] [PMID: 17522064]
[61]
Nelson KM, Dahlin JL, Bisson J, Graham J, Pauli GF, Walters MA. The essential medicinal chemistry of curcumin. J Med Chem 2017; 1620-37.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00975]
[62]
Somparn P, Phisalaphong C, Nakornchai S, Unchern S, Morales NP. Comparative antioxidant activities of curcumin and its demethoxy and hydrogenated derivatives. Biol Pharm Bull 2007; 30(1): 74-8.
[http://dx.doi.org/10.1248/bpb.30.74] [PMID: 17202663]
[63]
Ferrari E, Lazzari S, Marverti G, Pignedoli F, Spagnolo F, Saladini M. Synthesis, cytotoxic and combined cDDP activity of new stable curcumin derivatives. Bioorg Med Chem 2009; 17(8): 3043-52.
[http://dx.doi.org/10.1016/j.bmc.2009.03.016] [PMID: 19329324]
[64]
Anand P, Thomas SG, Kunnumakkara AB, et al. Biological activities of curcumin and its analogues (Congeners) made by man and Mother Nature. Biochem Pharmacol 2008; 76(11): 1590-611.
[http://dx.doi.org/10.1016/j.bcp.2008.08.008] [PMID: 18775680]
[65]
Park W, Amin AR, Chen ZG, Shen DM. New prespective Cancer Preview Res 2013; 387-400.
[66]
Starok M, Preira P, Vayssade M, Haupt K, Salomé L, Rossi C. EGFR inhibition by curcumin in cancer cells: a dual mode of action. Biomacromolecules 2015; 16(5): 1634-42.
[http://dx.doi.org/10.1021/acs.biomac.5b00229] [PMID: 25893361]
[67]
Sun XD, Liu XE, Huang DS. Curcumin induces apoptosis of triple-negative breast cancer cells by inhibition of EGFR expression. Mol Med Rep 2012; 6(6): 1267-70.
[http://dx.doi.org/10.3892/mmr.2012.1103] [PMID: 23023821]
[68]
Vyas A, Dandawate P, Padhye S, Ahmad A, Sarkar F. Perspectives on new synthetic curcumin analogs and their potential anticancer properties. Curr Pharm Des 2013; 19(11): 2047-69.
[PMID: 23116312]
[69]
Shaik NA. Al-Kreathy Hm, Ajabnoor GM, Verma PK, Banaganapalli B. Molecular designing, virtual screening and docking study of novel curcumin analogue as mutant (S769L & K846R) selective inhibitor for EGFR. Saudi J Biol Sci 2018; 439-48.
[PMID: 30899155]
[70]
Pan MH, Lin-Shiau SY, Lin JK. Comparative studies on the suppression of nitric oxide synthase by curcumin and its hydrogenated metabolites through down-regulation of IkappaB kinase and NFkappaB activation in macrophages. Biochem Pharmacol 2000; 60(11): 1665-76.
[http://dx.doi.org/10.1016/S0006-2952(00)00489-5] [PMID: 11077049]
[71]
Eryanti Y, Nurulita Y, Hendra R. Synthesizing derivatives from cyclopentanone analogue curcumin and their toxic, antioxidant and anti-inflammatory activities 2011; 117-23.
[72]
Adams BK, Cai J, Armstrong J, et al. EF24, a novel synthetic curcumin analog, induces apoptosis in cancer cells via a redox-dependent mechanism. Anticancer Drugs 2005; 16(3): 263-75.
[http://dx.doi.org/10.1097/00001813-200503000-00005] [PMID: 15711178]
[73]
John VD, Kuttan G, Krishnankutty K. Anti-tumour studies of metal chelates of synthetic curcuminoids. J Exp Clin Cancer Res 2002; 21(2): 219-24.
[PMID: 12148581]
[74]
Heger M, van Golen RF, Broekgaarden M, Michel MC. The molecular basis for the pharmacokinetics and pharmacodynamics of curcumin and its metabolites in relation to cancer. Pharmacol Rev 2013; 66(1): 222-307.
[http://dx.doi.org/10.1124/pr.110.004044] [PMID: 24368738]
[75]
Selvam C, Jachak SM, Thilagavathi R, Chakraborti AK. Design, synthesis, biological evaluation and molecular docking of curcumin analogues as antioxidant, cyclooxygenase inhibitory and anti-inflammatory agents. Bioorg Med Chem Lett 2005; 15(7): 1793-7.
[http://dx.doi.org/10.1016/j.bmcl.2005.02.039] [PMID: 15780608]
[76]
Bandgar BP, Kinkar SN, Chavan HV, Jalde SS, Shaikh RU, Gacche RN. Synthesis and biological evaluation of asymmetric indole curcumin analogs as potential anti-inflammatory and antioxidant agents. J Enzyme Inhib Med Chem 2014; 29(1): 7-11.
[http://dx.doi.org/10.3109/14756366.2012.743536] [PMID: 23356406]
[77]
Voldborg BR, Damstrup L, Spang-Thomsen M, Poulsen HS. Epidermal growth factor receptor (EGFR) and EGFR mutations, function and possible role in clinical trials. Ann Oncol 1997; 8(12): 1197-206.
[http://dx.doi.org/10.1023/A:1008209720526] [PMID: 9496384]
[78]
Mitsudomi T, Yatabe Y. Epidermal growth factor receptor in relation to tumor development: EGFR gene and cancer. FEBS J 2010; 277(2): 301-8.
[http://dx.doi.org/10.1111/j.1742-4658.2009.07448.x] [PMID: 19922469]
[79]
Korutla L, Kumar R. Inhibitory effect of curcumin on epidermal growth factor receptor kinase activity in A431 cells. Biochim Biophys Acta 1994; 1224(3): 597-600.
[http://dx.doi.org/10.1016/0167-4889(94)90299-2] [PMID: 7803521]
[80]
Somers-Edgar TJ, Taurin S, Larsen L, Chandramouli A, Nelson MA, Rosengren RJ. Mechanisms for the activity of heterocyclic cyclohexanone curcumin derivatives in estrogen receptor negative human breast cancer cell lines. Invest. New Drug 2011; pp. 87-97.
[81]
Taurin S, Nimick M, Larsen L, Rosengren RJ. A novel curcumin derivative increases the cytotoxicity of raloxifene in estrogen receptor-negative breast cancer cell lines. Int J Oncol 2016; 48(1): 385-98.
[http://dx.doi.org/10.3892/ijo.2015.3252] [PMID: 26648459]
[82]
Dorai T, Gehani N, Katz A. Therapeutic potential of curcumin in human prostate cancer. II. Curcumin inhibits tyrosine kinase activity of epidermal growth factor receptor and depletes the protein. Mol Urol 2000; 4(1): 1-6.
[PMID: 10851300]
[83]
Thangapazham RL, Shaheduzzaman S, Kim KH, et al. Androgen responsive and refractory prostate cancer cells exhibit distinct curcumin regulated transcriptome. Cancer Biol Ther 2008; 7(9): 1427-35.
[http://dx.doi.org/10.4161/cbt.7.9.6469] [PMID: 18719366]
[84]
Reddy S, Rishi AK, Xu H, Levi E, Sarkar FH, Majumdar AP. Mechanisms of curcumin- and EGF-receptor related protein (ERRP)-dependent growth inhibition of colon cancer cells. Nutr Cancer 2006; 55(2): 185-94.
[http://dx.doi.org/10.1207/s15327914nc5502_10] [PMID: 17044774]
[85]
Korutla L, Cheung JY, Mendelsohn J, Kumar R. Inhibition of ligand-induced activation of epidermal growth factor receptor tyrosine phosphorylation by curcumin. Carcinogenesis 1995; 16(8): 1741-5.
[http://dx.doi.org/10.1093/carcin/16.8.1741] [PMID: 7634398]
[86]
Chen A, Xu J, Johnson AC. Curcumin inhibits human colon cancer cell growth by suppressing gene expression of epidermal growth factor receptor through reducing the activity of the transcription factor Egr-1. Oncogene 2006; 25(2): 278-87.
[http://dx.doi.org/10.1038/sj.onc.1209019] [PMID: 16170359]
[87]
Chen A, Xu J. Activation of PPARgamma by curcumin inhibits Moser cell growth and mediates suppression of gene expression of cyclin D1 and EGFR. Am J Physiol Gastrointest Liver Physiol 2005; 288(3): G447-56.
[http://dx.doi.org/10.1152/ajpgi.00209.2004] [PMID: 15486348]
[88]
Esatbeyoglu T, Huebbe P, Ernst IMA, Chin D, Wagner AE, Rimbach G. Curcumin-from molecule to biological functionAngew Chem Int Ed. 2012; pp. 5308-32.
[http://dx.doi.org/10.1002/anie.201107724]
[89]
Rao CV. Regulation of COX and LOX by curcumin. Adv Exp Med Biol 2007; 595: 213-26.
[http://dx.doi.org/10.1007/978-0-387-46401-5_9] [PMID: 17569213]
[90]
Binion DG, Otterson MF, Rafiee P. Curcumin inhibits VEGF-mediated angiogenesis in human intestinal microvascular endothelial cells through COX-2 and MAPK inhibition. Gut 2008; 57(11): 1509-17.
[http://dx.doi.org/10.1136/gut.2008.152496] [PMID: 18596194]
[91]
Bhandarkar SS, Arbiser JL. Curcumin as an inhibitor of angiogenesis. Adv Exp Med Biol 2007; 595: 185-95.
[http://dx.doi.org/10.1007/978-0-387-46401-5_7] [PMID: 17569211]
[92]
Wang TY, Chen JX. Effects of curcumin on vessel formation insight into the pro- and antiangiogenesis of curcumin. Evid Based Complement Alternat Med 2019; 20191390795
[http://dx.doi.org/10.1155/2019/1390795] [PMID: 31320911]
[93]
Gururaj AE, Belakavadi M, Venkatesh DA, Marmé D, Salimath BP. Molecular mechanisms of anti-angiogenic effect of curcumin. Biochem Biophys Res Commun 2002; 297(4): 934-42.
[http://dx.doi.org/10.1016/S0006-291X(02)02306-9] [PMID: 12359244]
[94]
Yoysungnoen P, Wirachwong P, Changtam C, Suksamrarn A, Patumraj S. Anti-cancer and anti-angiogenic effects of curcumin and tetrahydrocurcumin on implanted hepatocellular carcinoma in nude mice. World J Gastroenterol 2008; 14(13): 2003-9.
[http://dx.doi.org/10.3748/wjg.14.2003] [PMID: 18395899]
[95]
Blasius R, Reuter S, Henry E, Dicato M, Diederich M. Curcumin regulates signal transducer and activator of transcription (STAT) expression in K562 cells. Biochem Pharmacol 2006; 72(11): 1547-54.
[http://dx.doi.org/10.1016/j.bcp.2006.07.029] [PMID: 16959222]
[96]
Teiten MH, Eifes S, Reuter S, Duvoix A, Dicato M, Diederich M. Gene expression profiling related to anti-inflammatory properties of curcumin in K562 leukemia cells. Ann N Y Acad Sci 2009; 1171: 391-8.
[http://dx.doi.org/10.1111/j.1749-6632.2009.04890.x] [PMID: 19723081]
[97]
Reuter S, Charlet J, Juncker T, Teiten M-H, Dicato M, Diederich M. Effect of curcumin on nuclear factor kappaB signaling pathways in human chronic myelogenous K562 leukemia cells. Ann N Y Acad Sci 2009; 1171: 436-47.
[http://dx.doi.org/10.1111/j.1749-6632.2009.04731.x] [PMID: 19723087]
[98]
Sun M, Estrov Z, Ji Y, Coombes KR, Harris DH, Kurzrock R. Curcumin (diferuloylmethane) alters the expression profiles of microRNAs in human pancreatic cancer cells. Mol Cancer Ther 2008; 7(3): 464-73.
[http://dx.doi.org/10.1158/1535-7163.MCT-07-2272] [PMID: 18347134]
[99]
Singh S, Aggarwal BB. Activation of transcription factor NF-kappa B is suppressed by curcumin (diferuloylmethane). [corrected] J Biol Chem 1995; 270(42): 24995-5000.
[http://dx.doi.org/10.1074/jbc.270.42.24995] [PMID: 7559628]
[100]
Schena M, Shalon D, Davis RW, Brown PO. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 1995; 270(5235): 467-70.
[http://dx.doi.org/10.1126/science.270.5235.467] [PMID: 7569999]
[101]
Bharti AC, Donato N, Singh S, Aggarwal BB. Curcumin (diferuloylmethane) down-regulates the constitutive activation of nuclear factor-kappa B and IkappaBalpha kinase in human multiple myeloma cells, leading to suppression of proliferation and induction of apoptosis. Blood 2003; 101(3): 1053-62.
[http://dx.doi.org/10.1182/blood-2002-05-1320] [PMID: 12393461]
[102]
Siwak DR, Shishodia S, Aggarwal BB, Kurzrock R. Curcumin-induced antiproliferative and proapoptotic effects in melanoma cells are associated with suppression of IkappaB kinase and nuclear factor kappaB activity and are independent of the B-Raf/mitogen-activated/extracellular signal-regulated protein kinase pathway and the Akt pathway. Cancer 2005; 104(4): 879-90.
[http://dx.doi.org/10.1002/cncr.21216] [PMID: 16007726]
[103]
Shishodia S, Potdar P, Gairola CG, Aggarwal BB. Curcumin (diferuloylmethane) down-regulates cigarette smoke-induced NF-kappaB activation through inhibition of IkappaBalpha kinase in human lung epithelial cells: correlation with suppression of COX-2, MMP-9 and cyclin D1. Carcinogenesis 2003; 24(7): 1269-79.
[http://dx.doi.org/10.1093/carcin/bgg078] [PMID: 12807725]
[104]
Deeb D, Jiang H, Gao X, et al. Curcumin [1,7-bis(4-hydroxy-3-methoxyphenyl)-1-6-heptadine-3,5-dione; C21H20O6] sensitizes human prostate cancer cells to tumor necrosis factor-related apoptosis-inducing ligand/Apo2L-induced apoptosis by suppressing nuclear factor-kappaB via inhibition of the prosurvival Akt signaling pathway. J Pharmacol Exp Ther 2007; 321(2): 616-25.
[http://dx.doi.org/10.1124/jpet.106.117721] [PMID: 17289836]
[105]
Dhandapani KM, Mahesh VB, Brann DW. Curcumin suppresses growth and chemoresistance of human glioblastoma cells via AP-1 and NFkappaB transcription factors. J Neurochem 2007; 102(2): 522-38.
[http://dx.doi.org/10.1111/j.1471-4159.2007.04633.x] [PMID: 17596214]
[106]
Dikmen ZG, Ozgurtas T, Gryaznov SM, Herbert BS. Targeting critical steps of cancer metastasis and recurrence using telomerase template antagonists. Biochim Biophys Acta 2009; 1792(4): 240-7.
[http://dx.doi.org/10.1016/j.bbadis.2009.01.018] [PMID: 19419695]
[107]
Folini M, Gandellini P, Zaffaroni N. Targeting the telosome: therapeutic implications. Biochim Biophys Acta 2009; 1792(4): 309-16.
[http://dx.doi.org/10.1016/j.bbadis.2009.01.014] [PMID: 19419699]
[108]
Kelland LR. Overcoming the immortality of tumour cells by telomere and telomerase based cancer therapeutics--current status and future prospects. Eur J Cancer 2005; 41(7): 971-9.
[http://dx.doi.org/10.1016/j.ejca.2004.11.024] [PMID: 15862745]
[109]
Mukherjee Nee Chakraborty S, Ghosh U, Bhattacharyya NP, Bhattacharya RK, Dey S, Roy M. Curcumin-induced apoptosis in human leukemia cell HL-60 is associated with inhibition of telomerase activity. Mol Cell Biochem 2007; 297(1-2): 31-9.
[http://dx.doi.org/10.1007/s11010-006-9319-z] [PMID: 17096185]
[110]
Singh M, Singh N. Molecular mechanism of curcumin induced cytotoxicity in human cervical carcinoma cells. Mol Cell Biochem 2009; 325(1-2): 107-19.
[http://dx.doi.org/10.1007/s11010-009-0025-5] [PMID: 19191010]
[111]
Cui SX, Qu XJ, Xie YY, et al. Curcumin inhibits telomerase activity in human cancer cell lines. Int J Mol Med 2006; 18(2): 227-31.
[http://dx.doi.org/10.3892/ijmm.18.2.227] [PMID: 16820928]
[112]
Chakraborty S, Ghosh U, Bhattacharyya NP, Bhattacharya RK, Roy M. Inhibition of telomerase activity and induction of apoptosis by curcumin in K-562 cells. Mutat Res 2006; 596(1-2): 81-90.
[http://dx.doi.org/10.1016/j.mrfmmm.2005.12.007] [PMID: 16445949]
[113]
Ramachandran C, Fonseca HB, Jhabvala P, Escalon EA, Melnick SJ. Curcumin inhibits telomerase activity through human telomerase reverse transcritpase in MCF-7 breast cancer cell line. Cancer Lett 2002; 184(1): 1-6.
[http://dx.doi.org/10.1016/S0304-3835(02)00192-1] [PMID: 12104041]
[114]
Lee JH, Chung IK. Curcumin inhibits nuclear localization of telomerase by dissociating the Hsp90 co-chaperone p23 from hTERT. Cancer Lett 2010; 290(1): 76-86.
[http://dx.doi.org/10.1016/j.canlet.2009.08.026] [PMID: 19751963]
[115]
Kapoor N, Sharma AK, Dwivedi V, Kumar A, Pati U, Misra K. Telomerase targeted anticancer bioactive prodrug by antisense-based approach. Cancer Lett 2007; 248(2): 245-50.
[http://dx.doi.org/10.1016/j.canlet.2006.08.001] [PMID: 16950563]
[116]
Kristensen LS, Nielsen HM, Hansen LL. Epigenetics and cancer treatment. Eur J Pharmacol 2009; 625(1-3): 131-42.
[http://dx.doi.org/10.1016/j.ejphar.2009.10.011] [PMID: 19836388]
[117]
Herman JG, Baylin SB. Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med 2003; 349(21): 2042-54.
[http://dx.doi.org/10.1056/NEJMra023075] [PMID: 14627790]
[118]
Liu Z, Xie Z, Jones W, et al. Curcumin is a potent DNA hypomethylation agent. Bioorg Med Chem Lett 2009; 19(3): 706-9.
[http://dx.doi.org/10.1016/j.bmcl.2008.12.041] [PMID: 19112019]
[119]
Ropero S, Esteller M. The role of histone deacetylases (HDACs) in human cancer. Mol Oncol 2007; 1(1): 19-25.
[http://dx.doi.org/10.1016/j.molonc.2007.01.001] [PMID: 19383284]
[120]
Kang J, Chen J, Shi Y, Jia J, Zhang Y. Curcumin-induced histone hypoacetylation: the role of reactive oxygen species. Biochem Pharmacol 2005; 69(8): 1205-13.
[http://dx.doi.org/10.1016/j.bcp.2005.01.014] [PMID: 15794941]
[121]
Marcu MG, Jung YJ, Lee S, et al. Curcumin is an inhibitor of p300 histone acetylatransferase. Med Chem 2006; 2(2): 169-74.
[http://dx.doi.org/10.2174/157340606776056133] [PMID: 16787365]
[122]
Balasubramanyam K, Varier RA, Altaf M, et al. Curcumin, a novel p300/CREB-binding protein-specific inhibitor of acetyltransferase, represses the acetylation of histone/nonhistone proteins and histone acetyltransferase-dependent chromatin transcription. J Biol Chem 2004; 279(49): 51163-71.
[http://dx.doi.org/10.1074/jbc.M409024200] [PMID: 15383533]
[123]
Bora-Tatar G, Dayangaç-Erden D, Demir AS, Dalkara S, Yelekçi K, Erdem-Yurter H. Molecular modifications on carboxylic acid derivatives as potent histone deacetylase inhibitors: Activity and docking studies. Bioorg Med Chem 2009; 17(14): 5219-28.
[http://dx.doi.org/10.1016/j.bmc.2009.05.042] [PMID: 19520580]
[124]
Koizume S, Yokota N, Miyagi E, et al. Hepatocyte nuclear factor-4-independent synthesis of coagulation factor VII in breast cancer cells and its inhibition by targeting selective histone acetyltransferases. Mol Cancer Res 2009; 7(12): 1928-36.
[http://dx.doi.org/10.1158/1541-7786.MCR-09-0372] [PMID: 19996301]
[125]
Chen Y, Shu W, Chen W, Wu Q, Liu H, Cui G. Curcumin, both histone deacetylase and p300/CBP-specific inhibitor, represses the activity of nuclear factor kappa B and Notch 1 in Raji cells. Basic Clin Pharmacol Toxicol 2007; 101(6): 427-33.
[http://dx.doi.org/10.1111/j.1742-7843.2007.00142.x] [PMID: 17927689]
[126]
Shishodia S, Sethi G, Aggarwal BB. Curcumin: getting back to the roots. Ann N Y Acad Sci 2005; 1056: 206-17.
[http://dx.doi.org/10.1196/annals.1352.010] [PMID: 16387689]
[127]
Aggarwal BB, Takada Y, Oommen OV. From chemoprevention to chemotherapy: common targets and common goals. Expert Opin Investig Drugs 2004; 13(10): 1327-38.
[http://dx.doi.org/10.1517/13543784.13.10.1327] [PMID: 15461561]
[128]
Aggarwal BB, Gehlot P. Inflammation and cancer: how friendly is the relationship for cancer patients? Curr Opin Pharmacol 2009; 9(4): 351-69.
[http://dx.doi.org/10.1016/j.coph.2009.06.020] [PMID: 19665429]
[129]
Jobin C, Bradham CA, Russo MP, et al. Curcumin blocks cytokine-mediated NF-kappa B activation and proinflammatory gene expression by inhibiting inhibitory factor I-kappa B kinase activity. J Immunol 1999; 163(6): 3474-83.
[PMID: 10477620]
[130]
Milacic V, Banerjee S, Landis-Piwowar KR, Sarkar FH, Majumdar AP, Dou QP. Curcumin inhibits the proteasome activity in human colon cancer cells in vitro and in vivo. Cancer Res 2008; 68(18): 7283-92.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-6246] [PMID: 18794115]
[131]
Yang H, Landis-Piwowar KR, Chen D, Milacic V, Dou QP. Natural compounds with proteasome inhibitory activity for cancer prevention and treatment. Curr Protein Pept Sci 2008; 9(3): 227-39.
[http://dx.doi.org/10.2174/138920308784533998] [PMID: 18537678]
[132]
Landis-Piwowar KR, Milacic V, Chen D, et al. The proteasome as a potential target for novel anticancer drugs and chemosensitizers Drug Resist Update 2006; 263-73.
[http://dx.doi.org/10.1016/j.drup.2006.11.001]
[133]
Kasinski AL, Du Y, Thomas SL, et al. Inhibition of IkappaB kinase-nuclear factor-kappaB signaling pathway by 3,5-bis(2-flurobenzylidene)piperidin-4-one (EF24), a novel monoketone analog of curcumin. Mol Pharmacol 2008; 74(3): 654-61.
[http://dx.doi.org/10.1124/mol.108.046201] [PMID: 18577686]
[134]
Bharti AC, Shishodia S, Reuben JM, et al. Nuclear factor-kappaB and STAT3 are constitutively active in CD138+ cells derived from multiple myeloma patients, and suppression of these transcription factors leads to apoptosis. Blood 2004; 103(8): 3175-84.
[http://dx.doi.org/10.1182/blood-2003-06-2151] [PMID: 15070700]
[135]
Dhillon N, Aggarwal BB, Newman RA, et al. Phase II trial of curcumin in patients with advanced pancreatic cancer. Clin Cancer Res 2008; 14(14): 4491-9.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-0024] [PMID: 18628464]
[136]
Karin M, Greten FR. NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 2005; 5(10): 749-59.
[http://dx.doi.org/10.1038/nri1703] [PMID: 16175180]
[137]
Lin YG, Kunnumakkara AB, Nair A, et al. Curcumin inhibits tumor growth and angiogenesis in ovarian carcinoma by targeting the nuclear factor-kappaB pathway. Clin Cancer Res 2007; 13(11): 3423-30.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-3072] [PMID: 17545551]
[138]
Notarbartolo M, Poma P, Perri D, Dusonchet L, Cervello M, D’Alessandro N. Antitumor effects of curcumin, alone or in combination with cisplatin or doxorubicin, on human hepatic cancer cells. Analysis of their possible relationship to changes in NF-kB activation levels and in IAP gene expression. Cancer Lett 2005; 224(1): 53-65.
[http://dx.doi.org/10.1016/j.canlet.2004.10.051] [PMID: 15911101]
[139]
Chen F, Castranova V, Shi X. New insights into the role of nuclear factor-kappaB in cell growth regulation. Am J Pathol 2001; 159(2): 387-97.
[http://dx.doi.org/10.1016/S0002-9440(10)61708-7] [PMID: 11485895]
[140]
Marín YE, Wall BA, Wang S, et al. Curcumin downregulates the constitutive activity of NF-kappaB and induces apoptosis in novel mouse melanoma cells. Melanoma Res 2007; 17(5): 274-83.
[http://dx.doi.org/10.1097/CMR.0b013e3282ed3d0e] [PMID: 17885582]
[141]
Mackenzie GG, Queisser N, Wolfson ML, Fraga CG, Adamo AM, Oteiza PI. Curcumin induces cell-arrest and apoptosis in association with the inhibition of constitutively active NF-kappaB and STAT3 pathways in Hodgkin’s lymphoma cells. Int J Cancer 2008; 123(1): 56-65.
[http://dx.doi.org/10.1002/ijc.23477] [PMID: 18386790]
[142]
Sandur SK, Deorukhkar A, Pandey MK, et al. Curcumin modulates the radiosensitivity of colorectal cancer cells by suppressing constitutive and inducible NF-kappaB activity. Int J Radiat Oncol Biol Phys 2009; 75(2): 534-42.
[http://dx.doi.org/10.1016/j.ijrobp.2009.06.034] [PMID: 19735878]
[143]
Mukhopadhyay A, Bueso-Ramos C, Chatterjee D, Pantazis P, Aggarwal BB. Curcumin downregulates cell survival mechanisms in human prostate cancer cell lines. Oncogene 2001; 20(52): 7597-609.
[http://dx.doi.org/10.1038/sj.onc.1204997] [PMID: 11753638]
[144]
Aggarwal S, Ichikawa H, Takada Y, Sandur SK, Shishodia S, Aggarwal BB. Curcumin (diferuloylmethane) down-regulates expression of cell proliferation and antiapoptotic and metastatic gene products through suppression of IkappaBalpha kinase and Akt activation. Mol Pharmacol 2006; 69(1): 195-206.
[http://dx.doi.org/10.1124/mol.105.017400] [PMID: 16219905]
[145]
Aggarwal BB, Vijayalekshmi RV, Sung B. Targeting inflammatory pathways for prevention and therapy of cancer: short-term friend, long-term foe. Clin Cancer Res 2009; 15(2): 425-30.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-0149] [PMID: 19147746]
[146]
Sandur SK, Ichikawa H, Pandey MK, et al. Role of pro-oxidants and antioxidants in the anti-inflammatory and apoptotic effects of curcumin (diferuloylmethane). Free Radic Biol Med 2007; 43(4): 568-80.
[http://dx.doi.org/10.1016/j.freeradbiomed.2007.05.009] [PMID: 17640567]
[147]
Wang SL, Li Y, Wen Y, et al. Curcumin, a potential inhibitor of up-regulation of TNF-alpha and IL-6 induced by palmitate in 3T3-L1 adipocytes through NF-kappaB and JNK pathway. Biomed Environ Sci 2009; 22(1): 32-9.
[http://dx.doi.org/10.1016/S0895-3988(09)60019-2] [PMID: 19462685]
[148]
Moon DO, Jin CY, Lee JD, et al. Curcumin decreases binding of Shiga-like toxin-1B on human intestinal epithelial cell line HT29 stimulated with TNF-alpha and IL-1beta: suppression of p38, JNK and NF-kappaB p65 as potential targets. Biol Pharm Bull 2006; 29(7): 1470-5.
[http://dx.doi.org/10.1248/bpb.29.1470] [PMID: 16819191]
[149]
Menon VP, Sudheer AR. Antioxidant and anti-inflammatory properties of curcumin. Adv Exp Med Biol 2007; 595: 105-25.
[http://dx.doi.org/10.1007/978-0-387-46401-5_3] [PMID: 17569207]
[150]
Yu H, Pardoll D, Jove R. STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer 2009; 9(11): 798-809.
[http://dx.doi.org/10.1038/nrc2734] [PMID: 19851315]
[151]
Aggarwal BB, Kunnumakkara AB, Harikumar KB, et al. Signal transducer and activator of transcription-3, inflammation, and cancer: how intimate is the relationship? Ann N Y Acad Sci 2009; 1171: 59-76.
[http://dx.doi.org/10.1111/j.1749-6632.2009.04911.x] [PMID: 19723038]
[152]
Rajasingh J, Raikwar HP, Muthian G, Johnson C, Bright JJ. Curcumin induces growth-arrest and apoptosis in association with the inhibition of constitutively active JAK-STAT pathway in T cell leukemia. Biochem Biophys Res Commun 2006; 340(2): 359-68.
[http://dx.doi.org/10.1016/j.bbrc.2005.12.014] [PMID: 16364242]
[153]
Chakravarti N, Myers JN, Aggarwal BB. Targeting constitutive and interleukin-6-inducible signal transducers and activators of transcription 3 pathway in head and neck squamous cell carcinoma cells by curcumin (diferuloylmethane). Int J Cancer 2006; 119(6): 1268-75.
[http://dx.doi.org/10.1002/ijc.21967] [PMID: 16642480]
[154]
Bharti AC, Donato N, Aggarwal BB. Curcumin (diferuloylmethane) inhibits constitutive and IL-6-inducible STAT3 phosphorylation in human multiple myeloma cells. J Immunol 2003; 171(7): 3863-71.
[http://dx.doi.org/10.4049/jimmunol.171.7.3863] [PMID: 14500688]
[155]
Hutzen B, Friedman L, Sobo M, et al. Curcumin analogue GO-Y030 inhibits STAT3 activity and cell growth in breast and pancreatic carcinomas. Int J Oncol 2009; 35(4): 867-72.
[PMID: 19724924]
[156]
Lin L, Hutzen B, Ball S, et al. New curcumin analogues exhibit enhanced growth-suppressive activity and inhibit AKT and signal transducer and activator of transcription 3 phosphorylation in breast and prostate cancer cells. Cancer Sci 2009; 100(9): 1719-27.
[http://dx.doi.org/10.1111/j.1349-7006.2009.01220.x] [PMID: 19558577]
[157]
Starvaggi Cucuzza L, Motta M, Miretti S, Accornero P, Baratta M. Curcuminoid-phospholipid complex induces apoptosis in mammary epithelial cells by STAT-3 signaling. Exp Mol Med 2008; 40(6): 647-57.
[http://dx.doi.org/10.3858/emm.2008.40.6.647] [PMID: 19116450]
[158]
Bill MA, Bakan C, Benson DM Jr, Fuchs J, Young G, Lesinski GB. Curcumin induces proapoptotic effects against human melanoma cells and modulates the cellular response to immunotherapeutic cytokines. Mol Cancer Ther 2009; 8(9): 2726-35.
[http://dx.doi.org/10.1158/1535-7163.MCT-09-0377] [PMID: 19723881]
[159]
Lee J, Jung HH, Im YH, et al. Interferon-alpha resistance can be reversed by inhibition of IFN-alpha-induced COX-2 expression potentially via STAT1 activation in A549 cells. Oncol Rep 2006; 15(6): 1541-9.
[PMID: 16685393]
[160]
Lee KW, Kim JH, Lee HJ, Surh YJ. Curcumin inhibits phorbol ester-induced up-regulation of cyclooxygenase-2 and matrix metalloproteinase-9 by blocking ERK1/2 phosphorylation and NF-kappaB transcriptional activity in MCF10A human breast epithelial cells. Antioxid Redox Signal 2005; 7(11-12): 1612-20.
[http://dx.doi.org/10.1089/ars.2005.7.1612] [PMID: 16356124]
[161]
Plummer SM, Holloway KA, Manson MM, et al. Inhibition of cyclo-oxygenase 2 expression in colon cells by the chemopreventive agent curcumin involves inhibition of NF-kappaB activation via the NIK/IKK signalling complex. Oncogene 1999; 18(44): 6013-20.
[http://dx.doi.org/10.1038/sj.onc.1202980] [PMID: 10557090]
[162]
Atsumi T, Murakami Y, Shibuya K, Tonosaki K, Fujisawa S. Induction of cytotoxicity and apoptosis and inhibition of cyclooxygenase-2 gene expression, by curcumin and its analog, alpha-diisoeugenol. Anticancer Res 2005; 25(6B): 4029-36.
[PMID: 16309195]
[163]
Kunnumakkara AB, Diagaradjane P, Anand P, et al. Curcumin sensitizes human colorectal cancer to capecitabine by modulation of cyclin D1, COX-2, MMP-9, VEGF and CXCR4 expression in an orthotopic mouse model. Int J Cancer 2009; 125(9): 2187-97.
[http://dx.doi.org/10.1002/ijc.24593] [PMID: 19623659]
[164]
Swamy MV, Citineni B, Patlolla JM, Mohammed A, Zhang Y, Rao CV. Prevention and treatment of pancreatic cancer by curcumin in combination with omega-3 fatty acids. Nutr Cancer 2008; 60(Suppl. 1): 81-9.
[http://dx.doi.org/10.1080/01635580802416703] [PMID: 19003584]
[165]
Hong J, Bose M, Ju J, et al. Modulation of arachidonic acid metabolism by curcumin and related beta-diketone derivatives: effects on cytosolic phospholipase A(2), cyclooxygenases and 5-lipoxygenase. Carcinogenesis 2004; 25(9): 1671-9.
[http://dx.doi.org/10.1093/carcin/bgh165] [PMID: 15073046]
[166]
Goel A, Boland CR, Chauhan DP. Specific inhibition of cyclooxygenase-2 (COX-2) expression by dietary curcumin in HT-29 human colon cancer cells. Cancer Lett 2001; 172(2): 111-8.
[http://dx.doi.org/10.1016/S0304-3835(01)00655-3] [PMID: 11566484]
[167]
Lev-Ari S, Starr A, Vexler A, et al. Inhibition of pancreatic and lung adenocarcinoma cell survival by curcumin is associated with increased apoptosis, down-regulation of COX-2 and EGFR and inhibition of Erk1/2 activity. Anticancer Res 2006; 26(6B): 4423-30.
[PMID: 17201164]
[168]
Padhye S, Banerjee S, Chavan D, et al. Fluorocurcumins as cyclooxygenase-2 inhibitor: molecular docking, pharmacokinetics and tissue distribution in mice. Pharm Res 2009; 26(11): 2438-45.
[http://dx.doi.org/10.1007/s11095-009-9955-6] [PMID: 19714451]
[169]
Mukhopadhyay A, Banerjee S, Stafford LJ, Xia C, Liu M, Aggarwal BB. Curcumin-induced suppression of cell proliferation correlates with down-regulation of cyclin D1 expression and CDK4-mediated retinoblastoma protein phosphorylation. Oncogene 2002; 21(57): 8852-61.
[http://dx.doi.org/10.1038/sj.onc.1206048] [PMID: 12483537]
[170]
Srivastava RK, Chen Q, Siddiqui I, Sarva K, Shankar S. Linkage of curcumin-induced cell cycle arrest and apoptosis by cyclin-dependent kinase inhibitor p21(/WAF1/CIP1). Cell Cycle 2007; 6(23): 2953-61.
[http://dx.doi.org/10.4161/cc.6.23.4951] [PMID: 18156803]
[171]
Aggarwal BB, Banerjee S, Bharadwaj U, Sung B, Shishodia S, Sethi G. Curcumin induces the degradation of cyclin E expression through ubiquitin-dependent pathway and up-regulates cyclin-dependent kinase inhibitors p21 and p27 in multiple human tumor cell lines. Biochem Pharmacol 2007; 73(7): 1024-32.
[http://dx.doi.org/10.1016/j.bcp.2006.12.010] [PMID: 17240359]
[172]
Janssens N, Janicot M, Perera T. The Wnt-dependent signaling pathways as target in oncology drug discovery. Invest. New Drug 2006; pp. 263-80.
[173]
Narayan S. Curcumin, a multi-functional chemopreventive agent, blocks growth of colon cancer cells by targeting beta-catenin-mediated transactivation and cell-cell adhesion pathways. J Mol Histol 2004; 35(3): 301-7.
[http://dx.doi.org/10.1023/B:HIJO.0000032361.98815.bb] [PMID: 15339049]
[174]
Leow P, Tian Q, Ong Z, Yang Z, Ee P. Antitumor activity of natural compounds, curcumin and PKF118-310, as Wnt/beta-catenin antagonists against human osteosarcoma cells. Invest. New Drug 2010; pp. 766-82.
[175]
Park CH, Hahm ER, Park S, Kim HK, Yang CH. The inhibitory mechanism of curcumin and its derivative against beta-catenin/Tcf signaling. FEBS Lett 2005; 579(13): 2965-71.
[http://dx.doi.org/10.1016/j.febslet.2005.04.013] [PMID: 15893313]
[176]
Jaiswal AS, Marlow BP, Gupta N, Narayan S. Beta-catenin-mediated transactivation and cell-cell adhesion pathways are important in curcumin (diferuylmethane)-induced growth arrest and apoptosis in colon cancer cells. Oncogene 2002; 21(55): 8414-27.
[http://dx.doi.org/10.1038/sj.onc.1205947] [PMID: 12466962]
[177]
Kakarala M, Brenner DE, Korkaya H, et al. Targeting breast stem cells with the cancer preventive compounds curcumin and piperine. Breast Cancer Res Treat 2010; 122(3): 777-85.
[http://dx.doi.org/10.1007/s10549-009-0612-x] [PMID: 19898931]
[178]
Prasad CP, Rath G, Mathur S, Bhatnagar D, Ralhan R. Potent growth suppressive activity of curcumin in human breast cancer cells: Modulation of Wnt/beta-catenin signaling. Chem Biol Interact 2009; 181(2): 263-71.
[http://dx.doi.org/10.1016/j.cbi.2009.06.012] [PMID: 19573523]
[179]
Ryu MJ, Cho M, Song JY, et al. Natural derivatives of curcumin attenuate the Wnt/beta-catenin pathway through down-regulation of the transcriptional coactivator p300. Biochem Biophys Res Commun 2008; 377(4): 1304-8.
[http://dx.doi.org/10.1016/j.bbrc.2008.10.171] [PMID: 19000900]
[180]
Chen YL, Law PY, Loh HH. Inhibition of PI3K/Akt signaling: an emerging paradigm for targeted cancer therapy. Curr Med Chem Anticancer Agents 2005; 5(6): 575-89.
[http://dx.doi.org/10.2174/156801105774574649] [PMID: 16305480]
[181]
Chang F, Lee JT, Navolanic PM, et al. Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation: a target for cancer chemotherapy. Leukemia 2003; 17(3): 590-603.
[http://dx.doi.org/10.1038/sj.leu.2402824] [PMID: 12646949]
[182]
Hussain AR, Al-Rasheed M, Manogaran PS, et al. Curcumin induces apoptosis via inhibition of PI3′-kinase/AKT pathway in acute T cell leukemias. Apoptosis 2006; 11(2): 245-54.
[http://dx.doi.org/10.1007/s10495-006-3392-3] [PMID: 16502262]
[183]
Beevers CS, Li F, Liu L, Huang S. Curcumin inhibits the mammalian target of rapamycin-mediated signaling pathways in cancer cells. Int J Cancer 2006; 119(4): 757-64.
[http://dx.doi.org/10.1002/ijc.21932] [PMID: 16550606]
[184]
Johnson SM, Gulhati P, Arrieta I, et al. Curcumin inhibits proliferation of colorectal carcinoma by modulating Akt/mTOR signaling. Anticancer Res 2009; 29(8): 3185-90.
[PMID: 19661333]
[185]
Woo JH, Kim YH, Choi YJ, et al. Molecular mechanisms of curcumin-induced cytotoxicity: induction of apoptosis through generation of reactive oxygen species, down-regulation of Bcl-XL and IAP, the release of cytochrome c and inhibition of Akt. Carcinogenesis 2003; 24(7): 1199-208.
[http://dx.doi.org/10.1093/carcin/bgg082] [PMID: 12807727]
[186]
Squires MS, Hudson EA, Howells L, et al. Relevance of mitogen activated protein kinase (MAPK) and phosphotidylinositol-3-kinase/protein kinase B (PI3K/PKB) pathways to induction of apoptosis by curcumin in breast cells. Biochem Pharmacol 2003; 65(3): 361-76.
[http://dx.doi.org/10.1016/S0006-2952(02)01517-4] [PMID: 12527329]
[187]
Yu S, Shen G, Khor TO, Kim JH, Kong AN. Curcumin inhibits Akt/mammalian target of rapamycin signaling through protein phosphatase-dependent mechanism. Mol Cancer Ther 2008; 7(9): 2609-20.
[http://dx.doi.org/10.1158/1535-7163.MCT-07-2400] [PMID: 18790744]
[188]
Shankar S, Chen Q, Sarva K, Siddiqui I, Srivastava RK. Curcumin enhances the apoptosis-inducing potential of TRAIL in prostate cancer cells: molecular mechanisms of apoptosis, migration and angiogenesis. J Mol Signal 2007; 2: 10.
[http://dx.doi.org/10.1186/1750-2187-2-10] [PMID: 17916240]
[189]
Li M, Zhang Z, Hill DL, Wang H, Zhang R. Curcumin, a dietary component, has anticancer, chemosensitization, and radiosensitization effects by down-regulating the MDM2 oncogene through the PI3K/mTOR/ETS2 pathway. Cancer Res 2007; 67(5): 1988-96.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-3066] [PMID: 17332326]
[190]
Chaudhary LR, Hruska KA. Inhibition of cell survival signal protein kinase B/Akt by curcumin in human prostate cancer cells. J Cell Biochem 2003; 89(1): 1-5.
[http://dx.doi.org/10.1002/jcb.10495] [PMID: 12682902]
[191]
Beevers CS, Chen L, Liu L, Luo Y, Webster NJ, Huang S. Curcumin disrupts the Mammalian target of rapamycin-raptor complex. Cancer Res 2009; 69(3): 1000-8.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-2367] [PMID: 19176385]
[192]
Chen L, Tian G, Shao C, Cobos E, Gao W. Curcumin modulates eukaryotic initiation factors in human lung adenocarcinoma epithelial cells. Mol Biol Rep 2010; 37(7): 3105-10.
[http://dx.doi.org/10.1007/s11033-009-9888-5] [PMID: 19826913]
[193]
Choi BH, Kim CG, Lim Y, Shin SY, Lee YH. Curcumin down-regulates the multidrug-resistance mdr1b gene by inhibiting the PI3K/Akt/NF kappa B pathway. Cancer Lett 2008; 259(1): 111-8.
[http://dx.doi.org/10.1016/j.canlet.2007.10.003] [PMID: 18006147]
[194]
Kumar AP, Garcia GE, Ghosh R, Rajnarayanan RV, Alworth WL, Slaga TJ. 4-Hydroxy-3-methoxybenzoic acid methyl ester: a curcumin derivative targets Akt/NF kappa B cell survival signaling pathway: potential for prostate cancer management. Neoplasia 2003; 5(3): 255-66.
[http://dx.doi.org/10.1016/S1476-5586(03)80057-X] [PMID: 12869308]
[195]
Hong JH, Ahn KS, Bae E, Jeon SS, Choi HY. The effects of curcumin on the invasiveness of prostate cancer in vitro and in vivo. Prostate Cancer Prostatic Dis 2006; 9(2): 147-52.
[http://dx.doi.org/10.1038/sj.pcan.4500856] [PMID: 16389264]
[196]
Lin SS, Lai KC, Hsu SC, et al. Curcumin inhibits the migration and invasion of human A549 lung cancer cells through the inhibition of matrix metalloproteinase-2 and -9 and Vascular Endothelial Growth Factor (VEGF). Cancer Lett 2009; 285(2): 127-33.
[http://dx.doi.org/10.1016/j.canlet.2009.04.037] [PMID: 19477063]
[197]
Aggarwal BB, Shishodia S, Takada Y, et al. Curcumin suppresses the paclitaxel-induced nuclear factor-kappaB pathway in breast cancer cells and inhibits lung metastasis of human breast cancer in nude mice. Clin Cancer Res 2005; 11(20): 7490-8.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-1192] [PMID: 16243823]
[198]
Liu Q, Loo WT, Sze SC, Tong Y. Curcumin inhibits cell proliferation of MDA-MB-231 and BT-483 breast cancer cells mediated by down-regulation of NFkappaB, cyclinD and MMP-1 transcription. Phytomedicine 2009; 16(10): 916-22.
[http://dx.doi.org/10.1016/j.phymed.2009.04.008] [PMID: 19524420]
[199]
Karmakar S, Banik NL, Patel SJ, Ray SK. Curcumin activated both receptor-mediated and mitochondria-mediated proteolytic pathways for apoptosis in human glioblastoma T98G cells. Neurosci Lett 2006; 407(1): 53-8.
[http://dx.doi.org/10.1016/j.neulet.2006.08.013] [PMID: 16949208]
[200]
Cao J, Liu Y, Jia L, et al. Curcumin induces apoptosis through mitochondrial hyperpolarization and mtDNA damage in human hepatoma G2 cells. Free Radic Biol Med 2007; 43(6): 968-75.
[http://dx.doi.org/10.1016/j.freeradbiomed.2007.06.006] [PMID: 17697941]
[201]
Song G, Mao YB, Cai QF, Yao LM, Ouyang GL, Bao SD. Curcumin induces human HT-29 colon adenocarcinoma cell apoptosis by activating p53 and regulating apoptosis-related protein expression. Braz J Med Biol Res 2005; 38(12): 1791-8.
[http://dx.doi.org/10.1590/S0100-879X2005001200007] [PMID: 16302093]
[202]
Tian B, Wang Z, Zhao Y, et al. Effects of curcumin on bladder cancer cells and development of urothelial tumors in a rat bladder carcinogenesis model. Cancer Lett 2008; 264(2): 299-308.
[http://dx.doi.org/10.1016/j.canlet.2008.01.041] [PMID: 18342436]
[203]
Ghosh AK, Kay NE, Secreto CR, Shanafelt TD. Curcumin inhibits prosurvival pathways in chronic lymphocytic leukemia B cells and may overcome their stromal protection in combination with EGCG. Clin Cancer Res 2009; 15(4): 1250-8.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-1511] [PMID: 19228728]
[204]
Anto RJ, Mukhopadhyay A, Denning K, Aggarwal BB. Curcumin (diferuloylmethane) induces apoptosis through activation of caspase-8, BID cleavage and cytochrome c release: its suppression by ectopic expression of Bcl-2 and Bcl-xl. Carcinogenesis 2002; 23(1): 143-50.
[http://dx.doi.org/10.1093/carcin/23.1.143] [PMID: 11756235]
[205]
Bush JA, Cheung KJ Jr, Li G. Curcumin induces apoptosis in human melanoma cells through a Fas receptor/caspase-8 pathway independent of p53. Exp Cell Res 2001; 271(2): 305-14.
[http://dx.doi.org/10.1006/excr.2001.5381] [PMID: 11716543]
[206]
Friedman L, Lin L, Ball S, et al. Curcumin analogues exhibit enhanced growth suppressive activity in human pancreatic cancer cells. Anticancer Drug 2009; pp. 444-9.
[207]
Karunagaran D, Rashmi R, Kumar TR. Induction of apoptosis by curcumin and its implications for cancer therapy. Curr Cancer Drug Targets 2005; 5(2): 117-29.
[http://dx.doi.org/10.2174/1568009053202081] [PMID: 15810876]
[208]
Castedo M, Perfettini JL, Roumier T, et al. Mitotic catastrophe constitutes a special case of apoptosis whose suppression entails aneuploidy. Oncogene 2004; 23(25): 4362-70.
[http://dx.doi.org/10.1038/sj.onc.1207572] [PMID: 15048075]
[209]
Castedo M, Perfettini JL, Roumier T, Andreau K, Medema R, Kroemer G. Cell death by mitotic catastrophe: a molecular definition. Oncogene 2004; 23(16): 2825-37.
[http://dx.doi.org/10.1038/sj.onc.1207528] [PMID: 15077146]
[210]
Roninson IB, Broude EV, Chang BD. If not apoptosis, then what?Treatment-induced senescence and mitotic catastrophe in tumor cells Drug Resist Update 2001; 303-13.
[http://dx.doi.org/10.1054/drup.2001.0213]
[211]
Holy JM. Curcumin disrupts mitotic spindle structure and induces micronucleation in MCF-7 breast cancer cells. Mutat Res 2002; 518(1): 71-84.
[http://dx.doi.org/10.1016/S1383-5718(02)00076-1] [PMID: 12063069]
[212]
Magalska A, Sliwinska M, Szczepanowska J, Salvioli S, Franceschi C, Sikora E. Resistance to apoptosis of HCW-2 cells can be overcome by curcumin- or vincristine-induced mitotic catastrophe. Int J Cancer 2006; 119(8): 1811-8.
[http://dx.doi.org/10.1002/ijc.22055] [PMID: 16721786]
[213]
Wolanin K, Magalska A, Mosieniak G, et al. Curcumin affects components of the chromosomal passenger complex and induces mitotic catastrophe in apoptosis-resistant Bcr-Abl-expressing cells. Mol Cancer Res 2006; 4(7): 457-69.
[http://dx.doi.org/10.1158/1541-7786.MCR-05-0172] [PMID: 16849521]
[214]
O’Sullivan-Coyne G, O’Sullivan GC, O’Donovan TR, Piwocka K, McKenna SL. Curcumin induces apoptosis-independent death in oesophageal cancer cells. Br J Cancer 2009; 101(9): 1585-95.
[http://dx.doi.org/10.1038/sj.bjc.6605308] [PMID: 19809435]
[215]
Dempe JS, Pfeiffer E, Grimm AS, Metzler M. Metabolism of curcumin and induction of mitotic catastrophe in human cancer cells. Mol Nutr Food Res 2008; 52(9): 1074-81.
[http://dx.doi.org/10.1002/mnfr.200800029] [PMID: 18720347]
[216]
Basile V, Ferrari E, Lazzari S, Belluti S, Pignedoli F, Imbriano C. Curcumin derivatives: molecular basis of their anti-cancer activity. Biochem Pharmacol 2009; 78(10): 1305-15.
[http://dx.doi.org/10.1016/j.bcp.2009.06.105] [PMID: 19580791]
[217]
Verma SP, Salamone E, Goldin B. Curcumin and genistein, plant natural products, show synergistic inhibitory effects on the growth of human breast cancer MCF-7 cells induced by estrogenic pesticides. Biochem Biophys Res Commun 1997; 233(3): 692-6.
[http://dx.doi.org/10.1006/bbrc.1997.6527] [PMID: 9168916]
[218]
Liu Y, Chang RL, Cui XX, Newmark HL, Conney AH. Synergistic effects of curcumin on all-trans retinoic acid- and 1 alpha,25-dihydroxyvitamin D3-induced differentiation in human promyelocytic leukemia HL-60 cells. Oncol Res 1997; 9(1): 19-29.
[PMID: 9112257]
[219]
Sreepriya M, Bali G. Effects of administration of Embelin and Curcumin on lipid peroxidation, hepatic glutathione antioxidant defense and hematopoietic system during N-nitrosodiethylamine/Phenobarbital-induced hepatocarcinogenesis in Wistar rats. Mol Cell Biochem 2006; 284(1-2): 49-55.
[http://dx.doi.org/10.1007/s11010-005-9012-7] [PMID: 16477385]
[220]
Khor TO, Keum YS, Lin W, et al. Combined inhibitory effects of curcumin and phenethyl isothiocyanate on the growth of human PC-3 prostate xenografts in immunodeficient mice. Cancer Res 2006; 66(2): 613-21.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-2708] [PMID: 16423986]
[221]
Majumdar AP, Banerjee S, Nautiyal J, et al. Curcumin synergizes with resveratrol to inhibit colon cancer. Nutr Cancer 2009; 61(4): 544-53.
[http://dx.doi.org/10.1080/01635580902752262] [PMID: 19838927]
[222]
Khafif A, Schantz SP, Chou TC, Edelstein D, Sacks PG. Quantitation of chemopreventive synergism between (-)-epigallocatechin-3-gallate and curcumin in normal, premalignant and malignant human oral epithelial cells. Carcinogenesis 1998; 19(3): 419-24.
[http://dx.doi.org/10.1093/carcin/19.3.419] [PMID: 9525275]
[223]
Chendil D, Ranga RS, Meigooni D, Sathishkumar S, Ahmed MM. Curcumin confers radiosensitizing effect in prostate cancer cell line PC-3. Oncogene 2004; 23(8): 1599-607.
[http://dx.doi.org/10.1038/sj.onc.1207284] [PMID: 14985701]
[224]
Javvadi P, Segan AT, Tuttle SW, Koumenis C. The chemopreventive agent curcumin is a potent radiosensitizer of human cervical tumor cells via increased reactive oxygen species production and overactivation of the mitogen-activated protein kinase pathway. Mol Pharmacol 2008; 73(5): 1491-501.
[http://dx.doi.org/10.1124/mol.107.043554] [PMID: 18252805]
[225]
Bava SV, Puliyappadamba VT, Deepti A, Nair A, Karunagaran D, Anto RJ. Sensitization of taxol-induced apoptosis by curcumin involves down-regulation of nuclear factor-kappaB and the serine/threonine kinase Akt and is independent of tubulin polymerization. J Biol Chem 2005; 280(8): 6301-8.
[http://dx.doi.org/10.1074/jbc.M410647200] [PMID: 15590651]
[226]
Kang HJ, Lee SH, Price JE, Kim LS. Curcumin suppresses the paclitaxel-induced nuclear factor-kappaB in breast cancer cells and potentiates the growth inhibitory effect of paclitaxel in a breast cancer nude mice model. Breast J 2009; 15(3): 223-9.
[http://dx.doi.org/10.1111/j.1524-4741.2009.00709.x] [PMID: 19645775]
[227]
Sen S, Sharma H, Singh N. Curcumin enhances Vinorelbine mediated apoptosis in NSCLC cells by the mitochondrial pathway. Biochem Biophys Res Commun 2005; 331(4): 1245-52.
[http://dx.doi.org/10.1016/j.bbrc.2005.04.044] [PMID: 15883009]
[228]
Lev-Ari S, Strier L, Kazanov D, et al. Celecoxib and curcumin synergistically inhibit the growth of colorectal cancer cells. Clin Cancer Res 2005; 11(18): 6738-44.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-0171] [PMID: 16166455]
[229]
Lev-Ari S, Zinger H, Kazanov D, et al. Curcumin synergistically potentiates the growth inhibitory and pro-apoptotic effects of celecoxib in pancreatic adenocarcinoma cells. Biomed Pharmacother 2005; 59(Suppl. 2): S276-80.
[http://dx.doi.org/10.1016/S0753-3322(05)80045-9] [PMID: 16507392]
[230]
Du B, Jiang L, Xia Q, Zhong L. Synergistic inhibitory effects of curcumin and 5-fluorouracil on the growth of the human colon cancer cell line HT-29. Chemotherapy 2006; 52(1): 23-8.
[http://dx.doi.org/10.1159/000090238] [PMID: 16340194]
[231]
Koo JY, Kim HJ, Jung KO, Park KY. Curcumin inhibits the growth of AGS human gastric carcinoma cells in vitro and shows synergism with 5-fluorouracil. J Med Food 2004; 7(2): 117-21.
[http://dx.doi.org/10.1089/1096620041224229] [PMID: 15298755]
[232]
Patel BB, Sengupta R, Qazi S, et al. Curcumin enhances the effects of 5-fluorouracil and oxaliplatin in mediating growth inhibition of colon cancer cells by modulating EGFR and IGF-1R. Int J Cancer 2008; 122(2): 267-73.
[http://dx.doi.org/10.1002/ijc.23097] [PMID: 17918158]
[233]
Howells LM, Mitra A, Manson MM. Comparison of oxaliplatin- and curcumin-mediated antiproliferative effects in colorectal cell lines. Int J Cancer 2007; 121(1): 175-83.
[http://dx.doi.org/10.1002/ijc.22645] [PMID: 17330230]
[234]
Weir NM, Selvendiran K, Kutala VK, et al. Curcumin induces G2/M arrest and apoptosis in cisplatin-resistant human ovarian cancer cells by modulating Akt and p38 MAPK. Cancer Biol Ther 2007; 6(2): 178-84.
[http://dx.doi.org/10.4161/cbt.6.2.3577] [PMID: 17218783]
[235]
Montopoli M, Ragazzi E, Froldi G, Caparrotta L. Cell-cycle inhibition and apoptosis induced by curcumin and cisplatin or oxaliplatin in human ovarian carcinoma cells. Cell Prolifration 2009; pp. 195-206.
[236]
Chanvorachote P, Pongrakhananon V, Wannachaiyasit S, Luanpitpong S, Rojanasakul Y, Nimmannit U. Curcumin sensitizes lung cancer cells to cisplatin-induced apoptosis through superoxide anion-mediated Bcl-2 degradation. Cancer Invest 2009; 27(6): 624-35.
[http://dx.doi.org/10.1080/07357900802653472] [PMID: 19283527]
[237]
Chan MM, Fong D, Soprano KJ, Holmes WF, Heverling H. Inhibition of growth and sensitization to cisplatin-mediated killing of ovarian cancer cells by polyphenolic chemopreventive agents. J Cell Physiol 2003; 194(1): 63-70.
[http://dx.doi.org/10.1002/jcp.10186] [PMID: 12447990]
[238]
Yu Y, Kanwar SS, Patel BB, Nautiyal J, Sarkar FH, Majumdar AP. Elimination of colon cancer stem-like cells by the combination of curcumin and FOLFOX. Transl Oncol 2009; 2(4): 321-8.
[http://dx.doi.org/10.1593/tlo.09193] [PMID: 19956394]
[239]
Sung B, Kunnumakkara AB, Sethi G, Anand P, Guha S, Aggarwal BB. Curcumin circumvents chemoresistance in vitro and potentiates the effect of thalidomide and bortezomib against human multiple myeloma in nude mice model. Mol Cancer Ther 2009; 8(4): 959-70.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0905] [PMID: 19372569]
[240]
Venkatesan N. Curcumin attenuation of acute adriamycin myocardial toxicity in rats. Br J Pharmacol 1998; 124(3): 425-7.
[http://dx.doi.org/10.1038/sj.bjp.0701877] [PMID: 9647462]
[241]
Bayet-Robert M, Kwiatkowski F, Leheurteur M, et al. Phase I dose escalation trial of docetaxel plus curcumin in patients with advanced and metastatic breast cancer. Cancer Biol Ther 2010; 9(1): 8-14.
[http://dx.doi.org/10.4161/cbt.9.1.10392] [PMID: 19901561]
[242]
Deeb D, Jiang H, Gao X, et al. Curcumin sensitizes prostate cancer cells to tumor necrosis factor-related apoptosis-inducing ligand/Apo2L by inhibiting nuclear factor-kappaB through suppression of IkappaBalpha phosphorylation. Mol Cancer Ther 2004; 3(7): 803-12.
[PMID: 15252141]
[243]
Deeb D, Xu YX, Jiang H, et al. Curcumin (diferuloyl-methane) enhances tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in LNCaP prostate cancer cells. Mol Cancer Ther 2003; 2(1): 95-103.
[PMID: 12533677]
[244]
Deeb DD, Jiang H, Gao X, Divine G, Dulchavsky SA, Gautam SC. Chemosensitization of hormone-refractory prostate cancer cells by curcumin to TRAIL-induced apoptosis. J Exp Ther Oncol 2005; 5(2): 81-91.
[PMID: 16471035]
[245]
Andrzejewski T, Deeb D, Gao X, et al. Therapeutic efficacy of curcumin/TRAIL combination regimen for hormone-refractory prostate cancer. Oncol Res 2008; 17(6): 257-67.
[http://dx.doi.org/10.3727/096504008786991611] [PMID: 19192720]
[246]
Shankar S, Ganapathy S, Chen Q, Srivastava RK. Curcumin sensitizes TRAIL-resistant xenografts: molecular mechanisms of apoptosis, metastasis and angiogenesis Mol Cancer 2008; 7: 16.
[http://dx.doi.org/10.1186/1476-4598-7-16] [PMID: 18226269]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy