Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

Rediscovering Potential Molecular Targets for Glioma Therapy Through the Analysis of the Cell of Origin, Microenvironment and Metabolism

Author(s): Xiaoran Guo, Tao Wang, Guohao Huang, Ruohan Li, Clive Da Costa, Huafu Li, Shengqing Lv* and Ningning Li*

Volume 21, Issue 7, 2021

Published on: 04 May, 2021

Page: [558 - 574] Pages: 17

DOI: 10.2174/1568009621666210504091722

Price: $65

Abstract

Gliomas are the most common type of malignant brain tumors. Despite significant medical advances, gliomas remain incurable and are associated with high mortality. Although numerous biomarkers of diagnostic value have been identified and significant progress in the prognosis of the outcome has been made, the treatment has not been parallelly improved during the last three decades. This review summarizes and discusses three aspects of recent discoveries related to glioma, with the objective to highlight the advantages of glioma-specific drugs targeting the cell of origin, microenvironment, and metabolism. Given the heterogeneous nature of gliomas, various cell populations have been implicated as likely sources of the tumor. Depending on the mutation(s) acquired by the cells, it is believed that neural stem/progenitor cells, oligodendrocyte progenitor cells, mature neurons, and glial cells can initiate cell transformation into a malignant phenotype. The level of tumorigenicity appears to be inversely correlated with the maturation of a given cell population. The microenvironment of gliomas includes non-cancer cells such as immune cells, fibroblasts, and cells of blood vessels, as well as secreted molecules and the extracellular matrix, and all these components play a vital role during tumor initiation and progression. We will discuss in detail how the tumor microenvironment can stimulate and drive the transformation of non-tumor cell populations into tumor-supporting cells or glioma cells. Metabolic reprogramming is a key feature of gliomas and is thought to reflect the adaptation to the increased nutritional requirements of tumor cell proliferation, growth, and survival. Mutations in the IDH gene can shape metabolic reprogramming and may generate some vulnerabilities in glioma cells, such as abnormal lipid metabolism and sensitivity to endoplasmic reticulum stress (ERS). We will analyze the prominent metabolic features of malignant gliomas and the key pathways regulating glioma metabolism. This review is intended to provide a conceptual background for the development of glioma therapies based on the properties of tumor cell populations, microenvironment, and metabolism.

Keywords: Glioma, microenvironment, lipid droplets, ER stress, drug target, metabolism.

Graphical Abstract

[1]
Müller Bark, J.; Kulasinghe, A.; Chua, B.; Day, B.W.; Punyadeera, C. Circulating biomarkers in patients with glioblastoma. Br. J. Cancer, 2020, 122(3), 295-305.
[http://dx.doi.org/10.1038/s41416-019-0603-6] [PMID: 31666668]
[2]
Visvader, J.E. Cells of origin in cancer. Nature, 2011, 469(7330), 314-322.
[http://dx.doi.org/10.1038/nature09781] [PMID: 21248838]
[3]
Louis, D.N.; Perry, A.; Reifenberger, G.; von Deimling, A.; Figarella-Branger, D.; Cavenee, W.K.; Ohgaki, H.; Wiestler, O.D.; Kleihues, P.; Ellison, D.W. The 2016 world health organization classification of tumors of the central nervous system: A summary. Acta Neuropathol., 2016, 131(6), 803-820.
[http://dx.doi.org/10.1007/s00401-016-1545-1] [PMID: 27157931]
[4]
Perry, J.R.; Laperriere, N.; O'Callaghan, C.J.; Brandes, A.A.; Menten, J.; Phillips, C.; Fay, M.; Nishikawa, R.; Cairncross, J.G.; Roa, W.; Osoba, D.; Rossiter, J.P.; Sahgal, A.; Hirte, H.; Laigle-Donadey, F.; Franceschi, E.; Chinot, O.; Golfinopoulos, V.; Fariselli, L.; Wick, A.; Feuvret, L.; Back, M.; Tills, M.; Winch, C.; Baumert, B.G.; Wick, W.; Ding, K.; Mason, W.P. Short-course radiation plus temozolomide in elderly patients with glioblastoma. 2017, 376, 1027-1037.
[http://dx.doi.org/10.1056/NEJMoa1611977]
[5]
Wick, W.; Gorlia, T.; Bendszus, M.; Taphoorn, M.; Sahm, F.; Harting, I.; Brandes, A.A.; Taal, W.; Domont, J.; Idbaih, A.; Campone, M.; Clement, P.M.; Stupp, R.; Fabbro, M.; Le Rhun, E.; Dubois, F.; Weller, M.; von Deimling, A.; Golfinopoulos, V.; Bromberg, J.C.; Platten, M.; Klein, M.; van den Bent, M.J. Lomustine and bevacizumab in progressive glioblastoma. 2017, 377, 1954-1963.
[http://dx.doi.org/10.1056/NEJMoa1707358]
[6]
Tomiyama, A.; Ichimura, K. Signal transduction pathways and resistance to targeted therapies in glioma. Semin. Cancer Biol., 2019, 58, 118-129.
[http://dx.doi.org/10.1016/j.semcancer.2019.01.004] [PMID: 30685341]
[7]
Zong, H.; Parada, L.F.; Baker, S.J. Cell of origin for malignant gliomas and its implication in therapeutic development. CSH Perspect Biol., 2015, 7, a020610.
[8]
Kriegstein, A.; Alvarez-Buylla, A. The glial nature of embryonic and adult neural stem cells. Annu. Rev. Neurosci., 2009, 32, 149-184.
[http://dx.doi.org/10.1146/annurev.neuro.051508.135600] [PMID: 19555289]
[9]
Friedmann-Morvinski, D.; Bushong, E.A.; Ke, E.; Soda, Y.; Marumoto, T.; Singer, O.; Ellisman, M.H.; Verma, I.M. Dedifferentiation of neurons and astrocytes by oncogenes can induce gliomas in mice. Science, 2012, 338(6110), 1080-1084.
[http://dx.doi.org/10.1126/science.1226929] [PMID: 23087000]
[10]
Goffart, N.; Kroonen, J.; Rogister, B. Glioblastoma-initiating cells: Relationship with neural stem cells and the micro-environment. Cancers (Basel), 2013, 5(3), 1049-1071.
[http://dx.doi.org/10.3390/cancers5031049] [PMID: 24202333]
[11]
Jacques, T.S.; Swales, A.; Brzozowski, M.J.; Henriquez, N.V.; Linehan, J.M.; Mirzadeh, Z.; O’ Malley, C.; Naumann, H.; Alvarez-Buylla, A.; Brandner, S. Combinations of genetic mutations in the adult neural stem cell compartment determine brain tumour phenotypes. EMBO J., 2010, 29(1), 222-235.
[http://dx.doi.org/10.1038/emboj.2009.327] [PMID: 19927122]
[12]
Li, N.; Zhang, Y.; Sidlauskas, K.; Ellis, M.; Evans, I.; Frankel, P.; Lau, J.; El-Hassan, T.; Guglielmi, L.; Broni, J.; Richard-Loendt, A.; Brandner, S. Inhibition of GPR158 by microRNA-449a suppresses neural lineage of glioma stem/progenitor cells and correlates with higher glioma grades. Oncogene, 2018, 37(31), 4313-4333.
[http://dx.doi.org/10.1038/s41388-018-0277-1] [PMID: 29720725]
[13]
Gonzalez, P.P.; Kim, J.; Galvao, R.P.; Cruickshanks, N.; Abounader, R.; Zong, H. p53 and NF 1 loss plays distinct but complementary roles in glioma initiation and progression. Glia, 2018, 66(5), 999-1015.
[http://dx.doi.org/10.1002/glia.23297] [PMID: 29392777]
[14]
Alessandrini, F.; Ceresa, D.; Appolloni, I.; Pagani, F.; Poliani, P.L.; Marubbi, D.; Malatesta, P. Glioblastoma models driven by different mutations converge to the proneural subtype. Cancer Lett., 2020, 469, 447-455.
[http://dx.doi.org/10.1016/j.canlet.2019.11.010] [PMID: 31733287]
[15]
Yuan, J.X.; Bafakih, F.F.; Mandell, J.W.; Horton, B.J.; Munson, J.M. Quantitative analysis of the cellular microenvironment of glioblastoma to develop predictive statistical models of overall survival. J. Neuropathol. Exp. Neurol., 2016, 75(12), 1110-1123.
[http://dx.doi.org/10.1093/jnen/nlw090] [PMID: 27815396]
[16]
Chen, Z.; Hambardzumyan, D. Immune microenvironment in glioblastoma subtypes. Front. Immunol., 2018, 9, 1004.
[http://dx.doi.org/10.3389/fimmu.2018.01004] [PMID: 29867979]
[17]
Sun, L.; Suo, C.; Li, S.T.; Zhang, H.; Gao, P. Metabolic reprogramming for cancer cells and their microenvironment: Beyond the Warburg effect. Biochim. Biophys. Acta Rev. Cancer, 2018, 1870(1), 51-66.
[http://dx.doi.org/10.1016/j.bbcan.2018.06.005] [PMID: 29959989]
[18]
Masui, K.; Onizuka, H.; Cavenee, W.K.; Mischel, P.S.; Shibata, N. Metabolic reprogramming in the pathogenesis of glioma: Update. Neuropathology, 2019, 39, 3-13.
[19]
Sanai, N.; Alvarez-Buylla, A.; Berger, M.S. Neural stem cells and the origin of gliomas. N. Engl. J. Med., 2005, 353(8), 811-822.
[http://dx.doi.org/10.1056/NEJMra043666] [PMID: 16120861]
[20]
Holland, E.C.; Celestino, J.; Dai, C.; Schaefer, L.; Sawaya, R.E.; Fuller, G.N. Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice. Nat. Genet., 2000, 25(1), 55-57.
[http://dx.doi.org/10.1038/75596] [PMID: 10802656]
[21]
Chow, L.M.L.; Endersby, R.; Zhu, X.; Rankin, S.; Qu, C.; Zhang, J.; Broniscer, A.; Ellison, D.W.; Baker, S.J. Cooperativity within and among Pten, p53, and Rb pathways induces high-grade astrocytoma in adult brain. Cancer Cell, 2011, 19(3), 305-316.
[http://dx.doi.org/10.1016/j.ccr.2011.01.039] [PMID: 21397855]
[22]
Alcantara Llaguno, S.; Sun, D.; Pedraza, A.M.; Vera, E.; Wang, Z.; Burns, D.K.; Parada, L.F. Cell-of-origin susceptibility to glioblastoma formation declines with neural lineage restriction. Nat. Neurosci., 2019, 22(4), 545-555.
[http://dx.doi.org/10.1038/s41593-018-0333-8] [PMID: 30778149]
[23]
Ligon, K.L.; Huillard, E.; Mehta, S.; Kesari, S.; Liu, H.; Alberta, J.A.; Bachoo, R.M.; Kane, M.; Louis, D.N.; Depinho, R.A.; Anderson, D.J.; Stiles, C.D.; Rowitch, D.H. Olig2-regulated lineage-restricted pathway controls replication competence in neural stem cells and malignant glioma. Neuron, 2007, 53(4), 503-517.
[http://dx.doi.org/10.1016/j.neuron.2007.01.009] [PMID: 17296553]
[24]
Dai, C.; Celestino, J.C.; Okada, Y.; Louis, D.N.; Fuller, G.N.; Holland, E.C. PDGF autocrine stimulation dedifferentiates cultured astrocytes and induces oligodendrogliomas and oligoastrocytomas from neural progenitors and astrocytes in vivo. Genes Dev., 2001, 15(15), 1913-1925.
[http://dx.doi.org/10.1101/gad.903001] [PMID: 11485986]
[25]
Persson, A.I.; Petritsch, C.; Swartling, F.J.; Itsara, M.; Sim, F.J.; Auvergne, R.; Goldenberg, D.D.; Vandenberg, S.R.; Nguyen, K.N.; Yakovenko, S.; Ayers-Ringler, J.; Nishiyama, A.; Stallcup, W.B.; Berger, M.S.; Bergers, G.; McKnight, T.R.; Goldman, S.A.; Weiss, W.A. Non-stem cell origin for oligodendroglioma. Cancer Cell, 2010, 18(6), 669-682.
[http://dx.doi.org/10.1016/j.ccr.2010.10.033] [PMID: 21156288]
[26]
Daynac, M.; Chouchane, M.; Collins, H.Y.; Murphy, N.E.; Andor, N.; Niu, J.; Fancy, S.P.J.; Stallcup, W.B.; Petritsch, C.K. Lgl1 controls NG2 endocytic pathway to regulate oligodendrocyte differentiation and asymmetric cell division and gliomagenesis. Nat. Commun., 2018, 9(1), 2862.
[http://dx.doi.org/10.1038/s41467-018-05099-3] [PMID: 30131568]
[27]
Liu, C.; Sage, J.C.; Miller, M.R.; Verhaak, R.G.W.; Hippenmeyer, S.; Vogel, H.; Foreman, O.; Bronson, R.T.; Nishiyama, A.; Luo, L.; Zong, H. Mosaic analysis with double markers reveals tumor cell of origin in glioma. Cell, 2011, 146(2), 209-221.
[http://dx.doi.org/10.1016/j.cell.2011.06.014] [PMID: 21737130]
[28]
Galvao, R.P.; Kasina, A.; McNeill, R.S.; Harbin, J.E.; Foreman, O.; Verhaak, R.G.W.; Nishiyama, A.; Miller, C.R.; Zong, H. Transformation of quiescent adult oligodendrocyte precursor cells into malignant glioma through a multistep reactivation process. Proc. Natl. Acad. Sci. USA, 2014, 111(40), E4214-E4223.
[http://dx.doi.org/10.1073/pnas.1414389111] [PMID: 25246577]
[29]
Solga, A.C.; Toonen, J.A.; Pan, Y.; Cimino, P.J.; Ma, Y.; Castillon, G.A.; Gianino, S.M.; Ellisman, M.H.; Lee, D.Y.; Gutmann, D.H. The cell of origin dictates the temporal course of neurofibromatosis-1 (Nf1) low-grade glioma formation. Oncotarget, 2017, 8(29), 47206-47215.
[http://dx.doi.org/10.18632/oncotarget.17589] [PMID: 28525381]
[30]
Hide, T.; Takezaki, T.; Nakatani, Y.; Nakamura, H.; Kuratsu, J.; Kondo, T. Combination of a ptgs2 inhibitor and an epidermal growth factor receptor-signaling inhibitor prevents tumorigenesis of oligodendrocyte lineage-derived glioma-initiating cells. Stem Cells, 2011, 29(4), 590-599.
[http://dx.doi.org/10.1002/stem.618] [PMID: 21360625]
[31]
Sena, I.F.G.; Paiva, A.E.; Prazeres, P.H.D.M.; Azevedo, P.O.; Lousado, L.; Bhutia, S.K.; Salmina, A.B.; Mintz, A.; Birbrair, A. Glioblastoma-activated pericytes support tumor growth via immunosuppression. Cancer Med., 2018, 7(4), 1232-1239.
[http://dx.doi.org/10.1002/cam4.1375] [PMID: 29479841]
[32]
Poon, C.C.; Sarkar, S.; Yong, V.W.; Kelly, J.J.P. Glioblastoma-associated microglia and macrophages: Targets for therapies to improve prognosis. Brain, 2017, 140(6), 1548-1560.
[http://dx.doi.org/10.1093/brain/aww355] [PMID: 28334886]
[33]
Roesch, S.; Rapp, C.; Dettling, S.; Herold-Mende, C. When immune cells turn bad-tumor-associated microglia/macrophages in glioma. Int. J. Mol. Sci., 2018, 19(2), 19.
[http://dx.doi.org/10.3390/ijms19020436] [PMID: 29389898]
[34]
Kennedy, B.C.; Showers, C.R.; Anderson, D.E.; Anderson, L.; Canoll, P.; Bruce, J.N.; Anderson, R.C.E. Tumor-associated macrophages in glioma: friend or foe? J. Oncol., 2013, 2013, 486912.
[http://dx.doi.org/10.1155/2013/486912] [PMID: 23737783]
[35]
Hambardzumyan, D.; Gutmann, D.H.; Kettenmann, H. The role of microglia and macrophages in glioma maintenance and progression. Nat. Neurosci., 2016, 19(1), 20-27.
[http://dx.doi.org/10.1038/nn.4185] [PMID: 26713745]
[36]
Hide, T.; Komohara, Y.; Miyasato, Y.; Nakamura, H.; Makino, K.; Takeya, M.; Kuratsu, J.I.; Mukasa, A.; Yano, S. Oligodendrocyte progenitor cells and macrophages/microglia produce glioma stem cell niches at the tumor border. EBioMedicine, 2018, 30, 94-104.
[http://dx.doi.org/10.1016/j.ebiom.2018.02.024] [PMID: 29559295]
[37]
You, H.; Baluszek, S.; Kaminska, B. Immune microenvironment of brain metastases-are microglia and other brain macrophages little helpers? Front. Immunol., 2019, 10, 1941.
[http://dx.doi.org/10.3389/fimmu.2019.01941] [PMID: 31481958]
[38]
Gutmann, D.H.; Kettenmann, H. Microglia/brain macrophages as central drivers of brain tumor pathobiology. Neuron, 2019, 104(3), 442-449.
[http://dx.doi.org/10.1016/j.neuron.2019.08.028] [PMID: 31697921]
[39]
Yoshimura, T.; Yuhki, N.; Moore, S.K.; Appella, E.; Lerman, M.I.; Leonard, E.J. Human monocyte chemoattractant protein-1 (MCP-1). Full-length cDNA cloning, expression in mitogen-stimulated blood mononuclear leukocytes, and sequence similarity to mouse competence gene JE. FEBS Lett., 1989, 244, 487-493.
[40]
Jung, Y.; Ahn, S.; Park, H.; Park, S.H.; Choi, K.; Choi, C.; Kang, J.L.; Choi, Y. MCP-1 and MIP-3α secreted from necrotic Cell-Treated glioblastoma cells promote Migration/Infiltration of microglia. Cell. Physiol. Biochem., 2018, 48, 1332-1346.
[41]
Okada, M.; Saio, M.; Kito, Y.; Ohe, N.; Yano, H.; Yoshimura, S.; Iwama, T.; Takami, T. Tumor-associated macrophage/microglia infiltration in human gliomas is correlated with MCP-3, but not MCP-1. Int. J. Oncol., 2009, 34(6), 1621-1627.
[PMID: 19424580]
[42]
Wang, S.C.; Hong, J.H.; Hsueh, C.; Chiang, C.S. Tumor-secreted SDF-1 promotes glioma invasiveness and TAM tropism toward hypoxia in a murine astrocytoma model. Lab. Invest., 2012, 92(1), 151-162.
[http://dx.doi.org/10.1038/labinvest.2011.128] [PMID: 21894147]
[43]
Ku, M.C.; Wolf, S.A.; Respondek, D.; Matyash, V.; Pohlmann, A.; Waiczies, S.; Waiczies, H.; Niendorf, T.; Synowitz, M.; Glass, R.; Kettenmann, H. GDNF mediates glioblastoma-induced microglia attraction but not astrogliosis. Acta Neuropathol., 2013, 125(4), 609-620.
[http://dx.doi.org/10.1007/s00401-013-1079-8] [PMID: 23344256]
[44]
Coniglio, S.J.; Eugenin, E.; Dobrenis, K.; Stanley, E.R.; West, B.L.; Symons, M.H.; Segall, J.E. Microglial stimulation of glioblastoma invasion involves epidermal growth factor receptor (EGFR) and colony stimulating factor 1 receptor (CSF-1R) signaling. Mol. Med., 2012, 18, 519-527.
[http://dx.doi.org/10.2119/molmed.2011.00217] [PMID: 22294205]
[45]
Szulzewsky, F.; Schwendinger, N.; Güneykaya, D.; Cimino, P.J.; Hambardzumyan, D.; Synowitz, M.; Holland, E.C.; Kettenmann, H. Loss of host-derived osteopontin creates a glioblastoma-promoting microenvironment. Neuro-oncol., 2018, 20(3), 355-366.
[http://dx.doi.org/10.1093/neuonc/nox165] [PMID: 29016864]
[46]
De Clercq, E. Mozobil® (Plerixafor, AMD3100), 10 years after its approval by the US food and drug administration. Antivir. Chem. Chemother., 2019, 27, 2040206619829382.
[http://dx.doi.org/10.1177/2040206619829382] [PMID: 30776910]
[47]
Bayerl, S.H.; Niesner, R.; Cseresnyes, Z.; Radbruch, H.; Pohlan, J.; Brandenburg, S.; Czabanka, M.A.; Vajkoczy, P. Time lapse in vivo microscopy reveals distinct dynamics of microglia-tumor environment interactions-a new role for the tumor perivascular space as highway for trafficking microglia. Glia, 2016, 64(7), 1210-1226.
[http://dx.doi.org/10.1002/glia.22994] [PMID: 27143298]
[48]
Kim, J.K.; Jin, X.; Sohn, Y.W.; Jin, X.; Jeon, H.Y.; Kim, E.J.; Ham, S.W.; Jeon, H.M.; Chang, S.Y.; Oh, S.Y.; Yin, J.; Kim, S.H.; Park, J.B.; Nakano, I.; Kim, H. Tumoral RANKL activates astrocytes that promote glioma cell invasion through cytokine signaling. Cancer Lett., 2014, 353(2), 194-200.
[http://dx.doi.org/10.1016/j.canlet.2014.07.034] [PMID: 25079688]
[49]
Chen, W.; Xia, T.; Wang, D.; Huang, B.; Zhao, P.; Wang, J.; Qu, X.; Li, X. Human astrocytes secrete IL-6 to promote glioma migration and invasion through upregulation of cytomembrane MMP14. Oncotarget, 2016, 7(38), 62425-62438.
[http://dx.doi.org/10.18632/oncotarget.11515] [PMID: 27613828]
[50]
Yi, M.H.; Zhang, E.; Baek, H.; Kim, S.; Shin, N.; Kang, J.W.; Lee, S.; Oh, S.H.; Kim, D.W. Growth differentiation factor 15 expression in astrocytes after excitotoxic lesion in the mouse hippocampus. Exp. Neurobiol., 2015, 24(2), 133-138.
[http://dx.doi.org/10.5607/en.2015.24.2.133] [PMID: 26113792]
[51]
Roth, P.; Junker, M.; Tritschler, I.; Mittelbronn, M.; Dombrowski, Y.; Breit, S.N.; Tabatabai, G.; Wick, W.; Weller, M.; Wischhusen, J. GDF-15 contributes to proliferation and immune escape of malignant gliomas. Clin. Cancer Res., 2010, 16, 3851-3859.
[52]
Madathil, S.K.; Carlson, S.W.; Brelsfoard, J.M.; Ye, P.; D’Ercole, A.J.; Saatman, K.E. Astrocyte-specific overexpression of Insulin- like growth factor-1 protects hippocampal neurons and reduces behavioral deficits following traumatic brain injury in mice. PLoS One, 2013, 8(6), e67204.
[http://dx.doi.org/10.1371/journal.pone.0067204] [PMID: 23826235]
[53]
Henrik Heiland, D.; Ravi, V.M.; Behringer, S.P.; Frenking, J.H.; Wurm, J.; Joseph, K.; Garrelfs, N.W.C.; Strähle, J.; Heynckes, S.; Grauvogel, J.; Franco, P.; Mader, I.; Schneider, M.; Potthoff, A.L.; Delev, D.; Hofmann, U.G.; Fung, C.; Beck, J.; Sankowski, R.; Prinz, M.; Schnell, O. Tumor-associated reactive astrocytes aid the evolution of immunosuppressive environment in glioblastoma. Nat. Commun., 2019, 10(1), 2541.
[http://dx.doi.org/10.1038/s41467-019-10493-6] [PMID: 31186414]
[54]
Venkatesh, H.S.; Tam, L.T.; Woo, P.J.; Lennon, J.; Nagaraja, S.; Gillespie, S.M.; Ni, J.; Duveau, D.Y.; Morris, P.J.; Zhao, J.J.; Thomas, C.J.; Monje, M. Targeting neuronal activity-regulated neuroligin-3 dependency in high-grade glioma. Nature, 2017, 549(7673), 533-537.
[http://dx.doi.org/10.1038/nature24014] [PMID: 28959975]
[55]
Venkataramani, V.; Tanev, D.I.; Strahle, C.; Studier-Fischer, A.; Fankhauser, L.; Kessler, T.; Körber, C.; Kardorff, M.; Ratliff, M.; Xie, R.; Horstmann, H.; Messer, M.; Paik, S.P.; Knabbe, J.; Sahm, F.; Kurz, F.T.; Acikgöz, A.A.; Herrmannsdörfer, F.; Agarwal, A.; Bergles, D.E.; Chalmers, A.; Miletic, H.; Turcan, S.; Mawrin, C.; Hänggi, D.; Liu, H.K.; Wick, W.; Winkler, F.; Kuner, T. Glutamatergic synaptic input to glioma cells drives brain tumour progression. Nature, 2019, 573(7775), 532-538.
[http://dx.doi.org/10.1038/s41586-019-1564-x] [PMID: 31534219]
[56]
Venkatesh, H.S.; Morishita, W.; Geraghty, A.C.; Silverbush, D.; Gillespie, S.M.; Arzt, M.; Tam, L.T.; Espenel, C.; Ponnuswami, A.; Ni, L.; Woo, P.J.; Taylor, K.R.; Agarwal, A.; Regev, A.; Brang, D.; Vogel, H.; Hervey-Jumper, S.; Bergles, D.E.; Suvà, M.L.; Malenka, R.C.; Monje, M. Electrical and synaptic integration of glioma into neural circuits. Nature, 2019, 573(7775), 539-545.
[http://dx.doi.org/10.1038/s41586-019-1563-y] [PMID: 31534222]
[57]
Pottegård, A.; García Rodríguez, L.A.; Rasmussen, L.; Damkier, P.; Friis, S.; Gaist, D. Use of tricyclic antidepressants and risk of glioma: A nationwide case-control study. 2016, 114, 1265-1268.
[http://dx.doi.org/10.1038/bjc.2016.109]
[58]
Diamandis, P.; Sacher, A.G.; Tyers, M.; Dirks, P.B. New drugs for brain tumors? Insights from chemical probing of neural stem cells. Med. Hypotheses, 2009, 72(6), 683-687.
[http://dx.doi.org/10.1016/j.mehy.2008.10.034] [PMID: 19261391]
[59]
Dolma, S.; Selvadurai, H.J.; Lan, X.; Lee, L.; Kushida, M.; Voisin, V.; Whetstone, H.; So, M.; Aviv, T.; Park, N.; Zhu, X.; Xu, C.; Head, R.; Rowland, K.J.; Bernstein, M.; Clarke, I.D.; Bader, G.; Harrington, L.; Brumell, J.H.; Tyers, M.; Dirks, P.B. Inhibition of dopamine receptor d4 impedes autophagic flux, proliferation, and survival of glioblastoma stem cells. Cancer Cell, 2016, 29(6), 859-873.
[http://dx.doi.org/10.1016/j.ccell.2016.05.002] [PMID: 27300435]
[60]
Caragher, S.P.; Shireman, J.M.; Huang, M.; Miska, J.; Atashi, F.; Baisiwala, S.; Hong Park, C.; Saathoff, M.R.; Warnke, L.; Xiao, T.; Lesniak, M.S.; James, C.D.; Meltzer, H.; Tryba, A.K.; Ahmed, A.U. Activation of dopamine receptor 2 prompts transcriptomic and metabolic plasticity in glioblastoma. J. Neurosci., 2019, 39(11), 1982-1993.
[http://dx.doi.org/10.1523/JNEUROSCI.1589-18.2018] [PMID: 30651332]
[61]
Thompson, E.G.; Sontheimer, H. Acetylcholine receptor activation as a modulator of glioblastoma invasion. Cells-Basel, 2019, 8.
[62]
Cabarcas, S.M.; Mathews, L.A.; Farrar, W.L. The cancer stem cell niche-there goes the neighborhood? Int. J. Cancer, 2011, 129(10), 2315-2327.
[http://dx.doi.org/10.1002/ijc.26312] [PMID: 21792897]
[63]
Jawhari, S.; Ratinaud, M.H.; Verdier, M. Glioblastoma, hypoxia and autophagy: A survival-prone ‘ménage-à-trois’. Cell Death Dis., 2016, 7(10), e2434.
[http://dx.doi.org/10.1038/cddis.2016.318] [PMID: 27787518]
[64]
Lee, G.; Auffinger, B.; Guo, D.; Hasan, T.; Deheeger, M.; Tobias, A.L.; Kim, J.Y.; Atashi, F.; Zhang, L.; Lesniak, M.S.; James, C.D.; Ahmed, A.U. Dedifferentiation of glioma cells to glioma stem-like cells by therapeutic stress-induced HIF signaling in the recurrent GBM model. Mol. Cancer Ther., 2016, 15(12), 3064-3076.
[http://dx.doi.org/10.1158/1535-7163.MCT-15-0675] [PMID: 27765847]
[65]
Sun, X.; Ma, X.; Wang, J.; Zhao, Y.; Wang, Y.; Bihl, J.C.; Chen, Y.; Jiang, C. Glioma stem cells-derived exosomes promote the angiogenic ability of endothelial cells through miR-21/VEGF signal. Oncotarget, 2017, 8(22), 36137-36148.
[http://dx.doi.org/10.18632/oncotarget.16661] [PMID: 28410224]
[66]
Mastrella, G.; Hou, M.; Li, M.; Stoecklein, V.M.; Zdouc, N.; Volmar, M.N.M.; Miletic, H.; Reinhard, S.; Herold-Mende, C.C.; Kleber, S.; Eisenhut, K.; Gargiulo, G.; Synowitz, M.; Vescovi, A.L.; Harter, P.N.; Penninger, J.M.; Wagner, E.; Mittelbronn, M.; Bjerkvig, R.; Hambardzumyan, D.; Schüller, U.; Tonn, J.C.; Radke, J.; Glass, R.; Kälin, R.E. Targeting APLN/APLNR improves antiangiogenic efficiency and blunts proinvasive side effects of VEGFA/VEGFR2 blockade in glioblastoma. Cancer Res., 2019, 79(9), 2298-2313.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-0881] [PMID: 30718358]
[67]
Camorani, S.; Esposito, C.L.; Rienzo, A.; Catuogno, S.; Iaboni, M.; Condorelli, G.; de Franciscis, V.; Cerchia, L. Inhibition of receptor signaling and of glioblastoma-derived tumor growth by a novel PDGFRβ aptamer. Mol. Ther., 2014, 22, 828-841.
[http://dx.doi.org/10.1038/mt.2013.300]
[68]
Valdor, R.; García-Bernal, D.; Riquelme, D.; Martinez, C.M.; Moraleda, J.M.; Cuervo, A.M.; Macian, F.; Martinez, S. Glioblastoma ablates pericytes antitumor immune function through aberrant up-regulation of chaperone-mediated autophagy. Proc. Natl. Acad. Sci. USA, 2019, 116(41), 20655-20665.
[http://dx.doi.org/10.1073/pnas.1903542116] [PMID: 31548426]
[69]
Valdor, R.; García-Bernal, D.; Bueno, C.; Ródenas, M.; Moraleda, J.M.; Macian, F.; Martínez, S. Glioblastoma progression is assisted by induction of immunosuppressive function of pericytes through interaction with tumor cells. Oncotarget, 2017, 8(40), 68614-68626.
[http://dx.doi.org/10.18632/oncotarget.19804] [PMID: 28978142]
[70]
Gaceb, A.; Barbariga, M.; Özen, I.; Paul, G. The pericyte secretome: Potential impact on regeneration. Biochimie, 2018, 155, 16-25.
[http://dx.doi.org/10.1016/j.biochi.2018.04.015] [PMID: 29698670]
[71]
Xu, W.; Yang, H.; Liu, Y.; Yang, Y.; Wang, P.; Kim, S.H.; Ito, S.; Yang, C.; Wang, P.; Xiao, M.T.; Liu, L.X.; Jiang, W.Q.; Liu, J.; Zhang, J.Y.; Wang, B.; Frye, S.; Zhang, Y.; Xu, Y.H.; Lei, Q.Y.; Guan, K.L.; Zhao, S.M.; Xiong, Y. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. Cancer Cell, 2011, 19(1), 17-30.
[http://dx.doi.org/10.1016/j.ccr.2010.12.014] [PMID: 21251613]
[72]
Turcan, S.; Rohle, D.; Goenka, A.; Walsh, L.A.; Fang, F.; Yilmaz, E.; Campos, C.; Fabius, A.W.M.; Lu, C.; Ward, P.S.; Thompson, C.B.; Kaufman, A.; Guryanova, O.; Levine, R.; Heguy, A.; Viale, A.; Morris, L.G.T.; Huse, J.T.; Mellinghoff, I.K.; Chan, T.A. IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature, 2012, 483(7390), 479-483.
[http://dx.doi.org/10.1038/nature10866] [PMID: 22343889]
[73]
Lu, C.; Ward, P.S.; Kapoor, G.S.; Rohle, D.; Turcan, S.; Abdel-Wahab, O.; Edwards, C.R.; Khanin, R.; Figueroa, M.E.; Melnick, A.; Wellen, K.E.; O’Rourke, D.M.; Berger, S.L.; Chan, T.A.; Levine, R.L.; Mellinghoff, I.K.; Thompson, C.B. IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature, 2012, 483(7390), 474-478.
[http://dx.doi.org/10.1038/nature10860] [PMID: 22343901]
[74]
Sasaki, M.; Knobbe, C.B.; Itsumi, M.; Elia, A.J.; Harris, I.S.; Chio, I.I.C.; Cairns, R.A.; McCracken, S.; Wakeham, A.; Haight, J.; Ten, A.Y.; Snow, B.; Ueda, T.; Inoue, S.; Yamamoto, K.; Ko, M.; Rao, A.; Yen, K.E.; Su, S.M.; Mak, T.W. D-2-hydroxyglutarate produced by mutant IDH1 perturbs collagen maturation and basement membrane function. Genes Dev., 2012, 26(18), 2038-2049.
[http://dx.doi.org/10.1101/gad.198200.112] [PMID: 22925884]
[75]
Su, R.; Dong, L.; Li, C.; Nachtergaele, S.; Wunderlich, M.; Qing, Y.; Deng, X.; Wang, Y.; Weng, X.; Hu, C.; Yu, M.; Skibbe, J.; Dai, Q.; Zou, D.; Wu, T.; Yu, K.; Weng, H.; Huang, H.; Ferchen, K.; Qin, X.; Zhang, B.; Qi, J.; Sasaki, A.T.; Plas, D.R.; Bradner, J.E.; Wei, M.; Marcucci, G.; Jiang, X.; Mulloy, J.C.; Jin, J.; He, C.; Chen, J. R-2HG exhibits anti-tumor activity by targeting FTO/m(6)A/MYC/CEBPA signaling. Cell, 2018, 172(1-2), 90-105.e23.
[http://dx.doi.org/10.1016/j.cell.2017.11.031] [PMID: 29249359]
[76]
Losman, J.A.; Looper, R.E.; Koivunen, P.; Lee, S.; Schneider, R.K.; McMahon, C.; Cowley, G.S.; Root, D.E.; Ebert, B.L.; Kaelin, W.G.J., Jr (R)-2-hydroxyglutarate is sufficient to promote leukemogenesis and its effects are reversible. Science, 2013, 339(6127), 1621-1625.
[http://dx.doi.org/10.1126/science.1231677] [PMID: 23393090]
[77]
Zhang, Y.; Pusch, S.; Innes, J.; Sidlauskas, K.; Ellis, M.; Lau, J.; El-Hassan, T.; Aley, N.; Launchbury, F.; Richard-Loendt, A.; deBoer, J.; Chen, S.; Wang, L.; von Deimling, A.; Li, N.; Brandner, S. Mutant IDH sensitizes gliomas to endoplasmic reticulum stress and triggers apoptosis via miR-183-Mediated inhibition of semaphorin 3E. Cancer Res., 2019, 79(19), 4994-5007.
[http://dx.doi.org/10.1158/0008-5472.CAN-19-0054] [PMID: 31391185]
[78]
Philip, B.; Yu, D.X.; Silvis, M.R.; Shin, C.H.; Robinson, J.P.; Robinson, G.L.; Welker, A.E.; Angel, S.N.; Tripp, S.R.; Sonnen, J.A.; VanBrocklin, M.W.; Gibbons, R.J.; Looper, R.E.; Colman, H.; Holmen, S.L. Mutant IDH1 promotes glioma formation in vivo. Cell Rep., 2018, 23(5), 1553-1564.
[http://dx.doi.org/10.1016/j.celrep.2018.03.133] [PMID: 29719265]
[79]
Thorne, A.H.; Zanca, C.; Furnari, F. Epidermal growth factor receptor targeting and challenges in glioblastoma. Neuro-oncol., 2016, 18(7), 914-918.
[http://dx.doi.org/10.1093/neuonc/nov319] [PMID: 26755074]
[80]
Huang, K.; Liu, X.; Li, Y.; Wang, Q.; Zhou, J.; Wang, Y.; Dong, F.; Yang, C.; Sun, Z.; Fang, C.; Liu, C.; Tan, Y.; Wu, X.; Jiang, T.; Kang, C. Genome-Wide CRISPR-Cas9 screening identifies NF-κB/E2F6 responsible for EGFRvIII-Associated temozolomide resistance in glioblastoma. Adv. Sci., 2019, 6, 1900782.
[81]
Fan, X.; Mikolaenko, I.; Elhassan, I.; Ni, X.; Wang, Y.; Ball, D.; Brat, D.J.; Perry, A.; Eberhart, C.G. Notch1 and notch2 have opposite effects on embryonal brain tumor growth. Cancer Res., 2004, 64(21), 7787-7793.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-1446] [PMID: 15520184]
[82]
Zavadil, J.; Cermak, L.; Soto-Nieves, N.; Böttinger, E.P. Integration of TGF-beta/Smad and Jagged1/Notch signalling in epithelial-to-mesenchymal transition. EMBO J., 2004, 23(5), 1155-1165.
[http://dx.doi.org/10.1038/sj.emboj.7600069] [PMID: 14976548]
[83]
Ma, Y.; Hendershot, L.M. The role of the unfolded protein response in tumour development: friend or foe? Nat. Rev. Cancer, 2004, 4(12), 966-977.
[http://dx.doi.org/10.1038/nrc1505] [PMID: 15573118]
[84]
Schröder, M.; Kaufman, R.J. The mammalian unfolded protein response. Annu. Rev. Biochem., 2005, 74, 739-789.
[http://dx.doi.org/10.1146/annurev.biochem.73.011303.074134] [PMID: 15952902]
[85]
Song, S.; Tan, J.; Miao, Y.; Zhang, Q. Crosstalk of ER stress-mediated autophagy and ER-phagy: Involvement of UPR and the core autophagy machinery. J. Cell. Physiol., 2018, 233(5), 3867-3874.
[http://dx.doi.org/10.1002/jcp.26137] [PMID: 28777470]
[86]
Oyadomari, S.; Mori, M. Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ., 2004, 11(4), 381-389.
[http://dx.doi.org/10.1038/sj.cdd.4401373] [PMID: 14685163]
[87]
Atkins, C.; Liu, Q.; Minthorn, E.; Zhang, S.Y.; Figueroa, D.J.; Moss, K.; Stanley, T.B.; Sanders, B.; Goetz, A.; Gaul, N.; Choudhry, A.E.; Alsaid, H.; Jucker, B.M.; Axten, J.M.; Kumar, R. Characterization of a novel PERK kinase inhibitor with antitumor and antiangiogenic activity. Cancer Res., 2013, 73(6), 1993-2002.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-3109] [PMID: 23333938]
[88]
Nawrocki, S.T.; Carew, J.S.; Pino, M.S.; Highshaw, R.A.; Dunner, K., Jr.; Huang, P.; Abbruzzese, J.L.; McConkey, D.J. Bortezomib sensitizes pancreatic cancer cells to endoplasmic reticulum stress-mediated apoptosis. Cancer Res., 2005, 65(24), 11658-11666.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-2370] [PMID: 16357177]
[89]
Venneti, S.; Thompson, C.B. Metabolic reprogramming in brain tumors. Annu. Rev. Pathol., 2017, 12, 515-545.
[http://dx.doi.org/10.1146/annurev-pathol-012615-044329] [PMID: 28068482]
[90]
Pavlova, N.N.; Thompson, C.B. The emerging hallmarks of cancer metabolism. Cell Metab., 2016, 23(1), 27-47.
[http://dx.doi.org/10.1016/j.cmet.2015.12.006] [PMID: 26771115]
[91]
Marin-Valencia, I.; Yang, C.; Mashimo, T.; Cho, S.; Baek, H.; Yang, X.L.; Rajagopalan, K.N.; Maddie, M.; Vemireddy, V.; Zhao, Z.; Cai, L.; Good, L.; Tu, B.P.; Hatanpaa, K.J.; Mickey, B.E.; Matés, J.M.; Pascual, J.M.; Maher, E.A.; Malloy, C.R.; Deberardinis, R.J.; Bachoo, R.M. Analysis of tumor metabolism reveals mitochondrial glucose oxidation in genetically diverse human glioblastomas in the mouse brain in vivo. Cell Metab., 2012, 15(6), 827-837.
[http://dx.doi.org/10.1016/j.cmet.2012.05.001] [PMID: 22682223]
[92]
Tardito, S.; Oudin, A.; Ahmed, S.U.; Fack, F.; Keunen, O.; Zheng, L.; Miletic, H.; Sakariassen, P.Ø.; Weinstock, A.; Wagner, A.; Lindsay, S.L.; Hock, A.K.; Barnett, S.C.; Ruppin, E.; Mørkve, S.H.; Lund-Johansen, M.; Chalmers, A.J.; Bjerkvig, R.; Niclou, S.P.; Gottlieb, E. Glutamine synthetase activity fuels nucleotide biosynthesis and supports growth of glutamine-restricted glioblastoma. Nat. Cell Biol., 2015, 17(12), 1556-1568.
[http://dx.doi.org/10.1038/ncb3272] [PMID: 26595383]
[93]
Dang, L.; White, D.W.; Gross, S.; Bennett, B.D.; Bittinger, M.A.; Driggers, E.M.; Fantin, V.R.; Jang, H.G.; Jin, S.; Keenan, M.C.; Marks, K.M.; Prins, R.M.; Ward, P.S.; Yen, K.E.; Liau, L.M.; Rabinowitz, J.D.; Cantley, L.C.; Thompson, C.B.; Vander Heiden, M.G.; Su, S.M. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature, 2009, 462(7274), 739-744.
[http://dx.doi.org/10.1038/nature08617] [PMID: 19935646]
[94]
Salamanca-Cardona, L.; Shah, H.; Poot, A.J.; Correa, F.M.; Di Gialleonardo, V.; Lui, H.; Miloushev, V.Z.; Granlund, K.L.; Tee, S.S.; Cross, J.R.; Thompson, C.B.; Keshari, K.R. In vivo imaging of glutamine metabolism to the IDH1/2 mutant tumors. Cell Metab., 2017, 26, 830-841.
[http://dx.doi.org/10.1016/j.cmet.2017.10.001] [PMID: 29056515]
[95]
Dietschy, J.M. Central nervous system: Cholesterol turnover, brain development and neurodegeneration. Biol. Chem., 2009, 390(4), 287-293.
[http://dx.doi.org/10.1515/BC.2009.035] [PMID: 19166320]
[96]
Villa, G.R.; Hulce, J.J.; Zanca, C.; Bi, J.; Ikegami, S.; Cahill, G.L.; Gu, Y.; Lum, K.M.; Masui, K.; Yang, H.; Rong, X.; Hong, C.; Turner, K.M.; Liu, F.; Hon, G.C.; Jenkins, D.; Martini, M.; Armando, A.M.; Quehenberger, O.; Cloughesy, T.F.; Furnari, F.B.; Cavenee, W.K.; Tontonoz, P.; Gahman, T.C.; Shiau, A.K.; Cravatt, B.F.; Mischel, P.S. An LXR-cholesterol axis creates a metabolic Co-dependency for brain cancers. 2016, 30, 683-693.
[http://dx.doi.org/10.1016/j.ccell.2016.09.008]
[97]
Welte, M.A.; Gould, A.P. Lipid droplet functions beyond energy storage. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2017, 1862(10 Pt B), 1260-1272.
[http://dx.doi.org/10.1016/j.bbalip.2017.07.006] [PMID: 28735096]
[98]
Olzmann, J.A.; Carvalho, P. Dynamics and functions of lipid droplets. Nat. Rev. Mol. Cell Biol., 2019, 20(3), 137-155.
[http://dx.doi.org/10.1038/s41580-018-0085-z] [PMID: 30523332]
[99]
Fei, W.; Wang, H.; Fu, X.; Bielby, C.; Yang, H. Conditions of endoplasmic reticulum stress stimulate lipid droplet formation in Saccharomyces cerevisiae. Biochem. J., 2009, 424(1), 61-67.
[http://dx.doi.org/10.1042/BJ20090785] [PMID: 19708857]
[100]
Velázquez, A.P.; Tatsuta, T.; Ghillebert, R.; Drescher, I.; Graef, M. Lipid droplet-mediated ER homeostasis regulates autophagy and cell survival during starvation. J. Cell Biol., 2016, 212(6), 621-631.
[http://dx.doi.org/10.1083/jcb.201508102] [PMID: 26953354]
[101]
Mukhopadhyay, S.; Schlaepfer, I.R.; Bergman, B.C.; Panda, P.K.; Praharaj, P.P.; Naik, P.P.; Agarwal, R.; Bhutia, S.K. ATG14 facilitated lipophagy in cancer cells induce ER stress mediated mitoptosis through a ROS dependent pathway. Free Radic. Biol. Med., 2017, 104, 199-213.
[http://dx.doi.org/10.1016/j.freeradbiomed.2017.01.007] [PMID: 28069524]
[102]
Bosma, M.; Dapito, D.H.; Drosatos-Tampakaki, Z.; Huiping-Son, N.; Huang, L.S.; Kersten, S.; Drosatos, K.; Goldberg, I.J. Sequestration of fatty acids in triglycerides prevents endoplasmic reticulum stress in an in vitro model of cardiomyocyte lipotoxicity. Biochim. Biophys. Acta, 2014, 1841(12), 1648-1655.
[http://dx.doi.org/10.1016/j.bbalip.2014.09.012] [PMID: 25251292]
[103]
Barba, I.; Chavarria, L.; Ruiz-Meana, M.; Mirabet, M.; Agulló, E.; Garcia-Dorado, D. Effect of intracellular lipid droplets on cytosolic Ca2+ and cell death during ischaemia-reperfusion injury in cardiomyocytes. J. Physiol., 2009, 587(Pt 6), 1331-1341.
[http://dx.doi.org/10.1113/jphysiol.2008.163311] [PMID: 19188253]
[104]
Taïb, B.; Aboussalah, A.M.; Moniruzzaman, M.; Chen, S.; Haughey, N.J.; Kim, S.F.; Ahima, R.S. Lipid accumulation and oxidation in glioblastoma multiforme. Sci. Rep., 2019, 9(1), 19593.
[http://dx.doi.org/10.1038/s41598-019-55985-z] [PMID: 31863022]
[105]
Tameire, F.; Verginadis, I.I.; Koumenis, C. Cell intrinsic and extrinsic activators of the unfolded protein response in cancer: Mechanisms and targets for therapy. Semin. Cancer Biol., 2015, 33, 3-15.
[http://dx.doi.org/10.1016/j.semcancer.2015.04.002] [PMID: 25920797]
[106]
Reitman, Z.J.; Jin, G.; Karoly, E.D.; Spasojevic, I.; Yang, J.; Kinzler, K.W.; He, Y.; Bigner, D.D.; Vogelstein, B.; Yan, H. Profiling the effects of isocitrate dehydrogenase 1 and 2 mutations on the cellular metabolome. Proc. Natl. Acad. Sci. USA, 2011, 108(8), 3270-3275.
[http://dx.doi.org/10.1073/pnas.1019393108] [PMID: 21289278]
[107]
Taft, R.J.; Pang, K.C.; Mercer, T.R.; Dinger, M.; Mattick, J.S. Non-coding RNAs: regulators of disease. J. Pathol., 2010, 220(2), 126-139.
[http://dx.doi.org/10.1002/path.2638] [PMID: 19882673]
[108]
Huang, G.H.; Du, L.; Li, N.; Zhang, Y.; Xiang, Y.; Tang, J.H.; Xia, S.; Zhang, E.E.; Lv, S.Q. Methylation-mediated miR-155- FAM133A axis contributes to the attenuated invasion and migration of IDH mutant gliomas. Cancer Lett., 2018, 432, 93-102.
[http://dx.doi.org/10.1016/j.canlet.2018.06.007] [PMID: 29885519]
[109]
Shi, J.; Dong, B.; Cao, J.; Mao, Y.; Guan, W.; Peng, Y.; Wang, S. Long non-coding RNA in glioma: Signaling pathways. Oncotarget, 2017, 8(16), 27582-27592.
[http://dx.doi.org/10.18632/oncotarget.15175] [PMID: 28187439]
[110]
Hitosugi, T.; Kang, S.; Vander Heiden, M.G.; Chung, T.W.; Elf, S.; Lythgoe, K.; Dong, S.; Lonial, S.; Wang, X.; Chen, G.Z.; Xie, J.; Gu, T.L.; Polakiewicz, R.D.; Roesel, J.L.; Boggon, T.J.; Khuri, F.R.; Gilliland, D.G.; Cantley, L.C.; Kaufman, J.; Chen, J. Tyrosine phosphorylation inhibits PKM2 to promote the Warburg effect and tumor growth. Sci. Signal., 2009, 2(97), ra73.
[http://dx.doi.org/10.1126/scisignal.2000431] [PMID: 19920251]
[111]
Kefas, B.; Comeau, L.; Erdle, N.; Montgomery, E.; Amos, S.; Purow, B. Pyruvate kinase M2 is a target of the tumor-suppressive microRNA-326 and regulates the survival of glioma cells. Neuro-oncol., 2010, 12(11), 1102-1112.
[http://dx.doi.org/10.1093/neuonc/noq080] [PMID: 20667897]
[112]
Gao, F.; Du, Y.; Zhang, Y.; Ren, D.; Xu, J.; Chen, D. Circ-EZH2 knockdown reverses DDAH1 and CBX3-mediated cell growth and invasion in glioma through miR-1265 sponge activity. Gene, 2020, 726, 144196.
[http://dx.doi.org/10.1016/j.gene.2019.144196] [PMID: 31669648]
[113]
Chen, W.Y.; Lang, Z.Q.; Ren, C.; Yang, P.; Zhang, B. miR-143 acts as a novel Big mitogen-activated protein kinase 1 suppressor and may inhibit invasion of glioma. Oncol. Rep., 2019, 42(3), 1194-1204.
[http://dx.doi.org/10.3892/or.2019.7218] [PMID: 31322249]
[114]
Zhang, L.; Wang, J.; Fu, Z.; Ai, Y.; Li, Y.; Wang, Y.; Wang, Y. Sevoflurane suppresses migration and invasion of glioma cells by regulating miR-146b-5p and MMP16. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 3306-3314.
[http://dx.doi.org/10.1080/21691401.2019.1648282] [PMID: 31385537]
[115]
Xiong, Y.; Chen, R.; Wang, L.; Wang, S.; Tu, Y.; Zhu, L.; Wang, C. Downregulation of miR-186 promotes the proliferation and drug resistance of glioblastoma cells by targeting Twist1. Mol. Med. Rep., 2019, 19(6), 5301-5308.
[http://dx.doi.org/10.3892/mmr.2019.10207] [PMID: 31059108]
[116]
Zhang, J.; Han, L.; Ge, Y.; Zhou, X.; Zhang, A.; Zhang, C.; Zhong, Y.; You, Y.; Pu, P.; Kang, C. miR-221/222 promote malignant progression of glioma through activation of the Akt pathway. Int. J. Oncol., 2010, 36(4), 913-920.
[PMID: 20198336]
[117]
Zhang, Y.; Wang, J.; An, W.; Chen, C.; Wang, W.; Zhu, C.; Chen, F.; Chen, H.; Zheng, W.; Gong, J. MiR-32 inhibits proliferation and metastasis by targeting EZH2 in glioma. Technol. Cancer Res. Treat., 2019, 18, 1533033819854132.
[http://dx.doi.org/10.1177/1533033819854132] [PMID: 31138033]
[118]
Guessous, F.; Zhang, Y.; Kofman, A.; Catania, A.; Li, Y.; Schiff, D.; Purow, B.; Abounader, R. microRNA-34a is tumor suppressive in brain tumors and glioma stem cells. Cell Cycle, 2010, 9(6), 1031-1036.
[http://dx.doi.org/10.4161/cc.9.6.10987] [PMID: 20190569]
[119]
Wang, X.; Chen, X.; Sun, L.; Bi, X.; He, H.; Chen, L.; Pang, J. MicroRNA‑34a inhibits cell growth and migration in human glioma cells via MMP‑9. Mol. Med. Rep., 2019, 20(1), 57-64.
[http://dx.doi.org/10.3892/mmr.2019.10233] [PMID: 31115528]
[120]
Zuo, J.; Yu, H.; Xie, P.; Liu, W.; Wang, K.; Ni, H. miR-454-3p exerts tumor-suppressive functions by down-regulation of NFATc2 in glioblastoma. Gene, 2019, 710, 233-239.
[http://dx.doi.org/10.1016/j.gene.2019.06.008] [PMID: 31181312]
[121]
Zhang, J.; Xu, S.; Xu, J.; Li, Y.; Zhang, J.; Zhang, J.; Lu, X. miR‑767‑5p inhibits glioma proliferation and metastasis by targeting SUZ12. Oncol. Rep., 2019, 42(1), 55-66.
[http://dx.doi.org/10.3892/or.2019.7156] [PMID: 31115583]
[122]
Qi, J.; Mu, D. MicroRNAs and lung cancers: From pathogenesis to clinical implications. Front. Med., 2012, 6(2), 134-155.
[http://dx.doi.org/10.1007/s11684-012-0188-4] [PMID: 22528868]
[123]
Jin, J.; Zhang, S.; Hu, Y.; Zhang, Y.; Guo, C.; Feng, F. SP1 induced lncRNA CASC11 accelerates the glioma tumorigenesis through targeting FOXK1 via sponging miR-498. Biomed. Pharmacother., 2019, 116, 108968.
[http://dx.doi.org/10.1016/j.biopha.2019.108968]
[124]
Li, G.; Cai, Y.; Wang, C.; Huang, M.; Chen, J. LncRNA GAS5 regulates the proliferation, migration, invasion and apoptosis of brain glioma cells through targeting GSTM3 expression. The effect of LncRNA GAS5 on glioma cells. J. Neurooncol., 2019, 143(3), 525-536.
[http://dx.doi.org/10.1007/s11060-019-03185-0] [PMID: 31172354]
[125]
Xiao, H.; Ding, N.; Liao, H.; Yao, Z.; Cheng, X.; Zhang, J.; Zhao, M. Prediction of relapse and prognosis by expression levels of long noncoding RNA PEG10 in glioma patients. Medicine, 2019, 98(45), e17583.
[http://dx.doi.org/10.1097/MD.0000000000017583] [PMID: 31702614]
[126]
Xin, H.; Liu, N.; Xu, X.; Zhang, J.; Li, Y.; Ma, Y.; Li, G.; Liang, J. Knockdown of lncRNA-UCA1 inhibits cell viability and migration of human glioma cells by miR-193a-mediated downregulation of CDK6. J. Cell. Biochem., 2019, 120(9), 15157-15169.
[http://dx.doi.org/10.1002/jcb.28777] [PMID: 31111564]
[127]
Liu, Z.; Lu, C.; Hu, H.; Cai, Z.; Liang, Q.; Sun, W.; Jiang, L.; Hu, G. LINC00909 promotes tumor progression in human glioma through regulation ofmiR-194/MUC1-C axis. Biomed. Pharmacother., 2019, 116, 108965.
[128]
Liu, B.; Cao, W.; Ma, H. Knockdown of lncRNA LSINCT5 suppresses growth and metastasis of human glioma cells via up-regulating miR-451. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 2507-2515.
[http://dx.doi.org/10.1080/21691401.2019.1626404] [PMID: 31213092]
[129]
Jancík, S.; Drábek, J.; Radzioch, D.; Hajdúch, M. Clinical relevance of KRAS in human cancers. J. Biomed. Biotechnol., 2010, 2010, 150960.
[http://dx.doi.org/10.1155/2010/150960] [PMID: 20617134]
[130]
Kole, R.; Krainer, A.R.; Altman, S. RNA therapeutics: beyond RNA interference and antisense oligonucleotides. Nat. Rev. Drug Discov., 2012, 11(2), 125-140.
[http://dx.doi.org/10.1038/nrd3625] [PMID: 22262036]
[131]
Wittrup, A.; Lieberman, J. Knocking down disease: A progress report on siRNA therapeutics. Nat. Rev. Genet., 2015, 16(9), 543-552.
[http://dx.doi.org/10.1038/nrg3978] [PMID: 26281785]
[132]
Opalinska, J.B.; Gewirtz, A.M. Nucleic-acid therapeutics: basic principles and recent applications. Nat. Rev. Drug Discov., 2002, 1(7), 503-514.
[http://dx.doi.org/10.1038/nrd837] [PMID: 12120257]
[133]
Zhu, J.J.; Wong, E.T. Personalized medicine for glioblastoma: Current challenges and future opportunities. Curr. Mol. Med., 2013, 13(3), 358-367.
[PMID: 23331008]
[134]
Krichevsky, A.M.; Uhlmann, E.J. Oligonucleotide therapeutics as a new class of drugs for malignant brain tumors: Targeting mRNAs, regulatory RNAs, mutations, combinations, and beyond. Neurotherapeutics, 2019, 16(2), 319-347.
[http://dx.doi.org/10.1007/s13311-018-00702-3] [PMID: 30644073]
[135]
Stein, C.A.; Castanotto, D. FDA-approved oligonucleotide therapies in 2017. Mol. Ther., 2017, 25, 1069-1075.
[136]
Evers, M.M.; Toonen, L.J.A.; van Roon-Mom, W.M.C. Antisense oligonucleotides in therapy for neurodegenerative disorders. Adv. Drug Deliv. Rev., 2015, 87, 90-103.
[http://dx.doi.org/10.1016/j.addr.2015.03.008] [PMID: 25797014]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy