Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

Cross Talk between COVID-19 and Breast Cancer

Author(s): Hamendra Singh Parmar*, Aakruti Nayak*, Pramod Kumar Gavel, Hem Chandra Jha, Shivani Bhagwat and Rajesh Sharma

Volume 21, Issue 7, 2021

Published on: 16 February, 2021

Page: [575 - 600] Pages: 26

DOI: 10.2174/1568009621666210216102236

Price: $65

conference banner
Abstract

Cancer patients are more susceptible to COVID-19; however, the prevalence of COVID-19 in different types of cancer is still inconsistent and inconclusive. Here, we delineate the intricate relationship between breast cancer and COVID-19. Breast cancer and COVID-19 share the involvement of common comorbidities, hormonal signalling pathways, gender differences, rennin- angiotensin system (RAS), angiotensin-converting enzyme-2 (ACE-2), transmembrane protease serine 2 (TMPRSS2) and dipeptidyl peptidase-IV (DPP-IV). We also shed light on the possible effects of therapeutic modalities of COVID-19 on breast cancer outcomes. Briefly, we conclude that breast cancer patients are more susceptible to COVID-19 in comparison with their normal counterparts. Women are more resistant to the occurrence and severity of COVID-19. Increased expressions of ACE2 and TMPRSS2 are correlated with occurrence and severity of COVID-19, but higher expression of ACE2 and lower expression of TMPRSS2 are prognostic markers for overall disease free survival in breast cancer. The ACE2 inhibitors and ibuprofen therapies for COVID-19 treatment may aggravate the clinical condition of breast cancer patients through chemo-resistance and metastasis. Most of the available therapeutic modalities for COVID-19 were also found to exert positive effects on breast cancer outcomes. Besides drugs in clinical trend, TMPRSS2 inhibitors, estrogen supplementation, androgen deprivation and DPP-IV inhibitors may also be used to treat breast cancer patients infected with SARS-CoV-2. However, drug-drug interactions suggest that some of the drugs used for the treatment of COVID-19 may modulate the drug metabolism of anticancer therapies which may lead to adverse drug reaction events.

Keywords: Cytokine storm, ACE-2 receptors, diabetes, breast cancer, TMPRSS2, DPP-IV.

Graphical Abstract

[1]
[2]
WHO. Available from: https://covid19.who.int/
[3]
Bhasin, A.; Nam, H.; Yeh, C.; Lee, J.; Liebovitz, D.; Achenbach, C. Is BMI higher in younger patients with COVID-19? Association between BMI and COVID-19 hospitalization by age. Obesity, 2020, 28(10), 1811-1814.
[http://dx.doi.org/10.1002/oby.22947] [PMID: 32610371]
[4]
Yang, J.; Hu, J.; Zhu, C. Obesity aggravates COVID-19: A systematic review and meta-analysis. J. Med. Virol., 2021, 93(1), 257-261.
[http://dx.doi.org/10.1002/jmv.26237] [PMID: 32603481]
[5]
Bansal, R.; Gubbi, S.; Muniyappa, R. Metabolic syndrome and COVID-19: Endocrine-immune-vascular interactions shapes clinical course. Endocrinology, 2020, 161(10), bqaa112.
[http://dx.doi.org/10.1210/endocr/bqaa112] [PMID: 32603424]
[6]
Suba, Z. Prevention and therapy of COVID-19 via exogenous estrogen treatment for both male and female patients. J. Pharm. Pharm. Sci., 2020, 23(1), 75-85.
[http://dx.doi.org/10.18433/jpps31069] [PMID: 32324533]
[7]
Chen, N.; Zhou, M.; Dong, X.; Qu, J.; Gong, F.; Han, Y.; Qiu, Y.; Wang, J.; Liu, Y.; Wei, Y.; Xia, J.; Yu, T.; Zhang, X.; Zhang, L. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet, 2020, 395(10223), 507-513.
[http://dx.doi.org/10.1016/S0140-6736(20)30211-7] [PMID: 32007143]
[8]
Guan, W.J.; Ni, Z.Y.; Hu, Y.; Liang, W.H.; Ou, C.Q.; He, J.X.; Liu, L.; Shan, H.; Lei, C.L.; Hui, D.S.C.; Du, B.; Li, L.J.; Zeng, G.; Yuen, K.Y.; Chen, R.C.; Tang, C.L.; Wang, T.; Chen, P.Y.; Xiang, J.; Li, S.Y.; Wang, J.L.; Liang, Z.J.; Peng, Y.X.; Wei, L.; Liu, Y.; Hu, Y.H.; Peng, P.; Wang, J.M.; Liu, J.Y.; Chen, Z.; Li, G.; Zheng, Z.J.; Qiu, S.Q.; Luo, J.; Ye, C.J.; Zhu, S.Y.; Zhong, N.S. Clinical characteristics of patients who died of coronavirus disease 2019 in China. N. Engl. J. Med., 2020, 382(18), 1708-1720.
[http://dx.doi.org/10.1056/NEJMoa2002032] [PMID: 32109013]
[9]
Strope, J.D.; Chau, C.H.; Figg, W.D. Are sex discordant outcomes in COVID-19 related to sex hormones? Semin. Oncol., 2020, 47(5), 335-340.
[http://dx.doi.org/10.1053/j.seminoncol.2020.06.002] [PMID: 32660890]
[10]
Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.H.; Nitsche, A.; Müller, M.A.; Drosten, C.; Pöhlmann, S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 2020, 181(2), 271-280.e8.
[http://dx.doi.org/10.1016/j.cell.2020.02.052] [PMID: 32142651]
[11]
Solerte, S.B.; Di Sabatino, A.; Galli, M.; Fiorina, P. Dipeptidyl peptidase-4 (DPP4) inhibition in COVID-19. Acta Diabetol., 2020, 57(7), 779-783.
[http://dx.doi.org/10.1007/s00592-020-01539-z] [PMID: 32506195]
[12]
Valencia, I.; Peiró, C.; Lorenzo, Ó.; Sánchez-Ferrer, C.F.; Eckel, J.; Romacho, T. DPP4 and ACE2 in diabetes and COVID-19: therapeutic targets for cardiovascular complications? Front. Pharmacol., 2020, 11, 1161.
[http://dx.doi.org/10.3389/fphar.2020.01161] [PMID: 32848769]
[13]
Samuel, S.M.; Varghese, E.; Varghese, S.; Büsselberg, D. Challenges and perspectives in the treatment of diabetes associated breast cancer. Cancer Treat. Rev., 2018, 70, 98-111.
[http://dx.doi.org/10.1016/j.ctrv.2018.08.004] [PMID: 30130687]
[14]
Atherton, A.J.; O’Hare, M.J.; Buluwela, L.; Titley, J.; Monaghan, P.; Paterson, H.F.; Warburton, M.J.; Gusterson, B.A. Ectoenzyme regulation by phenotypically distinct fibroblast sub-populations isolated from the human mammary gland. J. Cell Sci., 1994, 107(Pt 10), 2931-2939.
[http://dx.doi.org/10.1242/jcs.107.10.2931] [PMID: 7876358]
[15]
Abdel-Ghany, M.; Cheng, H.; Levine, R.A.; Pauli, B.U. Truncated dipeptidyl peptidase IV is a potent anti-adhesion and anti-metastasis peptide for rat breast cancer cells. Invasion Metastasis, 1998, 18(1), 35-43.
[http://dx.doi.org/10.1159/000024497] [PMID: 10207249]
[16]
Cheng, H.C.; Abdel-Ghany, M.; Elble, R.C.; Pauli, B.U. Lung endothelial dipeptidyl peptidase IV promotes adhesion and metastasis of rat breast cancer cells via tumor cell surface-associated fibronectin. J. Biol. Chem., 1998, 273(37), 24207-24215.
[http://dx.doi.org/10.1074/jbc.273.37.24207] [PMID: 9727044]
[17]
Chang, Y.H.; Lee, S.H.; Liao, I.C.; Huang, S.H.; Cheng, H.C.; Liao, P.C. Secretomic analysis identifies alpha-1 antitrypsin (A1AT) as a required protein in cancer cell migration, invasion, and pericellular fibronectin assembly for facilitating lung colonization of lung adenocarcinoma cells. Mol. Cell. Proteomics, 2012, 11(11), 1320-1339.
[http://dx.doi.org/10.1074/mcp.M112.017384] [PMID: 22896658]
[18]
Yu, C.; Tang, W.; Wang, Y.; Shen, Q.; Wang, B.; Cai, C.; Meng, X.; Zou, F. Downregulation of ACE2/Ang-(1-7)/Mas axis promotes breast cancer metastasis by enhancing store-operated calcium entry. Cancer Lett., 2016, 376(2), 268-277.
[http://dx.doi.org/10.1016/j.canlet.2016.04.006] [PMID: 27063099]
[19]
Zhang, Q.; Lu, S.; Li, T.; Yu, L.; Zhang, Y.; Zeng, H.; Qian, X.; Bi, J.; Lin, Y. ACE2 inhibits breast cancer angiogenesis via suppressing the VEGFa/VEGFR2/ERK pathway. J. Exp. Clin. Cancer Res., 2019, 38(1), 173.
[http://dx.doi.org/10.1186/s13046-019-1156-5] [PMID: 31023337]
[20]
Kerslake, R.; Hall, M.; Randeva, H.S.; Spandidos, D.A.; Chatha, K.; Kyrou, I.; Karteris, E. Co-expression of peripheral olfactory receptors with SARS-CoV-2 infection mediators: Potential implications beyond loss of smell as a COVID-19 symptom. Int. J. Mol. Med., 2020, 46(3), 949-956.
[http://dx.doi.org/10.3892/ijmm.2020.4646] [PMID: 32705281]
[21]
(a) Sidaway, P. COVID-19 and cancer: what we know so far. Nat. Rev. Clin. Oncol. Stang, A., 2020, 17(6), 336-336.
(b) Stang, A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur. J. Epidemiol., 2010, 25(9), 603-605.
[http://dx.doi.org/10.1007/s10654-010-9491-z] [PMID: 20652370]
[22]
Dai, M.; Liu, D.; Liu, M.; Zhou, F.; Li, G.; Chen, Z.; Zhang, Z.; You, H.; Wu, M.; Zheng, Q.; Xiong, Y.; Xiong, H.; Wang, C.; Chen, C.; Xiong, F.; Zhang, Y.; Peng, Y.; Ge, S.; Zhen, B.; Yu, T.; Wang, L.; Wang, H.; Liu, Y.; Chen, Y.; Mei, J.; Gao, X.; Li, Z.; Gan, L.; He, C.; Li, Z.; Shi, Y.; Qi, Y.; Yang, J.; Tenen, D.G.; Chai, L.; Mucci, L.A.; Santillana, M.; Cai, H. Patients with cancer appear more vulnerable to SARS-COV-2: A multicenter study during the COVID-19 outbreak. Cancer Discov., 2020, 10(6), 783-791.
[PMID: 32345594]
[23]
Wang, H.; Zhang, L. Risk of COVID-19 for patients with cancer. Lancet Oncol., 2020, 21(4), e181.
[http://dx.doi.org/10.1016/S1470-2045(20)30149-2] [PMID: 32142621]
[24]
Xia, Y.; Jin, R.; Zhao, J.; Li, W.; Shen, H. Risk of COVID-19 for patients with cancer. Lancet Oncol., 2020, 21(4), e180.
[http://dx.doi.org/10.1016/S1470-2045(20)30150-9] [PMID: 32142622]
[25]
Wang, B.; Huang, Y. Which type of cancer patients are more susceptible to the SARS-COX-2: Evidence from a meta-analysis and bioinformatics analysis. Crit. Rev. Oncol. Hematol., 2020, 153, 103032.
[http://dx.doi.org/10.1016/j.critrevonc.2020.103032] [PMID: 32599375]
[26]
Fu, J.; Zhou, B.; Zhang, L.; Balaji, K.S.; Wei, C.; Liu, X.; Chen, H.; Peng, J.; Fu, J. Expressions and significances of the angiotensin-converting enzyme 2 gene, the receptor of SARS-CoV-2 for COVID-19. Mol. Biol. Rep., 2020, 47(6), 4383-4392.
[http://dx.doi.org/10.1007/s11033-020-05478-4] [PMID: 32410141]
[27]
Dai, Y.J.; Zhang, W.N.; Wang, W.D.; He, S.Y.; Liang, C.C.; Wang, D.W. Comprehensive analysis of two potential novel SARS-CoV-2 entries, TMPRSS2 and IFITM3, in healthy individuals and cancer patients. Int. J. Biol. Sci., 2020, 16(15), 3028-3036.
[http://dx.doi.org/10.7150/ijbs.51234] [PMID: 33061814]
[28]
Huang, X.; He, C.; Hua, X.; Kan, A.; Sun, S.; Wang, J.; Li, S. Bioinformatic analysis of correlation between immune infiltration and covid-19 in cancer patients. Int. J. Biol. Sci., 2020, 16(13), 2464-2476.
[http://dx.doi.org/10.7150/ijbs.48639] [PMID: 32760213]
[29]
Luen, S.; Virassamy, B.; Savas, P.; Salgado, R.; Loi, S. The genomic landscape of breast cancer and its interaction with host immunity. Breast, 2016, 29, 241-250.
[http://dx.doi.org/10.1016/j.breast.2016.07.015] [PMID: 27481651]
[30]
Hadden, J.W. The immunology and immunotherapy of breast cancer: an update. Int. J. Immunopharmacol., 1999, 21(2), 79-101.
[http://dx.doi.org/10.1016/S0192-0561(98)00077-0] [PMID: 10230872]
[31]
Jiang, T.; Shi, T.; Zhang, H.; Hu, J.; Song, Y.; Wei, J.; Ren, S.; Zhou, C. Tumor neoantigens: from basic research to clinical applications. J. Hematol. Oncol., 2019, 12(1), 93.
[http://dx.doi.org/10.1186/s13045-019-0787-5] [PMID: 31492199]
[32]
Walboomers, J.M.; Jacobs, M.V.; Manos, M.M.; Bosch, F.X.; Kummer, J.A.; Shah, K.V.; Snijders, P.J.; Peto, J.; Meijer, C.J.; Muñoz, N. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J. Pathol., 1999, 189(1), 12-19.
[http://dx.doi.org/10.1002/(SICI)1096-9896(199909)189:1<12::AID-PATH431>3.0.CO;2-F] [PMID: 10451482]
[33]
Gillison, M.L.; Koch, W.M.; Capone, R.B.; Spafford, M.; Westra, W.H.; Wu, L.; Zahurak, M.L.; Daniel, R.W.; Viglione, M.; Symer, D.E.; Shah, K.V.; Sidransky, D. Evidence for a causal association between human papillomavirus and a subset of head and neck cancers. J. Natl. Cancer Inst., 2000, 92(9), 709-720.
[http://dx.doi.org/10.1093/jnci/92.9.709] [PMID: 10793107]
[34]
Feng, H.; Shuda, M.; Chang, Y.; Moore, P.S. Clonal integration of a polyomavirus in human Merkel cell carcinoma. Science, 2008, 319(5866), 1096-1100.
[http://dx.doi.org/10.1126/science.1152586] [PMID: 18202256]
[35]
Iacobellis, G. COVID-19 and diabetes: Can DPP4 inhibition play a role? Diabetes Res. Clin. Pract., 2020, 162, 108125.
[http://dx.doi.org/10.1016/j.diabres.2020.108125] [PMID: 32224164]
[36]
Dalan, R. Is DPP4 inhibition a comrade or adversary in COVID-19 infection. Diabetes Res. Clin. Pract., 2020, 164, 108216.
[http://dx.doi.org/10.1016/j.diabres.2020.108216] [PMID: 32416120]
[37]
Cheng, H.C.; Abdel-Ghany, M.; Zhang, S.; Pauli, B.U. Is the Fischer 344/CRJ rat a protein-knock-out model for dipeptidyl peptidase IV-mediated lung metastasis of breast cancer? Clin. Exp. Metastasis, 1999, 17(7), 609-615.
[http://dx.doi.org/10.1023/A:1006757525190] [PMID: 10845560]
[38]
Tseng, C.H. Sitagliptin may reduce breast cancer risk in women with type 2 diabetes. Clin. Breast Cancer, 2017, 17(3), 211-218.
[http://dx.doi.org/10.1016/j.clbc.2016.11.002] [PMID: 27986440]
[39]
Zhao, W.; Zhang, X.; Zhou, Z.; Sun, B.; Gu, W.; Liu, J.; Zhang, H. Liraglutide inhibits the proliferation and promotes the apoptosis of MCF-7 human breast cancer cells through downregulation of microRNA-27a expression. Mol. Med. Rep., 2018, 17(4), 5202-5212.
[http://dx.doi.org/10.3892/mmr.2018.8475] [PMID: 29393459]
[40]
Iwaya, C.; Nomiyama, T.; Komatsu, S.; Kawanami, T.; Tsutsumi, Y.; Hamaguchi, Y.; Horikawa, T.; Yoshinaga, Y.; Yamashita, S.; Tanaka, T.; Terawaki, Y.; Tanabe, M.; Nabeshima, K.; Iwasaki, A.; Yanase, T. Exendin-4, a glucagonlike peptide-1 receptor agonist, attenuates breast cancer growth by inhibiting NF-κB activation. Endocrinology, 2017, 158(12), 4218-4232.
[http://dx.doi.org/10.1210/en.2017-00461] [PMID: 29045658]
[41]
Vinson, G.P.; Barker, S.; Puddefoot, J.R. The renin-angiotensin system in the breast and breast cancer. Endocr. Relat. Cancer, 2012, 19(1), R1-R19.
[http://dx.doi.org/10.1530/ERC-11-0335] [PMID: 22180497]
[42]
Paz Ocaranza, M.; Riquelme, J.A.; García, L.; Jalil, J.E.; Chiong, M.; Santos, R.A.S.; Lavandero, S. Counter-regulatory renin-angiotensin system in cardiovascular disease. Nat. Rev. Cardiol., 2020, 17(2), 116-129.
[http://dx.doi.org/10.1038/s41569-019-0244-8] [PMID: 31427727]
[43]
Aguilera, G. Role of angiotensin II receptor subtypes on the regulation of aldosterone secretion in the adrenal glomerulosa zone in the rat. Mol. Cell. Endocrinol., 1992, 90(1), 53-60.
[http://dx.doi.org/10.1016/0303-7207(92)90101-B] [PMID: 1338730]
[44]
Qadri, F.; Culman, J.; Veltmar, A.; Maas, K.; Rascher, W.; Unger, T. Angiotensin II-induced vasopressin release is mediated through alpha-1 adrenoceptors and angiotensin II AT1 receptors in the supraoptic nucleus. J. Pharmacol. Exp. Ther., 1993, 267(2), 567-574.
[PMID: 8246129]
[45]
Huang, B.S.; Chen, A.; Ahmad, M.; Wang, H.W.; Leenen, F.H. Mineralocorticoid and AT1 receptors in the paraventricular nucleus contribute to sympathetic hyperactivity and cardiac dysfunction in rats post myocardial infarct. J. Physiol., 2014, 592(15), 3273-3286.
[http://dx.doi.org/10.1113/jphysiol.2014.276584] [PMID: 24951624]
[46]
Iyer, S.N.; Lu, D.; Katovich, M.J.; Raizada, M.K. Chronic control of high blood pressure in the spontaneously hypertensive rat by delivery of angiotensin type 1 receptor antisense. Proc. Natl. Acad. Sci. USA, 1996, 93(18), 9960-9965.
[http://dx.doi.org/10.1073/pnas.93.18.9960] [PMID: 8790439]
[47]
Li, Q.; Feenstra, M.; Pfaffendorf, M.; Eijsman, L.; van Zwieten, P.A. Comparative vasoconstrictor effects of angiotensin II, III, and IV in human isolated saphenous vein. J. Cardiovasc. Pharmacol., 1997, 29(4), 451-456.
[http://dx.doi.org/10.1097/00005344-199704000-00004] [PMID: 9156353]
[48]
Sadoshima, J.; Izumo, S. Molecular characterization of angiotensin II- induced hypertrophy of cardiac myocytes and hyperplasia of cardiac fibroblasts. Critical role of the AT1 receptor subtype. Circ. Res., 1993, 73(3), 413-423.
[http://dx.doi.org/10.1161/01.RES.73.3.413] [PMID: 8348686]
[49]
Schieffer, B.; Wirger, A.; Meybrunn, M.; Seitz, S.; Holtz, J.; Riede, U.N.; Drexler, H. Comparative effects of chronic angiotensin-converting enzyme inhibition and angiotensin II type 1 receptor blockade on cardiac remodeling after myocardial infarction in the rat. Circulation, 1994, 89(5), 2273-2282.
[http://dx.doi.org/10.1161/01.CIR.89.5.2273] [PMID: 8181153]
[50]
Wolf, G.; Wenzel, U.; Burns, K.D.; Harris, R.C.; Stahl, R.A.; Thaiss, F. Angiotensin II activates nuclear transcription factor-kappaB through AT1 and AT2 receptors. Kidney Int., 2002, 61(6), 1986-1995.
[http://dx.doi.org/10.1046/j.1523-1755.2002.00365.x] [PMID: 12028439]
[51]
Viswanathan, M.; Strömberg, C.; Seltzer, A.; Saavedra, J.M. Balloon angioplasty enhances the expression of angiotensin II AT1 receptors in neointima of rat aorta. J. Clin. Invest., 1992, 90(5), 1707-1712.
[http://dx.doi.org/10.1172/JCI116043] [PMID: 1331171]
[52]
Jara, Z.P.; Icimoto, M.Y.; Yokota, R.; Ribeiro, A.A.; Dos Santos, F.; de Souza, L.E.; Watanabe, I.K.M.; Franco, M.D.C.; Pesquero, J.L.; Irigoyen, M.C.; Casarini, D.E. Tonin overexpression in mice diminishes sympathetic autonomic modulation and alters angiotensin type 1 receptor response. Front. Med. (Lausanne), 2019, 5, 365.
[http://dx.doi.org/10.3389/fmed.2018.00365] [PMID: 30729109]
[53]
de Queiroz, T.M.; Monteiro, M.M.; Braga, V.A. Angiotensin-II-derived reactive oxygen species on baroreflex sensitivity during hypertension: New perspectives. Front. Physiol., 2013, 4, 105.
[http://dx.doi.org/10.3389/fphys.2013.00105] [PMID: 23717285]
[54]
Kihara, M.; Yabana, M.; Toya, Y.; Kobayashi, S.; Fujita, T.; Iwamoto, T.; Ishigami, T.; Umemura, S. Angiotensin II inhibits interleukin-1 beta-induced nitric oxide production in cultured rat mesangial cells. Kidney Int., 1999, 55(4), 1277-1283.
[http://dx.doi.org/10.1046/j.1523-1755.1999.00377.x] [PMID: 10200991]
[55]
van der Mark, J.; Kline, R.L. Altered pressure natriuresis in chronic angiotensin II hypertension in rats. Am. J. Physiol., 1994, 266(3 Pt 2), R739-R748.
[PMID: 8160866]
[56]
Kramár, E.A.; Krishnan, R.; Harding, J.W.; Wright, J.W. Role of nitric oxide in angiotensin IV-induced increases in cerebral blood flow. Regul. Pept., 1998, 74(2-3), 185-192.
[http://dx.doi.org/10.1016/S0167-0115(98)00039-1] [PMID: 9712180]
[57]
Coleman, J.K.; Krebs, L.T.; Hamilton, T.A.; Ong, B.; Lawrence, K.A.; Sardinia, M.F.; Harding, J.W.; Wright, J.W. Autoradiographic identification of kidney angiotensin IV binding sites and angiotensin IV-induced renal cortical blood flow changes in rats. Peptides, 1998, 19(2), 269-277.
[http://dx.doi.org/10.1016/S0196-9781(97)00291-X] [PMID: 9493859]
[58]
Qiu, H.; Wu, Y.; Wang, Q.; Liu, C.; Xue, L.; Wang, H.; Wu, Q.; Jiang, Q. Effect of berberine on PPARα-NO signalling pathway in vascular smooth muscle cell proliferation induced by angiotensin IV. Pharm. Biol., 2017, 55(1), 227-232.
[http://dx.doi.org/10.1080/13880209.2016.1257642] [PMID: 27927051]
[59]
Park, B.M.; Cha, S.A.; Lee, S.H.; Kim, S.H. Angiotensin IV protects cardiac reperfusion injury by inhibiting apoptosis and inflammation via AT4R in rats. Peptides, 2016, 79, 66-74.
[http://dx.doi.org/10.1016/j.peptides.2016.03.017] [PMID: 27038740]
[60]
Padia, S.H.; Kemp, B.A.; Howell, N.L.; Fournie-Zaluski, M.C.; Roques, B.P.; Carey, R.M. Conversion of renal angiotensin II to angiotensin III is critical for AT2 receptor-mediated natriuresis in rats. Hypertension, 2008, 51(2), 460-465.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.107.103242] [PMID: 18158338]
[61]
Ocaranza, M.P.; Moya, J.; Barrientos, V.; Alzamora, R.; Hevia, D.; Morales, C.; Pinto, M.; Escudero, N.; García, L.; Novoa, U.; Ayala, P.; Díaz-Araya, G.; Godoy, I.; Chiong, M.; Lavandero, S.; Jalil, J.E.; Michea, L. Angiotensin-(1-9) reverses experimental hypertension and cardiovascular damage by inhibition of the angiotensin converting enzyme/Ang II axis. J. Hypertens., 2014, 32(4), 771-783.
[http://dx.doi.org/10.1097/HJH.0000000000000094] [PMID: 24463937]
[62]
Fontes, M.A.; Silva, L.C.; Campagnole-Santos, M.J.; Khosla, M.C.; Guertzenstein, P.G.; Santos, R.A. Evidence that angiotensin-(1-7) plays a role in the central control of blood pressure at the ventro-lateral medulla acting through specific receptors. Brain Res., 1994, 665(1), 175-180.
[http://dx.doi.org/10.1016/0006-8993(94)91171-1] [PMID: 7882013]
[63]
Li, P.; Chappell, M.C.; Ferrario, C.M.; Brosnihan, K.B. Angiotensin-(1-7) augments bradykinin-induced vasodilation by competing with ACE and releasing nitric oxide. Hypertension, 1997, 29(1 Pt 2), 394-400.
[http://dx.doi.org/10.1161/01.HYP.29.1.394] [PMID: 9039133]
[64]
AM.; Hilchey, SD.; Bell-Quilley, CP. Natriuretic action of angiotensin(1-7). Br. J. Pharmacol., 1994, 111, 1-3.
[http://dx.doi.org/10.1111/j.1476-5381.1994.tb14014.x]
[65]
Garcia-Espinosa, M.A.; Shaltout, H.A.; Gallagher, P.E.; Chappell, M.C.; Diz, D.I. In vivo expression of angiotensin-(1-7) lowers blood pressure and improves baroreflex function in transgenic (mRen2)27 rats. J. Cardiovasc. Pharmacol., 2012, 60(2), 150-157.
[http://dx.doi.org/10.1097/FJC.0b013e3182588b32] [PMID: 22526299]
[66]
Sakima, A.; Averill, D.B.; Kasper, S.O.; Jackson, L.; Ganten, D.; Ferrario, C.M.; Gallagher, P.E.; Diz, D.I. Baroreceptor reflex regulation in anesthetized transgenic rats with low glia-derived angiotensinogen. Am. J. Physiol. Heart Circ. Physiol., 2007, 292(3), H1412-H1419.
[http://dx.doi.org/10.1152/ajpheart.00984.2006] [PMID: 17085537]
[67]
Jesus, I.C.G.; Scalzo, S.; Alves, F.; Marques, K.; Rocha-Resende, C.; Bader, M.; Santos, R.A.S.; Guatimosim, S. Alamandine acts via MrgD to induce AMPK/NO activation against ANG II hypertrophy in cardiomyocytes. Am. J. Physiol. Cell Physiol., 2018, 314(6), C702-C711.
[http://dx.doi.org/10.1152/ajpcell.00153.2017] [PMID: 29443552]
[68]
Lautner, R.Q.; Villela, D.C.; Fraga-Silva, R.A.; Silva, N.; Verano-Braga, T.; Costa-Fraga, F.; Jankowski, J.; Jankowski, V.; Sousa, F.; Alzamora, A.; Soares, E.; Barbosa, C.; Kjeldsen, F.; Oliveira, A.; Braga, J.; Savergnini, S.; Maia, G.; Peluso, A.B.; Passos-Silva, D.; Ferreira, A.; Alves, F.; Martins, A.; Raizada, M.; Paula, R.; Motta-Santos, D.; Klempin, F.; Pimenta, A.; Alenina, N.; Sinisterra, R.; Bader, M.; Campagnole-Santos, M.J.; Santos, R.A. Discovery and characterization of alamandine: A novel component of the renin-angiotensin system. Circ. Res., 2013, 112(8), 1104-1111.
[http://dx.doi.org/10.1161/CIRCRESAHA.113.301077] [PMID: 23446738]
[69]
Soares, E.R.; Barbosa, C.M.; Campagnole-Santos, M.J.; Santos, R.A.S.; Alzamora, A.C. Hypotensive effect induced by microinjection of Alamandine, a derivative of angiotensin-(1-7), into caudal ventrolateral medulla of 2K1C hypertensive rats. Peptides, 2017, 96, 67-75.
[http://dx.doi.org/10.1016/j.peptides.2017.09.005] [PMID: 28889964]
[70]
Vatansev, H.; Kadiyoran, C.; Cumhur Cure, M.; Cure, E. COVID-19 infection can cause chemotherapy resistance development in patients with breast cancer and tamoxifen may cause susceptibility to COVID-19 infection. Med. Hypotheses, 2020, 143, 110091.
[http://dx.doi.org/10.1016/j.mehy.2020.110091] [PMID: 32663742]
[71]
Bujak-Gizycka, B.; Madej, J.; Bystrowska, B.; Toton-Zuranska, J.; Kus, K.; Kolton-Wroz, M.; Jawien, J.; Olszanecki, R. Angiotensin 1-7 formation in breast tissue is attenuated in breast cancer - a study on the metabolism of angiotensinogen in breast cancer cell lines. J. Physiol. Pharmacol., 2019, 70(4)
[http://dx.doi.org/10.26402/jpp.2019.4.02] [PMID: 31642813]
[72]
Marc, Y.; Boitard, S.E.; Balavoine, F.; Azizi, M.; Llorens-Cortes, C. Targeting brain aminopeptidase A: A new strategy for the treatment of hypertension and heart failure. Can. J. Cardiol., 2020, 36(5), 721-731.
[http://dx.doi.org/10.1016/j.cjca.2020.03.005] [PMID: 32389345]
[73]
Chi, M.; Shi, X.; Huo, X.; Wu, X.; Zhang, P.; Wang, G. Dexmedetomidine promotes breast cancer cell migration through Rab11-mediated secretion of exosomal TMPRSS2. Ann. Transl. Med., 2020, 8(8), 531.
[http://dx.doi.org/10.21037/atm.2020.04.28] [PMID: 32411754]
[74]
Hoffmann, M.; Schroeder, S.; Kleine-Weber, H.; Müller, M.A.; Drosten, C.; Pöhlmann, S. Nafamostat mesylate blocks activation of SARS-CoV-2: new treatment option for COVID-19. Antimicrob. Agents Chemother., 2020, 64(6), 64.
[http://dx.doi.org/10.1128/AAC.00754-20] [PMID: 32312781]
[75]
Ganz, P.A.; Habel, L.A.; Weltzien, E.K.; Caan, B.J.; Cole, S.W. Examining the influence of beta blockers and ACE inhibitors on the risk for breast cancer recurrence: Results from the LACE cohort. Breast Cancer Res. Treat., 2011, 129(2), 549-556.
[http://dx.doi.org/10.1007/s10549-011-1505-3] [PMID: 21479924]
[76]
Jafari, A.; Dadkhahfar, S.; Perseh, S. Considerations for interactions of drugs used for the treatment of COVID-19 with anti- cancer treatments. Crit. Rev. Oncol. Hematol., 2020, 151, 102982.
[http://dx.doi.org/10.1016/j.critrevonc.2020.102982] [PMID: 32460133]
[77]
Wu, R.; Wang, L.; Kuo, H.D.; Shannar, A.; Peter, R.; Chou, P.J.; Li, S.; Hudlikar, R.; Liu, X.; Liu, Z.; Poiani, G.J.; Amorosa, L.; Brunetti, L.; Kong, A.N. An update on current therapeutic drugs treating COVID-19. Curr. Pharmacol. Rep., 2020, 1-15.
[PMID: 32395418]
[78]
Rahim, R.; Strobl, J.S. Hydroxychloroquine, chloroquine, and all- trans retinoic acid regulate growth, survival, and histone acetylation in breast cancer cells. Anticancer Drugs, 2009, 20(8), 736-745.
[http://dx.doi.org/10.1097/CAD.0b013e32832f4e50] [PMID: 19584707]
[79]
Shi, T.T.; Yu, X.X.; Yan, L.J.; Xiao, H.T. Research progress of hydroxychloroquine and autophagy inhibitors on cancer. Cancer Chemother. Pharmacol., 2017, 79(2), 287-294.
[http://dx.doi.org/10.1007/s00280-016-3197-1] [PMID: 27889812]
[80]
Martirosyan, A.R.; Rahim-Bata, R.; Freeman, A.B.; Clarke, C.D.; Howard, R.L.; Strobl, J.S. Differentiation-inducing quinolines as experimental breast cancer agents in the MCF-7 human breast cancer cell model. Biochem. Pharmacol., 2004, 68(9), 1729-1738.
[http://dx.doi.org/10.1016/j.bcp.2004.05.003] [PMID: 15450938]
[81]
Lim, J.; Jeon, S.; Shin, H.Y.; Kim, M.J.; Seong, Y.M.; Lee, W.J.; Choe, K.W.; Kang, Y.M.; Lee, B.; Park, S.J. Case of the index patient who caused tertiary transmission of COVID-19 infection in Korea: The application of lopanivir/ritonavir for the treatment of COVID-19 infected pneumonia monitored by quantitative RT-PCR. J. Korean Med. Sci., 2020, 35(6), e79.
[http://dx.doi.org/10.3346/jkms.2020.35.e79] [PMID: 32056407]
[82]
Elsby, R.; Martin, P.; Surry, D.; Sharma, P.; Fenner, K. Solitary inhibition of the breast cancer resistance protein efflux transporter results in a clinically significant drug-drug interaction with rosuvastatin by causing up to a 2-fold increase in statin exposure. Drug Metab. Dispos., 2016, 44(3), 398-408.
[http://dx.doi.org/10.1124/dmd.115.066795] [PMID: 26700956]
[83]
Okubo, K.; Isono, M.; Asano, T.; Sato, A. Lopinavir-ritonavir combination induces endoplasmic reticulum stress and kills urological cancer cells. Anticancer Res., 2019, 39(11), 5891-5901.
[http://dx.doi.org/10.21873/anticanres.13793] [PMID: 31704813]
[84]
Villalaín, J. Membranotropic effects of arbidol, a broad anti-viral molecule, on phospholipid model membranes. J. Phys. Chem. B, 2010, 114(25), 8544-8554.
[http://dx.doi.org/10.1021/jp102619w] [PMID: 20527735]
[85]
Dong, L.; Hu, S.; Gao, J. Discovering drugs to treat coronavirus disease 2019 (COVID-19). Drug Discov. Ther., 2020, 14(1), 58-60.
[http://dx.doi.org/10.5582/ddt.2020.01012] [PMID: 32147628]
[86]
Deng, L.; Li, C.; Zeng, Q.; Liu, X.; Li, X.; Zhang, H.; Hong, Z.; Xia, J. Arbidol combined with LPV/r versus LPV/r alone against Corona Virus Disease 2019: A retrospective cohort study. J. Infect., 2020, 81(1), e1-e5.
[http://dx.doi.org/10.1016/j.jinf.2020.03.002] [PMID: 32171872]
[87]
Furuta, Y.; Komeno, T.; Nakamura, T. Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase. Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci., 2017, 93(7), 449-463.
[http://dx.doi.org/10.2183/pjab.93.027] [PMID: 28769016]
[88]
Rosa, S.G.V.; Santos, W.C. Clinical trials on drug repositioning for COVID-19 treatment. Rev. Panam. Salud Publica, 2020, 44, e40.
[http://dx.doi.org/10.26633/RPSP.2020.40] [PMID: 32256547]
[89]
Sambi, M.; Samuel, V.; Qorri, B.; Haq, S.; Burov, S.V.; Markvicheva, E.; Harless, W.; Szewczuk, M.R. A triple combination of metformin, acetylsalicylic acid, and oseltamivir phosphate impacts tumour spheroid viability and upends chemoresistance in triple-negative breast cancer. Drug Des. Devel. Ther., 2020, 14, 1995-2019.
[http://dx.doi.org/10.2147/DDDT.S242514] [PMID: 32546966]
[90]
Haxho, F.; Allison, S.; Alghamdi, F.; Brodhagen, L.; Kuta, V.E.; Abdulkhalek, S.; Neufeld, R.J.; Szewczuk, M.R. Oseltamivir phosphate monotherapy ablates tumor neovascularization, growth, and metastasis in mouse model of human triple-negative breast adenocarcinoma. Breast Cancer (Dove Med. Press), 2014, 6, 191-203.
[PMID: 25525387]
[91]
Gautret, P.; Lagier, J.C.; Parola, P.; Hoang, V.T.; Meddeb, L.; Mailhe, M.; Doudier, B.; Courjon, J.; Giordanengo, V.; Vieira, V.E.; Tissot Dupont, H.; Honoré, S.; Colson, P.; Chabrière, E.; La Scola, B.; Rolain, J.M.; Brouqui, P.; Raoult, D. Hydroxychloroquine and azithromycin as a treatment of COVID-19: Results of an open-label non-randomized clinical trial. Int. J. Antimicrob. Agents, 2020, 56(1), 105949.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105949] [PMID: 32205204]
[92]
Malek, A.E.; Granwehr, B.P.; Kontoyiannis, D.P. Doxycycline as a potential partner of COVID-19 therapies. IDCases, 2020, 21, e00864.
[http://dx.doi.org/10.1016/j.idcr.2020.e00864] [PMID: 32566483]
[93]
Fiorillo, M.; Tóth, F.; Sotgia, F.; Lisanti, M.P. Doxycycline, Azithromycin and Vitamin C (DAV): A potent combination therapy for targeting mitochondria and eradicating cancer stem cells (CSCs). Aging, 2019, 11(8), 2202-2216.
[http://dx.doi.org/10.18632/aging.101905] [PMID: 31002656]
[94]
Kim, Y.; Kim, H.; Bae, S.; Choi, J.; Lim, S.Y.; Lee, N.; Kong, J.M.; Hwang, Y.I.; Kang, J.S.; Lee, W.J. Vitamin C is an essential factor on the anti-viral immune responses through the production of interferon-alpha/beta at the initial stage of influenza A virus 9H3N2) infection. Immune Netw., 2013, 13(2), 70-74.
[http://dx.doi.org/10.4110/in.2013.13.2.70] [PMID: 23700397]
[95]
van Gorkom, G.N.Y.; Klein Wolterink, R.G.J.; Van Elssen, C.H.M.J.; Wieten, L.; Germeraad, W.T.V.; Bos, G.M.J. Influence of vitamin C on lymphocytes: An overview. Antioxidants, 2018, 7(3), 7.
[http://dx.doi.org/10.3390/antiox7030041] [PMID: 29534432]
[96]
Sant, D.W.; Mustafi, S.; Gustafson, C.B.; Chen, J.; Slingerland, J.M.; Wang, G. Vitamin C promotes apoptosis in breast cancer cells by increasing TRAIL expression. Sci. Rep., 2018, 8(1), 5306.
[http://dx.doi.org/10.1038/s41598-018-23714-7] [PMID: 29593282]
[97]
Hanikoglu, A.; Kucuksayan, E.; Hanikoglu, F.; Ozben, T.; Menounou, G.; Sansone, A.; Chatgilialoglu, C.; Di Bella, G.; Ferreri, C. Effects of somatostatin and vitamin C on the fatty acid profile of breast cancer cell membranes. Anticancer. Agents Med. Chem., 2019, 19(15), 1899-1909.
[http://dx.doi.org/10.2174/1871520619666190930130732] [PMID: 31566138]
[98]
Zeng, L.H.; Wang, Q.M.; Feng, L.Y.; Ke, Y.D.; Xu, Q.Z.; Wei, A.Y.; Zhang, C.; Ying, R.B. High-dose vitamin C suppresses the invasion and metastasis of breast cancer cells via inhibiting epithelial-mesenchymal transition. OncoTargets Ther., 2019, 12, 7405-7413.
[http://dx.doi.org/10.2147/OTT.S222702] [PMID: 31571901]
[99]
Gan, L.; Camarena, V.; Mustafi, S.; Wang, G.; Vitamin, C. Vitamin C inhibits triple-negative breast cancer metastasis by affecting the expression of YAP1 and synaptopodin 2. Nutrients, 2019, 11(12), 2997.
[http://dx.doi.org/10.3390/nu11122997] [PMID: 31817810]
[100]
Shang, L.; Zhao, J.; Hu, Y.; Du, R.; Cao, B. On the use of corticosteroids for 2019-nCoV pneumonia. Lancet, 2020, 395(10225), 683-684.
[http://dx.doi.org/10.1016/S0140-6736(20)30361-5] [PMID: 32122468]
[101]
Pufall, M.A. Glucocorticoids and cancer. Adv. Exp. Med. Biol., 2015, 872, 315-333.
[http://dx.doi.org/10.1007/978-1-4939-2895-8_14] [PMID: 26216001]
[102]
Khan, T.A.; Schnickel, G.; Ross, D.; Bastani, S.; Laks, H.; Esmailian, F.; Marelli, D.; Beygui, R.; Shemin, R.; Watson, L.; Vartapetian, I.; Ardehali, A. A prospective, randomized, crossover pilot study of inhaled nitric oxide versus inhaled prostacyclin in heart transplant and lung transplant recipients. J. Thorac. Cardiovasc. Surg., 2009, 138(6), 1417-1424.
[http://dx.doi.org/10.1016/j.jtcvs.2009.04.063] [PMID: 19931670]
[103]
Akerström, S.; Mousavi-Jazi, M.; Klingström, J.; Leijon, M.; Lundkvist, A.; Mirazimi, A. Nitric oxide inhibits the replication cycle of severe acute respiratory syndrome coronavirus. J. Virol., 2005, 79(3), 1966-1969.
[http://dx.doi.org/10.1128/JVI.79.3.1966-1969.2005] [PMID: 15650225]
[104]
Jadeski, L.C.; Hum, K.O.; Chakraborty, C.; Lala, P.K. Nitric oxide promotes murine mammary tumour growth and metastasis by stimulating tumour cell migration, invasiveness and angiogenesis. Int. J. Cancer, 2000, 86(1), 30-39.
[http://dx.doi.org/10.1002/(SICI)1097-0215(20000401)86:1<30::AID-IJC5>3.0.CO;2-I] [PMID: 10728591]
[105]
Worthington, J.; Robson, T.; O’Keeffe, M.; Hirst, D.G. Tumour cell radiosensitization using constitutive (CMV) and radiation inducible (WAF1) promoters to drive the iNOS gene: A novel suicide gene therapy. Gene Ther., 2002, 9(4), 263-269.
[http://dx.doi.org/10.1038/sj.gt.3301609] [PMID: 11896465]
[106]
Wang, J.; Torbenson, M.; Wang, Q.; Ro, J.Y.; Becich, M. Expression of inducible nitric oxide synthase in paired neoplastic and non-neoplastic primary prostate cell cultures and prostatectomy specimen. Urol. Oncol., 2003, 21(2), 117-122.
[http://dx.doi.org/10.1016/S1078-1439(02)00208-9] [PMID: 12856639]
[107]
Scicinski, J.; Oronsky, B.; Ning, S.; Knox, S.; Peehl, D.; Kim, M.M.; Langecker, P.; Fanger, G. NO to cancer: The complex and multifaceted role of nitric oxide and the epigenetic nitric oxide donor, RRx-001. Redox Biol., 2015, 6, 1-8.
[http://dx.doi.org/10.1016/j.redox.2015.07.002] [PMID: 26164533]
[108]
Kindrachuk, J.; Ork, B.; Hart, B.J.; Mazur, S.; Holbrook, M.R.; Frieman, M.B.; Traynor, D.; Johnson, R.F.; Dyall, J.; Kuhn, J.H.; Olinger, G.G.; Hensley, L.E.; Jahrling, P.B. Antiviral potential of ERK/MAPK and PI3K/AKT/mTOR signaling modulation for Middle East respiratory syndrome coronavirus infection as identified by temporal kinome analysis. Antimicrob. Agents Chemother., 2015, 59(2), 1088-1099.
[http://dx.doi.org/10.1128/AAC.03659-14] [PMID: 25487801]
[109]
Gupta, A.; Dai, Y.; Vethanayagam, R.R.; Hebert, M.F.; Thummel, K.E.; Unadkat, J.D.; Ross, D.D.; Mao, Q. Cyclosporin A, tacrolimus and sirolimus are potent inhibitors of the human breast cancer resistance protein (ABCG2) and reverse resistance to mitoxantrone and topotecan. Cancer Chemother. Pharmacol., 2006, 58(3), 374-383.
[http://dx.doi.org/10.1007/s00280-005-0173-6] [PMID: 16404634]
[110]
Acevedo-Gadea, C.; Hatzis, C.; Chung, G.; Fishbach, N.; Lezon-Geyda, K.; Zelterman, D.; DiGiovanna, M.P.; Harris, L.; Abu-Khalaf, M.M. Sirolimus and trastuzumab combination therapy for HER2-positive metastatic breast cancer after progression on prior trastuzumab therapy. Breast Cancer Res. Treat., 2015, 150(1), 157-167.
[http://dx.doi.org/10.1007/s10549-015-3292-8] [PMID: 25687356]
[111]
Fu, B.; Xu, X.; Wei, H. Why tocilizumab could be an effective treatment for severe COVID-19? J. Transl. Med., 2020, 18(1), 164.
[http://dx.doi.org/10.1186/s12967-020-02339-3] [PMID: 32290839]
[112]
Alraouji, N.N.; Al-Mohanna, F.H.; Ghebeh, H.; Arafah, M.; Almeer, R.; Al-Tweigeri, T.; Aboussekhra, A. Tocilizumab potentiates cisplatin cytotoxicity and targets cancer stem cells in triple-negative breast cancer. Mol. Carcinog., 2020, 59(9), 1041-1051.
[http://dx.doi.org/10.1002/mc.23234] [PMID: 32537818]
[113]
Masjedi, A.; Hashemi, V.; Hojjat-Farsangi, M.; Ghalamfarsa, G.; Azizi, G.; Yousefi, M.; Jadidi-Niaragh, F. The significant role of interleukin-6 and its signaling pathway in the immunopathogenesis and treatment of breast cancer. Biomed. Pharmacother., 2018, 108, 1415-1424.
[http://dx.doi.org/10.1016/j.biopha.2018.09.177] [PMID: 30372844]
[115]
Moris, D.; Kontos, M.; Spartalis, E.; Fentiman, I.S. The role of NSAIDs in breast cancer prevention and relapse: Current evidence and future perspectives. Breast Care, 2016, 11(5), 339-344.
[http://dx.doi.org/10.1159/000452315] [PMID: 27920627]
[116]
Arnold, R.; Neumann, M.; König, W. Peroxisome proliferator-activated receptor-gamma agonists inhibit respiratory syncytial virus-induced expression of intercellular adhesion molecule-1 in human lung epithelial cells. Immunology, 2007, 121(1), 71-81.
[http://dx.doi.org/10.1111/j.1365-2567.2006.02539.x] [PMID: 17425601]
[117]
Bauer, C.M.; Zavitz, C.C.; Botelho, F.M.; Lambert, K.N.; Brown, E.G.; Mossman, K.L.; Taylor, J.D.; Stämpfli, M.R. Treating viral exacerbations of chronic obstructive pulmonary disease: Insights from a mouse model of cigarette smoke and H1N1 influenza infection. PLoS One, 2010, 5(10), e13251.
[http://dx.doi.org/10.1371/journal.pone.0013251] [PMID: 20967263]
[118]
Fang, L.; Karakiulakis, G.; Roth, M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Lancet Respir. Med., 2020, 8(4), e21.
[http://dx.doi.org/10.1016/S2213-2600(20)30116-8] [PMID: 32171062]
[119]
Blanquicett, C.; Roman, J.; Hart, C.M. Thiazolidinediones as anti- cancer agents. Cancer Ther., 2008, 6(A), 25-34.
[PMID: 19079765]
[120]
Amici, C.; Di Caro, A.; Ciucci, A.; Chiappa, L.; Castilletti, C.; Martella, V.; Decaro, N.; Buonavoglia, C.; Capobianchi, M.R.; Santoro, M.G. Indomethacin has a potent antiviral activity against SARS coronavirus. Antivir. Ther., 2006, 11(8), 1021-1030.
[PMID: 17302372]
[121]
Ackerstaff, E.; Gimi, B.; Artemov, D.; Bhujwalla, Z.M. Anti-inflammatory agent indomethacin reduces invasion and alters metabolism in a human breast cancer cell line. Neoplasia, 2007, 9(3), 222-235.
[http://dx.doi.org/10.1593/neo.06673] [PMID: 17401462]
[122]
Zhou, Y.; Wang, S.; Ying, X.; Wang, Y.; Geng, P.; Deng, A.; Yu, Z. Doxorubicin-loaded redox-responsive micelles based on dextran and indomethacin for resistant breast cancer. Int. J. Nanomedicine, 2017, 12, 6153-6168.
[http://dx.doi.org/10.2147/IJN.S141229] [PMID: 28883726]
[123]
Sun, Y.; Lin, X.; Chang, H. Proliferation inhibition and apoptosis of breast cancer MCF-7 cells under the influence of colchicine. J. BUON, 2016, 21(3), 570-575.
[PMID: 27569074]
[124]
Deftereos, S.; Giannopoulos, G.; Papoutsidakis, N.; Panagopoulou, V.; Kossyvakis, C.; Raisakis, K.; Cleman, M.W.; Stefanadis, C. Colchicine and the heart: Pushing the envelope. J. Am. Coll. Cardiol., 2013, 62(20), 1817-1825.
[http://dx.doi.org/10.1016/j.jacc.2013.08.726] [PMID: 24036026]
[125]
Leung, Y.Y.; Yao Hui, L.L.; Kraus, V.B. Colchicine- Update on mechanisms of action and therapeutic uses. Semin. Arthritis Rheum., 2015, 45(3), 341-350.
[http://dx.doi.org/10.1016/j.semarthrit.2015.06.013] [PMID: 26228647]
[126]
Wu, C.J.; Jan, J.T.; Chen, C.M.; Hsieh, H.P.; Hwang, D.R.; Liu, H.W.; Liu, C.Y.; Huang, H.W.; Chen, S.C.; Hong, C.F.; Lin, R.K.; Chao, Y.S.; Hsu, J.T. Inhibition of severe acute respiratory syndrome coronavirus replication by niclosamide. Antimicrob. Agents Chemother., 2004, 48(7), 2693-2696.
[http://dx.doi.org/10.1128/AAC.48.7.2693-2696.2004] [PMID: 15215127]
[127]
Gassen, N.C.; Niemeyer, D.; Muth, D.; Corman, V.M.; Martinelli, S.; Gassen, A.; Hafner, K.; Papies, J.; Mösbauer, K.; Zellner, A.; Zannas, A.S.; Herrmann, A.; Holsboer, F.; Brack-Werner, R.; Boshart, M.; Müller-Myhsok, B.; Drosten, C.; Müller, M.A.; Rein, T. SKP2 attenuates autophagy through Beclin1-ubiquitination and its inhibition reduces MERS-Coronavirus infection. Nat. Commun., 2019, 10(1), 5770.
[http://dx.doi.org/10.1038/s41467-019-13659-4] [PMID: 31852899]
[128]
Wagstaff, K.M.; Rawlinson, S.M.; Hearps, A.C.; Jans, D.A. An AlphaScreen®-based assay for high-throughput screening for specific inhibitors of nuclear import. J. Biomol. Screen., 2011, 16(2), 192-200.
[http://dx.doi.org/10.1177/1087057110390360] [PMID: 21297106]
[129]
Caly, L.; Druce, J.D.; Catton, M.G.; Jans, D.A.; Wagstaff, K.M. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Res., 2020, 178, 104787.
[http://dx.doi.org/10.1016/j.antiviral.2020.104787] [PMID: 32251768]
[130]
Ye, T.; Xiong, Y.; Yan, Y.; Xia, Y.; Song, X.; Liu, L.; Li, D.; Wang, N.; Zhang, L.; Zhu, Y.; Zeng, J.; Wei, Y.; Yu, L. The anthelmintic drug niclosamide induces apoptosis, impairs metastasis and reduces immunosuppressive cells in breast cancer model. PLoS One, 2014, 9(1), e85887.
[http://dx.doi.org/10.1371/journal.pone.0085887] [PMID: 24416452]
[131]
Wang, Y.C.; Chao, T.K.; Chang, C.C.; Yo, Y.T.; Yu, M.H.; Lai, H.C. Drug screening identifies niclosamide as an inhibitor of breast cancer stem-like cells. PLoS One, 2013, 8(9), e74538.
[http://dx.doi.org/10.1371/journal.pone.0074538] [PMID: 24058587]
[132]
Lu, L.; Dong, J.; Wang, L.; Xia, Q.; Zhang, D.; Kim, H.; Yin, T.; Fan, S.; Shen, Q. Activation of STAT3 and Bcl-2 and reduction of reactive oxygen species (ROS) promote radioresistance in breast cancer and overcome of radioresistance with niclosamide. Oncogene, 2018, 37(39), 5292-5304.
[http://dx.doi.org/10.1038/s41388-018-0340-y] [PMID: 29855616]
[133]
Gyamfi, J.; Lee, Y.H.; Min, B.S.; Choi, J. Niclosamide reverses adipocyte induced epithelial-mesenchymal transition in breast cancer cells via suppression of the interleukin-6/STAT3 signalling axis. Sci. Rep., 2019, 9(1), 11336.
[http://dx.doi.org/10.1038/s41598-019-47707-2] [PMID: 31383893]
[134]
Draganov, D.; Gopalakrishna-Pillai, S.; Chen, Y.R.; Zuckerman, N.; Moeller, S.; Wang, C.; Ann, D.; Lee, P.P. Modulation of P2X4/P2X7/Pannexin-1 sensitivity to extracellular ATP via Ivermectin induces a non-apoptotic and inflammatory form of cancer cell death. Sci. Rep., 2015, 5, 16222.
[http://dx.doi.org/10.1038/srep16222] [PMID: 26552848]
[135]
Dou, Q.; Chen, H.N.; Wang, K.; Yuan, K.; Lei, Y.; Li, K.; Lan, J.; Chen, Y.; Huang, Z.; Xie, N.; Zhang, L.; Xiang, R.; Nice, E.C.; Wei, Y.; Huang, C. Ivermectin induces cytostatic autophagy by blocking the PAK1/Akt axis in breast cancer. Cancer Res., 2016, 76(15), 4457-4469.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-2887] [PMID: 27302166]
[136]
Dominguez-Gomez, G.; Chavez-Blanco, A.; Medina-Franco, J.L.; Saldivar-Gonzalez, F.; Flores-Torrontegui, Y.; Juarez, M.; Díaz-Chávez, J.; Gonzalez-Fierro, A.; Dueñas-González, A. Ivermectin as an inhibitor of cancer stem-like cells. Mol. Med. Rep., 2018, 17(2), 3397-3403.
[PMID: 29257278]
[137]
Cao, J.; Forrest, J.C.; Zhang, X. A screen of the NIH Clinical Collection small molecule library identifies potential anti-coronavirus drugs. Antiviral Res., 2015, 114, 1-10.
[http://dx.doi.org/10.1016/j.antiviral.2014.11.010] [PMID: 25451075]
[138]
Rossignol, J.F. Nitazoxanide, a new drug candidate for the treatment of Middle East respiratory syndrome coronavirus. J. Infect. Public Health, 2016, 9(3), 227-230.
[http://dx.doi.org/10.1016/j.jiph.2016.04.001] [PMID: 27095301]
[139]
Fan-Minogue, H.; Bodapati, S.; Solow-Cordero, D.; Fan, A.; Paulmurugan, R.; Massoud, T.F.; Felsher, D.W.; Gambhir, S.S. A c-Myc activation sensor-based high-throughput drug screening identifies an antineoplastic effect of nitazoxanide. Mol. Cancer Ther., 2013, 12(9), 1896-1905.
[http://dx.doi.org/10.1158/1535-7163.MCT-12-1243] [PMID: 23825064]
[140]
Di Santo, N.; Ehrisman, J. A functional perspective of nitazoxanide as a potential anticancer drug. Mutat. Res., 2014, 768, 16-21.
[http://dx.doi.org/10.1016/j.mrfmmm.2014.05.005] [PMID: 25847384]
[141]
Tang, N.; Li, D.; Wang, X.; Sun, Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J. Thromb. Haemost., 2020, 18(4), 844-847.
[http://dx.doi.org/10.1111/jth.14768] [PMID: 32073213]
[142]
Mycroft-West, C.; Su, D.; Elli, S.; Guimond, S.; Miller, G.; Tumbull, J The 2019 coronavirus (SARS-CoV-2) surface protein (Spike) S1receptor binding domain undergoes conformational change upon heparin binding. bioRxiv, 2020.
[143]
Shi, C.; Wang, C.; Wang, H.; Yang, C.; Cai, F.E.I.; Zeng, F. The potential of low molecular weight heparin to mitigate cytokine storm in severe COVID-19 patients: a retrospective clinical study. medRxiv, 2020.
[144]
Mellor, P.; Harvey, J.R.; Murphy, K.J.; Pye, D.; O’Boyle, G.; Lennard, T.W.; Kirby, J.A.; Ali, S. Modulatory effects of heparin and short-length oligosaccharides of heparin on the metastasis and growth of LMD MDA-MB 231 breast cancer cells in vivo. Br. J. Cancer, 2007, 97(6), 761-768.
[http://dx.doi.org/10.1038/sj.bjc.6603928] [PMID: 17726466]
[145]
Stopsack, K.H.; Mucci, L.A.; Antonarakis, E.S.; Nelson, P.S.; Kantoff, P.W. TMPRSS2 and COVID-19: Serendipity or opportunity for intervention? Cancer Discov., 2020, 10(6), 779-782.
[http://dx.doi.org/10.1158/2159-8290.CD-20-0451] [PMID: 32276929]
[146]
Cheng, D.; Kong, H.; Li, Y. TMPRSS4 as a poor prognostic factor for triple-negative breast cancer. Int. J. Mol. Sci., 2013, 14(7), 14659-14668.
[http://dx.doi.org/10.3390/ijms140714659] [PMID: 23857060]
[147]
Murray, A.S.; Varela, F.A.; List, K. Type II transmembrane serine proteases as potential targets for cancer therapy. Biol. Chem., 2016, 397(9), 815-826.
[http://dx.doi.org/10.1515/hsz-2016-0131] [PMID: 27078673]
[148]
Slimano, F.; Baudouin, A.; Zerbit, J.; Toulemonde-Deldicque, A.; Thomas-Schoemann, A.; Chevrier, R.; Daouphars, M.; Madelaine, I.; Pourroy, B.; Tournamille, J.F.; Astier, A.; Ranchon, F.; Cazin, J.L.; Bardin, C.; Rioufol, C. Cancer, immune suppression and Coronavirus Disease-19 (COVID-19): Need to manage drug safety (French Society for Oncology Pharmacy [SFPO] guidelines). Cancer Treat. Rev., 2020, 88, 102063.
[http://dx.doi.org/10.1016/j.ctrv.2020.102063] [PMID: 32623296]
[149]
Veronesi, P.; Corso, G. Impact of COVID-19 pandemic on clinical and surgical breast cancer management. EClinicalMedicine, 2020, 26, 100523.
[http://dx.doi.org/10.1016/j.eclinm.2020.100523] [PMID: 32984788]
[150]
Saini, K.S.; de Las Heras, B.; de Castro, J.; Venkitaraman, R.; Poelman, M.; Srinivasan, G.; Saini, M.L.; Verma, S.; Leone, M.; Aftimos, P.; Curigliano, G. Effect of the COVID-19 pandemic on cancer treatment and research. Lancet Haematol., 2020, 7(6), e432-e435.
[http://dx.doi.org/10.1016/S2352-3026(20)30123-X] [PMID: 32339482]
[151]
Raymond, E.; Thieblemont, C.; Alran, S.; Faivre, S. Impact of the COVID-19 outbreak on the management of patients with cancer. Target. Oncol., 2020, 15(3), 249-259.
[http://dx.doi.org/10.1007/s11523-020-00721-1] [PMID: 32445083]
[152]
Li, J.; Wang, H.; Geng, C.; Liu, Z.; Lin, Y.; Nie, J.; Sun, G.; Ouyang, Q.; Wang, X.; Li, X.; Liu, Y.; Chen, Q.; Fu, P.; Yao, F.; Chen, J.; Chen, Y.; Zhao, H.; Yin, Y.; Zhang, J.; Chen, J.; Kong, X.; Cheng, J.; Zhang, H.; Peng, S.; Wang, G.; Jin, F.; Liu, Y.; Wu, G.; Sun, S.; Jiang, Z. Suboptimal declines and delays in early breast cancer treatment after COVID-19 quarantine restrictions in China: A national survey of 8397 patients in the first quarter of 2020. EClinicalMedicine, 2020, 26, 100503.
[http://dx.doi.org/10.1016/j.eclinm.2020.100503] [PMID: 32989430]
[153]
Sebastiani, G.; Massa, M.; Riboli, E. Covid-19 epidemic in Italy: Evolution, projections and impact of government measures. Eur. J. Epidemiol., 2020, 35(4), 341-345.
[http://dx.doi.org/10.1007/s10654-020-00631-6] [PMID: 32306149]
[154]
Ghidinelli, F.; Bianchi, A. COVID-19 and breast cancer: Impact on patients and breast care centers. Eur. J. Surg. Oncol., 2020, 46(11), 2158-2159.
[http://dx.doi.org/10.1016/j.ejso.2020.06.025] [PMID: 32571635]
[155]
Vicini, E.; Galimberti, V.; Naninato, P.; Vento, A.R.; Ribeiro Fontana, S.K.; Veronesi, P. COVID-19: The European institute of oncology as a “hub” centre for breast cancer surgery during the pandemic in Milan (Lombardy region, northern Italy) - A screenshot of the first month. Eur. J. Surg. Oncol., 2020, 46(6), 1180-1181.
[http://dx.doi.org/10.1016/j.ejso.2020.04.026] [PMID: 32359919]
[156]
Curigliano, G.; Cardoso, M.J.; Poortmans, P.; Gentilini, O.; Pravettoni, G.; Mazzocco, K.; Houssami, N.; Pagani, O.; Senkus, E.; Cardoso, F. Recommendations for triage, prioritization and treatment of breast cancer patients during the COVID-19 pandemic. Breast, 2020, 52, 8-16.
[http://dx.doi.org/10.1016/j.breast.2020.04.006] [PMID: 32334323]
[157]
Al-Jabir, A.; Kerwan, A.; Nicola, M.; Alsafi, Z.; Khan, M.; Sohrabi, C.; O’Neill, N.; Iosifidis, C.; Griffin, M.; Mathew, G.; Agha, R. Impact of the Coronavirus (COVID-19) pandemic on surgical practice - Part 2 (surgical prioritisation). Int. J. Surg., 2020, 79, 233-248.
[http://dx.doi.org/10.1016/j.ijsu.2020.05.002] [PMID: 32413502]
[158]
Dietz, J.R.; Moran, M.S.; Isakoff, S.J.; Kurtzman, S.H.; Willey, S.C.; Burstein, H.J.; Bleicher, R.J.; Lyons, J.A.; Sarantou, T.; Baron, P.L.; Stevens, R.E.; Boolbol, S.K.; Anderson, B.O.; Shulman, L.N.; Gradishar, W.J.; Monticciolo, D.L.; Plecha, D.M.; Nelson, H.; Yao, K.A. Recommendations for prioritization, treatment, and triage of breast cancer patients during the COVID-19 pandemic. the COVID-19 pandemic breast cancer consortium. Breast Cancer Res. Treat., 2020, 181(3), 487-497.
[http://dx.doi.org/10.1007/s10549-020-05644-z] [PMID: 32333293]
[159]
Coles, C.E.; Aristei, C.; Bliss, J.; Boersma, L.; Brunt, A.M.; Chatterjee, S.; Hanna, G.; Jagsi, R.; Kaidar Person, O.; Kirby, A.; Mjaaland, I.; Meattini, I.; Luis, A.M.; Marta, G.N.; Offersen, B.; Poortmans, P.; Rivera, S. International guidelines on radiation therapy for breast cancer during the COVID-19 pandemic. Clin. Oncol. (R. Coll. Radiol.), 2020, 32(5), 279-281.
[http://dx.doi.org/10.1016/j.clon.2020.03.006] [PMID: 32241520]
[160]
Braunstein, L.Z.; Gillespie, E.F.; Hong, L.; Xu, A.; Bakhoum, S.F.; Cuaron, J.; Mueller, B.; McCormick, B.; Cahlon, O.; Powell, S.; Khan, A.J. Breast radiation therapy under COVID-19 pandemic resource constraints-approaches to defer or shorten treatment from a comprehensive cancer center in the United States. Adv. Radiat. Oncol., 2020, 5(4), 582-588.
[http://dx.doi.org/10.1016/j.adro.2020.03.013] [PMID: 32292842]
[161]
Sheng, J.Y.; Santa-Maria, C.A.; Mangini, N.; Norman, H.; Couzi, R.; Nunes, R.; Wilkinson, M.; Visvanathan, K.; Connolly, R.M.; Roussos Torres, E.T.; Fetting, J.H.; Armstrong, D.K.; Tao, J.J.; Jacobs, L.; Wright, J.L.; Thorner, E.D.; Hodgdon, C.; Horn, S.; Wolff, A.C.; Stearns, V.; Smith, K.L. Management of breast cancer during the COVID-19 pandemic: A stage- and subtype-specific approach. JCO Oncol. Pract., 2020, 16(10), 665-674.
[http://dx.doi.org/10.1200/OP.20.00364] [PMID: 32603252]
[162]
Cavalcante, F.P.; Novita, G.G.; Millen, E.C.; Zerwes, F.P.; de Oliveira, V.M.; Sousa, A.L.L.; Freitas Junior, R. Management of early breast cancer during the COVID-19 pandemic in Brazil. Breast Cancer Res. Treat., 2020, 184(2), 637-647.
[http://dx.doi.org/10.1007/s10549-020-05877-y] [PMID: 32803637]
[163]
Poggio, F.; Tagliamento, M.; Di Maio, M.; Martelli, V.; De Maria, A.; Barisione, E.; Grosso, M.; Boccardo, F.; Pronzato, P.; Del Mastro, L.; Lambertini, M. Assessing the impact of the COVID-19 outbreak on the attitudes and practice of Italian oncologists toward breast cancer care and related research activities. JCO Oncol. Pract., 2020, 16(11), e1304-e1314.
[http://dx.doi.org/10.1200/OP.20.00297] [PMID: 32574131]
[164]
Papautsky, E.L.; Hamlish, T. Patient-reported treatment delays in breast cancer care during the COVID-19 pandemic. Breast Cancer Res. Treat., 2020, 184(1), 249-254.
[http://dx.doi.org/10.1007/s10549-020-05828-7] [PMID: 32772225]
[165]
Denova-Gutierrez, E.; Lopez-Gatell, H.; Alomia-Zegarra, J.L.; Lopez-Ridaura, R.; Zaragoza-Jimenez, C.A. The association between obesity, type 2 diabetes, and hypertension with severe COVID-19 on admission among Mexicans. Obesity (Silver Spring), 2020, 28(10), 1826-1832.
[PMID: 32610364]
[166]
Dugail, I.; Amri, E.Z.; Vitale, N. High prevalence for obesity in severe COVID-19: Possible links and perspectives towards patient stratification. Biochimie, 2020, 179, 257-265.
[http://dx.doi.org/10.1016/j.biochi.2020.07.001] [PMID: 32649962]
[167]
Hardefeldt, P.J.; Edirimanne, S.; Eslick, G.D. Diabetes increases the risk of breast cancer: a meta-analysis. Endocr. Relat. Cancer, 2012, 19(6), 793-803.
[http://dx.doi.org/10.1530/ERC-12-0242] [PMID: 23035011]
[168]
Boyle, P.; Boniol, M.; Koechlin, A.; Robertson, C.; Valentini, F.; Coppens, K.; Fairley, L.L.; Boniol, M.; Zheng, T.; Zhang, Y.; Pasterk, M.; Smans, M.; Curado, M.P.; Mullie, P.; Gandini, S.; Bota, M.; Bolli, G.B.; Rosenstock, J.; Autier, P. Diabetes and breast cancer risk: a meta-analysis. Br. J. Cancer, 2012, 107(9), 1608-1617.
[http://dx.doi.org/10.1038/bjc.2012.414] [PMID: 22996614]
[169]
IDF Diabetes Atlas-8 th Edition. 2017. Available from: http://www.diabetesatlas.org/resources/2017-atlas.html
[170]
Larsson, S.C.; Mantzoros, C.S.; Wolk, A. Diabetes mellitus and risk of breast cancer: A meta-analysis. Int. J. Cancer, 2007, 121(4), 856-862.
[http://dx.doi.org/10.1002/ijc.22717] [PMID: 17397032]
[171]
Zhao, X.B.; Ren, G.S. Diabetes mellitus and prognosis in women with breast cancer: A systematic review and meta-analysis. Medicine (Baltimore), 2016, 95(49), e5602.
[http://dx.doi.org/10.1097/MD.0000000000005602] [PMID: 27930583]
[172]
Kang, C.; LeRoith, D.; Gallagher, E.J. Diabetes, obesity, and breast cancer. Endocrinology, 2018, 159(11), 3801-3812.
[http://dx.doi.org/10.1210/en.2018-00574] [PMID: 30215698]
[173]
Suba, Z. Interplay between insulin resistance and estrogen deficiency as co- activators in carcinogenesis. Pathol. Oncol. Res., 2012, 18(2), 123-133.
[http://dx.doi.org/10.1007/s12253-011-9466-8] [PMID: 21984197]
[174]
Bronsveld, H.K.; Jensen, V.; Vahl, P.; De Bruin, M.L.; Cornelissen, S.; Sanders, J.; Auvinen, A.; Haukka, J.; Andersen, M.; Vestergaard, P.; Schmidt, M.K. Diabetes and breast cancer subtypes. PLoS One, 2017, 12(1), e0170084.
[http://dx.doi.org/10.1371/journal.pone.0170084] [PMID: 28076434]
[175]
Johnson, J.A.; Gale, E.A. Diabetes, insulin use, and cancer risk: Are observational studies part of the solution-or part of the problem? Diabetes, 2010, 59(5), 1129-1131.
[http://dx.doi.org/10.2337/db10-0334] [PMID: 20427699]
[176]
Orgel, E.; Mittelman, S.D. The links between insulin resistance, diabetes, and cancer. Curr. Diab. Rep., 2013, 13(2), 213-222.
[http://dx.doi.org/10.1007/s11892-012-0356-6] [PMID: 23271574]
[177]
Smith, U.; Gale, E.A. Cancer and diabetes: Are we ready for prime time? Diabetologia, 2010, 53(8), 1541-1544.
[http://dx.doi.org/10.1007/s00125-010-1815-8] [PMID: 20549181]
[178]
Tudzarova, S.; Osman, M.A. The double trouble of metabolic diseases: the diabetes-cancer link. Mol. Biol. Cell, 2015, 26(18), 3129-3139.
[http://dx.doi.org/10.1091/mbc.e14-11-1550] [PMID: 26371080]
[179]
Sun, G.; Kashyap, S.R. Cancer risk in type 2 diabetes mellitus: Metabolic links and therapeutic considerations. J. Nutr. Metab., 2011, 2011, 708183.
[http://dx.doi.org/10.1155/2011/708183] [PMID: 21773024]
[180]
Basha, B.; Samuel, S.M.; Triggle, C.R.; Ding, H. Endothelial dysfunction in diabetes mellitus: Possible involvement of endoplasmic reticulum stress? Exp. Diabetes Res., 2012, 2012, 481840.
[http://dx.doi.org/10.1155/2012/481840] [PMID: 22474423]
[181]
Saini, K.S.; Loi, S.; de Azambuja, E.; Metzger-Filho, O.; Saini, M.L.; Ignatiadis, M.; Dancey, J.E.; Piccart-Gebhart, M.J. Targeting the PI3K/AKT/mTOR and Raf/MEK/ERK pathways in the treatment of breast cancer. Cancer Treat. Rev., 2013, 39(8), 935-946.
[http://dx.doi.org/10.1016/j.ctrv.2013.03.009] [PMID: 23643661]
[182]
Dey, N.; De, P.; Leyland-Jones, B. PI3K-AKT-mTOR inhibitors in breast cancers: From tumor cell signaling to clinical trials. Pharmacol. Ther., 2017, 175, 91-106.
[http://dx.doi.org/10.1016/j.pharmthera.2017.02.037] [PMID: 28216025]
[183]
Zang, S.; Ji, Ch.; Qu, X.; Dong, X.; Ma, D.; Ye, J.; Ma, R.; Dai, J.; Guo, D. A study on Notch signaling in human breast cancer. Neoplasma, 2007, 54(4), 304-310.
[PMID: 17822320]
[184]
Shostak, K.; Chariot, A. NF-κB, stem cells and breast cancer: The links get stronger. Breast Cancer Res., 2011, 13(4), 214.
[http://dx.doi.org/10.1186/bcr2886] [PMID: 21867572]
[185]
MacDonald, B.T.; Tamai, K.; He, X. Wnt/beta-catenin signaling: Components, mechanisms, and diseases. Dev. Cell, 2009, 17(1), 9-26.
[http://dx.doi.org/10.1016/j.devcel.2009.06.016] [PMID: 19619488]
[186]
Ferroni, P.; Riondino, S.; Buonomo, O.; Palmirotta, R.; Guadagni, F.; Roselli, M. Type 2 diabetes and breast cancer: The interplay between impaired glucose metabolism and oxidant stress. Oxid. Med. Cell. Longev., 2015, 2015, 183928.
[http://dx.doi.org/10.1155/2015/183928] [PMID: 26171112]
[187]
Wang, W.A.; Groenendyk, J.; Michalak, M. Endoplasmic reticulum stress associated responses in cancer. Biochim. Biophys. Acta, 2014, 1843(10), 2143-2149.
[http://dx.doi.org/10.1016/j.bbamcr.2014.01.012] [PMID: 24440276]
[188]
Dejeans, N.; Barroso, K.; Fernandez-Zapico, M.E.; Samali, A.; Chevet, E. Novel roles of the unfolded protein response in the control of tumor development and aggressiveness. Semin. Cancer Biol., 2015, 33, 67-73.
[http://dx.doi.org/10.1016/j.semcancer.2015.04.007] [PMID: 25953433]
[189]
Fernández, Y.; Gu, B.; Martínez, A.; Torregrosa, A.; Sierra, A. Inhibition of apoptosis in human breast cancer cells: Role in tumor progression to the metastatic state. Int. J. Cancer, 2002, 101(4), 317-326.
[http://dx.doi.org/10.1002/ijc.10628] [PMID: 12209955]
[190]
Wolf, I.; Sadetzki, S.; Catane, R.; Karasik, A.; Kaufman, B. Diabetes mellitus and breast cancer. Lancet Oncol., 2005, 6(2), 103-111.
[http://dx.doi.org/10.1016/S1470-2045(05)01736-5] [PMID: 15683819]
[191]
Sharma, G.; Volgman, A.S.; Michos, E.D. Sex differences in mortality from COVID-19 pandemic: Are men vulnerable and women protected? JACC. Case Rep., 2020, 2(9), 1407-1410.
[http://dx.doi.org/10.1016/j.jaccas.2020.04.027] [PMID: 32373791]
[193]
Xie, J.; Tong, Z.; Guan, X.; Du, B.; Qiu, H. Clinical characteristics of patients who died of coronavirus disease 2019 in China. JAMA Netw. Open, 2020, 3(4), e205619.
[http://dx.doi.org/10.1001/jamanetworkopen.2020.5619] [PMID: 32275319]
[194]
Bertakis, K.D.; Azari, R.; Helms, L.J.; Callahan, E.J.; Robbins, J.A. Gender differences in the utilization of health care services. J. Fam. Pract., 2000, 49(2), 147-152.
[PMID: 10718692]
[195]
Wu, Z.; McGoogan, J.M. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report from 72314 cases from the Chinese center for disease control and prevention. JAMA, 2020, 323(13), 1239-1242.
[http://dx.doi.org/10.1001/jama.2020.2648] [PMID: 32091533]
[196]
Palmieri, L.; Andrianou, X.; Bella, A.; Bellino, S.; Boros, S. Characteristics of COVID-19 patients dying in Italy. Available from: https://www.epicentro.iss.it/ coronavirus/bollettino/Report- COVID-2019_20_ marzo_eng.pdf.
[197]
Alghamdi, I.G.; Hussain, I.I.; Almalki, S.S.; Alghamdi, M.S.; Alghamdi, M.M.; El-Sheemy, M.A. The pattern of Middle East respiratory syndrome coronavirus in Saudi Arabia: A descriptive epidemiological analysis of data from the Saudi Ministry of Health. Int. J. Gen. Med., 2014, 7, 417-423.
[http://dx.doi.org/10.2147/IJGM.S67061] [PMID: 25187734]
[198]
Robinson, D.P.; Huber, S.A.; Moussawi, M.; Roberts, B.; Teuscher, C.; Watkins, R.; Arnold, A.P.; Klein, S.L. Sex chromosome complement contributes to sex differences in coxsackievirus B3 but not influenza A virus pathogenesis. Biol. Sex Differ., 2011, 2, 8.
[http://dx.doi.org/10.1186/2042-6410-2-8] [PMID: 21806829]
[199]
Klein, S.L.; Flanagan, K.L. Sex differences in immune responses. Nat. Rev. Immunol., 2016, 16(10), 626-638.
[http://dx.doi.org/10.1038/nri.2016.90] [PMID: 27546235]
[200]
Schurz, H.; Salie, M.; Tromp, G.; Hoal, E.G.; Kinnear, C.J.; Möller, M. The X chromosome and sex-specific effects in infectious disease susceptibility. Hum. Genomics, 2019, 13(1), 2.
[http://dx.doi.org/10.1186/s40246-018-0185-z] [PMID: 30621780]
[201]
Chen, L.; Li, X.; Chen, M.; Feng, Y.; Xiong, C. The ACE2 expression in human heart indicates new potential mechanism of heart injury among patients infected with SARS-CoV-2. Cardiovasc. Res., 2020, 116(6), 1097-1100.
[http://dx.doi.org/10.1093/cvr/cvaa078] [PMID: 32227090]
[202]
Batlle, D.; Wysocki, J.; Satchell, K. Soluble angiotensin-converting enzyme 2: a potential approach for coronavirus infection therapy? Clin. Sci., 2020, 134(5), 543-545.
[http://dx.doi.org/10.1042/CS20200163] [PMID: 32167153]
[203]
Ziegler, C.G.K.; Allon, S.J.; Nyquist, S.K.; Mbano, I.M.; Miao, V.N.; Tzouanas, C.N.; Cao, Y.; Yousif, A.S.; Bals, J.; Hauser, B.M.; Feldman, J.; Muus, C.; Wadsworth, M.H., II; Kazer, S.W.; Hughes, T.K.; Doran, B.; Gatter, G.J.; Vukovic, M.; Taliaferro, F.; Mead, B.E.; Guo, Z.; Wang, J.P.; Gras, D.; Plaisant, M.; Ansari, M.; Angelidis, I.; Adler, H.; Sucre, J.M.S.; Taylor, C.J.; Lin, B.; Waghray, A.; Mitsialis, V.; Dwyer, D.F.; Buchheit, K.M.; Boyce, J.A.; Barrett, N.A.; Laidlaw, T.M.; Carroll, S.L.; Colonna, L.; Tkachev, V.; Peterson, C.W.; Yu, A.; Zheng, H.B.; Gideon, H.P.; Winchell, C.G.; Lin, P.L.; Bingle, C.D.; Snapper, S.B.; Kropski, J.A.; Theis, F.J.; Schiller, H.B.; Zaragosi, L.E.; Barbry, P.; Leslie, A.; Kiem, H.P.; Flynn, J.L.; Fortune, S.M.; Berger, B.; Finberg, R.W.; Kean, L.S.; Garber, M.; Schmidt, A.G.; Lingwood, D.; Shalek, A.K.; Ordovas-Montanes, J. SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell, 2020, 181(5), 1016-1035.e19.
[http://dx.doi.org/10.1016/j.cell.2020.04.035] [PMID: 32413319]
[204]
Afar, D.E.; Vivanco, I.; Hubert, R.S.; Kuo, J.; Chen, E.; Saffran, D.C.; Raitano, A.B.; Jakobovits, A. Catalytic cleavage of the androgen-regulated TMPRSS2 protease results in its secretion by prostate and prostate cancer epithelia. Cancer Res., 2001, 61(4), 1686-1692.
[PMID: 11245484]
[205]
Strope, J.D.; PharmD, C.H.C.; Figg, W.D. C.H.C.; Figg, W.D. TMPRSS2: potential biomarker for COVID-19 outcomes. J. Clin. Pharmacol., 2020, 60(7), 801-807.
[http://dx.doi.org/10.1002/jcph.1641] [PMID: 32437018]
[206]
Channappanavar, R.; Fett, C.; Mack, M.; Ten Eyck, P.P.; Meyerholz, D.K.; Perlman, S. Sex-based differences in susceptibility to severe acute respiratory syndrome coronavirus infection. J. Immunol., 2017, 198(10), 4046-4053.
[http://dx.doi.org/10.4049/jimmunol.1601896] [PMID: 28373583]
[207]
Karlberg, J.; Chong, D.S.; Lai, W.Y. Do men have a higher case fatality rate of severe acute respiratory syndrome than women do? Am. J. Epidemiol., 2004, 159(3), 229-231.
[http://dx.doi.org/10.1093/aje/kwh056] [PMID: 14742282]
[208]
Schroeder, M.; Tuku, B.; Jarczak, D The majority of male patients with COVID-19 present low testosterone levels on admission to Intensive Care in Hamburg, Germany: A retrospective cohort study. medRxiv, 2020.
[209]
Ma, L.; Xie, W Li, D Effect of SARS-CoV-2 infection upon male gonadal function: a single center-based study. medRxiv, 2020.
[210]
Ghazizadeh, Z.; Majd, H Richter, M Androgen regulates SARS- CoV-2 receptor levels and is associated with severe COVID-19 Symptoms in men. bioRxiv, 2020.
[211]
Goren, A.; Vaño-Galván, S.; Wambier, C.G.; McCoy, J.; Gomez-Zubiaur, A.; Moreno-Arrones, O.M.; Shapiro, J.; Sinclair, R.D.; Gold, M.H.; Kovacevic, M.; Mesinkovska, N.A.; Goldust, M.; Washenik, K. A preliminary observation: Male pattern hair loss among hospitalized COVID-19 patients in Spain - A potential clue to the role of androgens in COVID-19 severity. J. Cosmet. Dermatol., 2020, 19(7), 1545-1547.
[http://dx.doi.org/10.1111/jocd.13443] [PMID: 32301221]
[212]
Wambier, C.G.; Vano-Galvan, S.; McCoy, J. Androgenetic alopecia present in the majority of hospitalized COVID-19 patients - the “Gabrin sign”. J. Am. Acad. Dermatol., 2020, 83(2), 680-682.
[http://dx.doi.org/10.1016/j.jaad.2020.05.079] [PMID: 32446821]
[213]
Montopoli, M.; Zumerle, S.; Vettor, R.; Rugge, M.; Zorzi, M.; Catapano, C.V.; Carbone, G.M.; Cavalli, A.; Pagano, F.; Ragazzi, E.; Prayer-Galetti, T.; Alimonti, A. Androgen-deprivation therapies for prostate cancer and risk of infection by SARS-CoV-2: A population-based study (N = 4532). Ann. Oncol., 2020, 31(8), 1040-1045.
[http://dx.doi.org/10.1016/j.annonc.2020.04.479] [PMID: 32387456]
[214]
Taneja, V. Sex hormones determine immune response. Front. Immunol., 2018, 9, 1931.
[http://dx.doi.org/10.3389/fimmu.2018.01931] [PMID: 30210492]
[215]
Klein, S.L. Sex influences immune responses to viruses, and efficacy of prophylaxis and treatments for viral diseases. BioEssays, 2012, 34(12), 1050-1059.
[http://dx.doi.org/10.1002/bies.201200099] [PMID: 23012250]
[216]
Ghosh, S.; Klein, R.S. Sex drives dimorphic immune responses to viral infections. J. Immunol., 2017, 198(5), 1782-1790.
[http://dx.doi.org/10.4049/jimmunol.1601166] [PMID: 28223406]
[217]
Gross, J.M.; Yee, D. How does the estrogen receptor work? Breast Cancer Res., 2002, 4(2), 62-64.
[http://dx.doi.org/10.1186/bcr424] [PMID: 11879565]
[218]
Nestler, J.E.; Jakubowicz, D.J.; de Vargas, A.F.; Brik, C.; Quintero, N.; Medina, F. Insulin stimulates testosterone biosynthesis by human thecal cells from women with polycystic ovary syndrome by activating its own receptor and using inositolglycan mediators as the signal transduction system. J. Clin. Endocrinol. Metab., 1998, 83(6), 2001-2005.
[PMID: 9626131]
[219]
Pierpoint, T.; McKeigue, P.M.; Isaacs, A.J.; Wild, S.H.; Jacobs, H.S. Mortality of women with polycystic ovary syndrome at long-term follow-up. J. Clin. Epidemiol., 1998, 51(7), 581-586.
[http://dx.doi.org/10.1016/S0895-4356(98)00035-3] [PMID: 9674665]
[220]
Yee, D.; Lee, A.V. Crosstalk between the insulin-like growth factors and estrogens in breast cancer. J. Mammary Gland Biol. Neoplasia, 2000, 5(1), 107-115.
[http://dx.doi.org/10.1023/A:1009575518338] [PMID: 10791773]
[221]
Osborne, C.K.; Shou, J.; Massarweh, S.; Schiff, R. Crosstalk between estrogen receptor and growth factor receptor pathways as a cause for endocrine therapy resistance in breast cancer. Clin. Cancer Res., 2005, 11(2 Pt 2), 865s-870s.
[PMID: 15701879]
[222]
Osborne, C.K.; Schiff, R. Mechanisms of endocrine resistance in breast cancer. Annu. Rev. Med., 2011, 62, 233-247.
[http://dx.doi.org/10.1146/annurev-med-070909-182917] [PMID: 20887199]
[223]
Giuliano, M.; Trivedi, M.V.; Schiff, R. Bidirectional crosstalk between the estrogen receptor and human epidermal growth factor receptor 2 signaling pathways in breast cancer: molecular basis and clinical implications. Breast Care, 2013, 8(4), 256-262.
[http://dx.doi.org/10.1159/000354253] [PMID: 24415978]
[224]
Acharya, S.; Xu, J.; Wang, X.; Jain, S.; Wang, H.; Zhang, Q.; Chang, C.C.; Bower, J.; Arun, B.; Seewaldt, V.; Yu, D. Downregulation of GLUT4 contributes to effective intervention of estrogen receptor-negative/HER2-overexpressing early stage breast disease progression by lapatinib. Am. J. Cancer Res., 2016, 6(5), 981-995.
[PMID: 27293993]
[225]
Helguero, L.A.; Faulds, M.H.; Gustafsson, J.A.; Haldosén, L.A. Estrogen receptors alfa (ERalpha) and β (ERbeta) differentially regulate proliferation and apoptosis of the normal murine mammary epithelial cell line HC11. Oncogene, 2005, 24(44), 6605-6616.
[http://dx.doi.org/10.1038/sj.onc.1208807] [PMID: 16007178]
[226]
Key, T.J.; Pike, M.C. The dose-effect relationship between ‘unopposed’ oestrogens and endometrial mitotic rate: Its central role in explaining and predicting endometrial cancer risk. Br. J. Cancer, 1988, 57(2), 205-212.
[http://dx.doi.org/10.1038/bjc.1988.44] [PMID: 3358913]
[227]
Colditz, G.A.; Hankinson, S.E.; Hunter, D.J.; Willett, W.C.; Manson, J.E.; Stampfer, M.J.; Hennekens, C.; Rosner, B.; Speizer, F.E. The use of estrogens and progestins and the risk of breast cancer in postmenopausal women. N. Engl. J. Med., 1995, 332(24), 1589-1593.
[http://dx.doi.org/10.1056/NEJM199506153322401] [PMID: 7753136]
[228]
Feigelson, H.S.; Henderson, B.E. Estrogens and breast cancer. Carcinogenesis, 1996, 17(11), 2279-2284.
[http://dx.doi.org/10.1093/carcin/17.11.2279] [PMID: 8968038]
[229]
Berrino, F.; Muti, P.; Micheli, A.; Bolelli, G.; Krogh, V.; Sciajno, R.; Pisani, P.; Panico, S.; Secreto, G. Serum sex hormone levels after menopause and subsequent breast cancer. J. Natl. Cancer Inst., 1996, 88(5), 291-296.
[http://dx.doi.org/10.1093/jnci/88.5.291] [PMID: 8614008]
[230]
La Vecchia, C.; Brinton, L.A.; McTiernan, A. Menopause, hormone replacement therapy and cancer. Maturitas, 2001, 39(2), 97-115.
[http://dx.doi.org/10.1016/S0378-5122(01)00213-4] [PMID: 11514109]
[231]
Diamanti-Kandarakis, E. Hormone replacement therapy and risk of malignancy. Curr. Opin. Obstet. Gynecol., 2004, 16(1), 73-78.
[http://dx.doi.org/10.1097/00001703-200402000-00013] [PMID: 15128011]
[232]
Pike, M.; Bernstein, L.; Spicer, D. Exogenous hormones and breast cancer risk. Current Therapy in Oncol BC Decker; Neiderhuber, J., Ed.; St. Louis, MO, 1993, pp. 292-302.
[233]
Liehr, J.G. Is estradiol a genotoxic mutagenic carcinogen? Endocr. Rev., 2000, 21(1), 40-54.
[PMID: 10696569]
[234]
International Agency for Research on Cancer. Monographs on the evaluation of carcinogenic risks to humans: hormonal contraception and postmenopausal hormone therapy; IARC: Lyon, France, 1999. Vol. 74.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy