Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

纳米技术支持的化学动力学疗法和免疫疗法

卷 21, 期 7, 2021

发表于: 19 February, 2021

页: [545 - 557] 页: 13

弟呕挨: 10.2174/1568009621666210219101552

价格: $65

摘要

据报道,高水平的活性氧 (ROS) 通过诱导细胞凋亡或坏死性凋亡发挥强大的抗肿瘤作用。基于芬顿反应或类芬顿反应,提出了一种治疗策略(即化学动力学疗法(CDT)),其中羟基自由基(·OH)是一种活性氧,可以通过一种内生刺激的自发激活来杀死肿瘤。此外,高水平的 ROS 还可以促进肿瘤相关抗原暴露,这有利于抗原呈递细胞(例如树突状细胞 (DC))对尸体和碎片的吞噬作用,并进一步激活系统免疫反应。在巨大的努力下,其中纳米技术领域的发展已经被跨学科社区所见证。为了全面了解 CDT,本研究详细讨论了基于纳米技术的 CDT 的最新策略。 特别是,CDT 与其针对肿瘤的增强免疫疗法的组合已被强调克服了单一 CDT 的不良结果。此外,还讨论了潜在的挑战。

关键词: 活性氧、化学动力学疗法、免疫疗法、纳米技术、协同疗法、树突状细胞 (DC)。

Next »
图形摘要

[1]
Idelchik, M.D.P.S.; Begley, U.; Begley, T.J.; Melendez, J.A. Mitochondrial ROS control of cancer. Semin. Cancer Biol., 2017, 47, 57-66.
[http://dx.doi.org/10.1016/j.semcancer.2017.04.005] [PMID: 28445781]
[2]
Tang, Z.; Liu, Y.; He, M.; Bu, W. Chemodynamic therapy: Tumour microenvironment-mediated fenton and fenton-like reactions. Angew. Chem. Int. Ed. Engl., 2019, 58(4), 946-956.
[http://dx.doi.org/10.1002/anie.201805664] [PMID: 30048028]
[3]
Zhang, K.; Xu, H.; Chen, H.; Jia, X.; Zheng, S.; Cai, X.; Wang, R.; Mou, J.; Zheng, Y.; Shi, J. CO2 bubbling-based ‘nanobomb’ system for targetedly suppressing Panc-1 pancreatic tumor via low intensity ultrasound-activated inertial cavitation. Theranostics, 2015, 5(11), 1291-1302.
[http://dx.doi.org/10.7150/thno.12691] [PMID: 26379793]
[4]
Zhang, K.; Li, P.; Chen, H.; Bo, X.; Li, X.; Xu, H. Continuous cavitation designed for enhancing radiofrequency ablation via a special radiofrequency solidoid vaporization process. ACS Nano, 2016, 10(2), 2549-2558.
[http://dx.doi.org/10.1021/acsnano.5b07486] [PMID: 26800221]
[5]
Zhang, K.; Cheng, Y.; Ren, W.; Sun, L.; Liu, C.; Wang, D.; Guo, L.; Xu, H.; Zhao, Y. Coordination-responsive longitudinal relaxation tuning as a versatile MRI sensing protocol for malignancy targets. Adv. Sci. (Weinh.), 2018, 5(9), 1800021.
[http://dx.doi.org/10.1002/advs.201800021] [PMID: 30250780]
[6]
Zhang, K.; Li, H-Y.; Lang, J-Y.; Li, X-T.; Yue, W-W.; Yin, Y-F.; Du, D.; Fang, Y.; Wu, H.; Zhao, Y-X.; Xu, C. Quantum yield-engineered biocompatible probes illuminate lung tumor based on viscosity confinement-mediated antiaggregation. Adv. Funct. Mater., 2019, 29, 1905124.
[http://dx.doi.org/10.1002/adfm.201905124]
[7]
Chen, J.; Luo, H.; Liu, Y.; Zhang, W.; Li, H.; Luo, T.; Zhang, K.; Zhao, Y.; Liu, J. Oxygen-self-produced nanoplatform for relieving hypoxia and breaking resistance to sonodynamic treatment of pancreatic cancer. ACS Nano, 2017, 11(12), 12849-12862.
[http://dx.doi.org/10.1021/acsnano.7b08225] [PMID: 29236476]
[8]
Zhang, K.; Xu, H.; Jia, X.; Chen, Y.; Ma, M.; Sun, L.; Chen, H. Ultrasound-triggered nitric oxide release platform based on energy transformation for targeted inhibition of pancreatic tumor. ACS Nano, 2016, 10(12), 10816-10828.
[http://dx.doi.org/10.1021/acsnano.6b04921] [PMID: 28024356]
[9]
Lin, H.; Chen, Y.; Shi, J. Nanoparticle-triggered in situ catalytic chemical reactions for tumour-specific therapy. Chem. Soc. Rev., 2018, 47(6), 1938-1958.
[http://dx.doi.org/10.1039/C7CS00471K] [PMID: 29417106]
[10]
Zhang, C.; Bu, W.; Ni, D.; Zhang, S.; Li, Q.; Yao, Z.; Zhang, J.; Yao, H.; Wang, Z.; Shi, J. Synthesis of iron nanometallic glasses and their application in cancer therapy by a localized Fenton reaction. Angew. Chem. Int. Ed. Engl., 2016, 55(6), 2101-2106.
[http://dx.doi.org/10.1002/anie.201510031] [PMID: 26836344]
[11]
Fang, Y.; Li, H-Y.; Yin, H-H.; Xu, S-H.; Ren, W-W.; Ding, S-S.; Tang, W-Z.; Xiang, L-H.; Wu, R.; Guan, X.; Zhang, K. Radiofrequency-sensitive longitudinal relaxation tuning strategy enabling the visualization of radiofrequency ablation intensified by magnetic composite. ACS Appl. Mater. Interfaces, 2019, 11(12), 11251-11261.
[http://dx.doi.org/10.1021/acsami.9b02401] [PMID: 30874421]
[12]
Afzal, M.; Ameeduzzafar, ; Alharbi, K.S.; Alruwaili, N.K.; Al-Abassi, F.A.; Al-Malki, A.A.L.; Kazmi, I.; Kumar, V.; Kamal, M.A.; Nadeem, M.S.; Aslam, M.; Anwar, F. Nanomedicine in treatment of breast cancer - A challenge to conventional therapy. Semin. Cancer Biol., 2021, 69, 279-292.
[http://dx.doi.org/10.1016/j.semcancer.2019.12.016] [PMID: 31870940]
[13]
Lin, L.S.; Huang, T.; Song, J.; Ou, X.Y.; Wang, Z.; Deng, H.; Tian, R.; Liu, Y.; Wang, J.F.; Liu, Y.; Yu, G.; Zhou, Z.; Wang, S.; Niu, G.; Yang, H.H.; Chen, X. Synthesis of copper peroxide nanodots for H2O2 self-supplying chemodynamic therapy. J. Am. Chem. Soc., 2019, 141(25), 9937-9945.
[http://dx.doi.org/10.1021/jacs.9b03457] [PMID: 31199131]
[14]
Feng, W.; Han, X.; Wang, R.; Gao, X.; Hu, P.; Yue, W.; Chen, Y.; Shi, J. Nanocatalysts-augmented and photothermal-enhanced tumor-specific sequential nanocatalytic therapy in both NIR-I and NIR-II biowindows. Adv. Mater., 2019, 31(5), e1805919.
[PMID: 30536723]
[15]
Lin, L.S.; Song, J.; Song, L.; Ke, K.; Liu, Y.; Zhou, Z.; Shen, Z.; Li, J.; Yang, Z.; Tang, W.; Niu, G.; Yang, H.H.; Chen, X. Simultaneous fenton-like ion delivery and glutathione depletion by MnO2-based nanoagent to enhance chemodynamic therapy. Angew. Chem. Int. Ed. Engl., 2018, 57(18), 4902-4906.
[http://dx.doi.org/10.1002/anie.201712027] [PMID: 29488312]
[16]
Boulch, M.; Grandjean, C.L.; Cazaux, M.; Bousso, P. Tumor immunosurveillance and immunotherapies: A fresh look from intravital imaging. Trends Immunol., 2019, 40(11), 1022-1034.
[http://dx.doi.org/10.1016/j.it.2019.09.002] [PMID: 31668676]
[17]
Li, Q.; Zhang, D.; Zhang, J.; Jiang, Y.; Song, A.; Li, Z.; Luan, Y. A three-in-one immunotherapy nanoweapon via cascade-amplifying cancer-immunity cycle against tumor metastasis, relapse, and postsurgical regrowth. Nano Lett., 2019, 19(9), 6647-6657.
[http://dx.doi.org/10.1021/acs.nanolett.9b02923] [PMID: 31409072]
[18]
Riley, R.S.; June, C.H.; Langer, R.; Mitchell, M.J. Delivery technologies for cancer immunotherapy. Nat. Rev. Drug Discov., 2019, 18(3), 175-196.
[http://dx.doi.org/10.1038/s41573-018-0006-z] [PMID: 30622344]
[19]
Li, W.; Yang, J.; Luo, L.; Jiang, M.; Qin, B.; Yin, H.; Zhu, C.; Yuan, X.; Zhang, J.; Luo, Z.; Du, Y.; Li, Q.; Lou, Y.; Qiu, Y.; You, J. Targeting photodynamic and photothermal therapy to the endoplasmic reticulum enhances immunogenic cancer cell death. Nat. Commun., 2019, 10(1), 3349.
[http://dx.doi.org/10.1038/s41467-019-11269-8] [PMID: 31350406]
[20]
Yue, W.; Chen, L.; Yu, L.; Zhou, B.; Yin, H.; Ren, W.; Liu, C.; Guo, L.; Zhang, Y.; Sun, L.; Zhang, K.; Xu, H.; Chen, Y. Checkpoint blockade and nanosonosensitizer-augmented noninvasive sonodynamic therapy combination reduces tumour growth and metastases in mice. Nat. Commun., 2019, 10(1), 2025.
[http://dx.doi.org/10.1038/s41467-019-09760-3] [PMID: 31048681]
[21]
Zitvogel, L.; Kepp, O.; Senovilla, L.; Menger, L.; Chaput, N.; Kroemer, G. Immunogenic tumor cell death for optimal anticancer therapy: the calreticulin exposure pathway. Clin. Cancer Res., 2010, 16(12), 3100-3104.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-2891] [PMID: 20421432]
[22]
Chang, M.; Wang, M.; Wang, M.; Shu, M.; Ding, B.; Li, C.; Pang, M.; Cui, S.; Hou, Z.; Lin, J. A multifunctional cascade bioreactor based on hollow-structured Cu2MoS4 for synergetic cancer chemo- dynamic therapy/starvation therapy/phototherapy/immunotherapy with remarkably enhanced efficacy. Adv. Mater., 2019, 31, 1905271.
[http://dx.doi.org/10.1002/adma.201905271]
[23]
Bokare, A.D.; Choi, W. Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes. J. Hazard. Mater., 2014, 275, 121-135.
[http://dx.doi.org/10.1016/j.jhazmat.2014.04.054] [PMID: 24857896]
[24]
Zhou, B.; Zhang, J.Y.; Liu, X.S.; Chen, H.Z.; Ai, Y.L.; Cheng, K.; Sun, R.Y.; Zhou, D.; Han, J.; Wu, Q. Tom20 senses iron-activated ROS signaling to promote melanoma cell pyroptosis. Cell Res., 2018, 28(12), 1171-1185.
[http://dx.doi.org/10.1038/s41422-018-0090-y] [PMID: 30287942]
[25]
Chen, Q.; Liang, C.; Sun, X.; Chen, J.; Yang, Z.; Zhao, H.; Feng, L.; Liu, Z. H2O2-responsive liposomal nanoprobe for photoacoustic inflammation imaging and tumor theranostics via in vivo chromogenic assay. Proc. Natl. Acad. Sci. USA, 2017, 114(21), 5343-5348.
[http://dx.doi.org/10.1073/pnas.1701976114] [PMID: 28484000]
[26]
López-Lázaro, M. Dual role of hydrogen peroxide in cancer: possible relevance to cancer chemoprevention and therapy. Cancer Lett., 2007, 252(1), 1-8.
[http://dx.doi.org/10.1016/j.canlet.2006.10.029] [PMID: 17150302]
[27]
Ma, P.; Xiao, H.; Yu, C.; Liu, J.; Cheng, Z.; Song, H.; Zhang, X.; Li, C.; Wang, J.; Gu, Z.; Lin, J. Enhanced cisplatin chemotherapy by iron oxide nanocarrier-mediated generation of highly toxic reactive oxygen species. Nano Lett., 2017, 17(2), 928-937.
[http://dx.doi.org/10.1021/acs.nanolett.6b04269] [PMID: 28139118]
[28]
Sang, W.; Zhang, Z.; Dai, Y.; Chen, X. Recent advances in nanomaterial-based synergistic combination cancer immunotherapy. Chem. Soc. Rev., 2019, 48(14), 3771-3810.
[http://dx.doi.org/10.1039/C8CS00896E] [PMID: 31165801]
[29]
Liu, Y.; Ji, X.; Tong, W.W.L.; Askhatova, D.; Yang, T.; Cheng, H.; Wang, Y.; Shi, J. Shi, J. Engineering multifunctional RNAi nanomedicine to concurrently target cancer hallmarks for combinatorial therapy. Angew. Chem. Int. Ed. Engl., 2018, 57(6), 1510-1513.
[http://dx.doi.org/10.1002/anie.201710144] [PMID: 29276823]
[30]
Zhang, K.; Fang, Y.; He, Y.; Yin, H.; Guan, X.; Pu, Y.; Zhou, B.; Yue, W.; Ren, W.; Du, D.; Li, H.; Liu, C.; Sun, L.; Chen, Y.; Xu, H. Extravascular gelation shrinkage-derived internal stress enables tumor starvation therapy with suppressed metastasis and recurrence. Nat. Commun., 2019, 10(1), 5380.
[http://dx.doi.org/10.1038/s41467-019-13115-3] [PMID: 31772164]
[31]
Huo, M.; Wang, L.; Chen, Y.; Shi, J. Tumor-selective catalytic nanomedicine by nanocatalyst delivery. Nat. Commun., 2017, 8(1), 357.
[http://dx.doi.org/10.1038/s41467-017-00424-8] [PMID: 28842577]
[32]
Meister, A. Glutathione metabolism and its selective modification. J. Biol. Chem., 1988, 263(33), 17205-17208.
[http://dx.doi.org/10.1016/S0021-9258(19)77815-6] [PMID: 3053703]
[33]
Dong, Z.; Feng, L.; Chao, Y.; Hao, Y.; Chen, M.; Gong, F.; Han, X.; Zhang, R.; Cheng, L.; Liu, Z. Amplification of tumor oxidative stresses with liposomal fenton catalyst and glutathione inhibitor for enhanced cancer chemotherapy and radiotherapy. Nano Lett., 2019, 19(2), 805-815.
[http://dx.doi.org/10.1021/acs.nanolett.8b03905] [PMID: 30592897]
[34]
Shields, C.W.; Wang, L.L.; Evans, M.A.; Mitragotri, S. Materials for immunotherapy. Adv. Mater., 2019.
[http://dx.doi.org/10.1002/adma.201901633] [PMID: 31250498]
[35]
Granier, C.; De Guillebon, E.; Blanc, C.; Roussel, H.; Badoual, C.; Colin, E.; Saldmann, A.; Gey, A.; Oudard, S.; Tartour, E. Mechanisms of action and rationale for the use of checkpoint inhibitors in cancer. ESMO Open, 2017, 2(2), e000213.
[http://dx.doi.org/10.1136/esmoopen-2017-000213] [PMID: 28761757]
[36]
Pardoll, D.M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer, 2012, 12(4), 252-264.
[http://dx.doi.org/10.1038/nrc3239] [PMID: 22437870]
[37]
Ahmed, S.; Rai, K.R. Interferon in the treatment of hairy-cell leukemia. Best Pract. Res. Clin. Haematol., 2003, 16(1), 69-81.
[http://dx.doi.org/10.1016/S1521-6926(02)00084-1] [PMID: 12670466]
[38]
Lee, S.; Margolin, K. Cytokines in cancer immunotherapy. Cancers (Basel), 2011, 3(4), 3856-3893.
[http://dx.doi.org/10.3390/cancers3043856] [PMID: 24213115]
[39]
Lim, W.A.; June, C.H. The principles of engineering immune cells to treat cancer. Cell, 2017, 168(4), 724-740.
[http://dx.doi.org/10.1016/j.cell.2017.01.016] [PMID: 28187291]
[40]
Fesnak, A.D.; June, C.H.; Levine, B.L. Engineered T cells: The promise and challenges of cancer immunotherapy. Nat. Rev. Cancer, 2016, 16(9), 566-581.
[http://dx.doi.org/10.1038/nrc.2016.97] [PMID: 27550819]
[41]
Peggs, K.S.; Quezada, S.A.; Allison, J.P. Cancer immunotherapy: co-stimulatory agonists and co-inhibitory antagonists. Clin. Exp. Immunol., 2009, 157(1), 9-19.
[http://dx.doi.org/10.1111/j.1365-2249.2009.03912.x] [PMID: 19659765]
[42]
Srivatsan, S.; Patel, J.M.; Bozeman, E.N.; Imasuen, I.E.; He, S.; Daniels, D.; Selvaraj, P. Allogeneic tumor cell vaccines: The promise and limitations in clinical trials. Hum. Vaccin. Immunother., 2014, 10(1), 52-63.
[http://dx.doi.org/10.4161/hv.26568] [PMID: 24064957]
[43]
Chiang, C.L.; Coukos, G.; Kandalaft, L.E. Whole tumor antigen vaccines: Where are we? Vaccines (Basel), 2015, 3(2), 344-372.
[http://dx.doi.org/10.3390/vaccines3020344] [PMID: 26343191]
[44]
Goldberg, M.S. Improving cancer immunotherapy through nanotechnology. Nat. Rev. Cancer, 2019, 19(10), 587-602.
[http://dx.doi.org/10.1038/s41568-019-0186-9] [PMID: 31492927]
[45]
Chen, Q.; Wang, C.; Zhang, X.; Chen, G.; Hu, Q.; Li, H.; Wang, J.; Wen, D.; Zhang, Y.; Lu, Y.; Yang, G.; Jiang, C.; Wang, J.; Dotti, G.; Gu, Z. In situ sprayed bioresponsive immunotherapeutic gel for post-surgical cancer treatment. Nat. Nanotechnol., 2019, 14(1), 89-97.
[http://dx.doi.org/10.1038/s41565-018-0319-4] [PMID: 30531990]
[46]
Tang, L.; Zheng, Y.; Melo, M.B.; Mabardi, L.; Castaño, A.P.; Xie, Y.Q.; Li, N.; Kudchodkar, S.B.; Wong, H.C.; Jeng, E.K.; Maus, M.V.; Irvine, D.J. Enhancing T cell therapy through TCR-signaling-responsive nanoparticle drug delivery. Nat. Biotechnol., 2018, 36(8), 707-716.
[http://dx.doi.org/10.1038/nbt.4181] [PMID: 29985479]
[47]
Zheng, C.; Wang, Q.; Wang, Y.; Zhao, X.; Gao, K.; Liu, Q.; Zhao, Y.; Zhang, Z.; Zheng, Y.; Cao, J.; Chen, H.; Shi, L.; Kang, C.; Liu, Y.; Lu, Y. In situ modification of the tumor cell surface with immunomodulating nanoparticles for effective suppression of tumor growth in mice. Adv. Mater., 2019, 31(32), e1902542.
[http://dx.doi.org/10.1002/adma.201902542] [PMID: 31183900]
[48]
Chen, Q.; Chen, G.; Chen, J.; Shen, J.; Zhang, X.; Wang, J.; Chan, A.; Gu, Z. Bioresponsive protein complex of aPD1 and aCD47 Antibodies for enhanced immunotherapy. Nano Lett., 2019, 19(8), 4879-4889.
[http://dx.doi.org/10.1021/acs.nanolett.9b00584] [PMID: 31294571]
[49]
Huang, H.; Jiang, C.T.; Shen, S.; Liu, A.; Gan, Y.J.; Tong, Q.S.; Chen, S.B.; Gao, Z.X.; Du, J.Z.; Cao, J.; Wang, J. Nanoenabled reversal of IDO1-mediated immunosuppression synergizes with immunogenic chemotherapy for improved cancer therapy. Nano Lett., 2019, 19(8), 5356-5365.
[http://dx.doi.org/10.1021/acs.nanolett.9b01807] [PMID: 31286779]
[50]
Duan, X.; Chan, C.; Guo, N.; Han, W.; Weichselbaum, R.R.; Lin, W. Photodynamic therapy mediated by nontoxic core-shell nanoparticles synergizes with immune checkpoint blockade to elicit antitumor immunity and antimetastatic effect on breast cancer. J. Am. Chem. Soc., 2016, 138(51), 16686-16695.
[http://dx.doi.org/10.1021/jacs.6b09538] [PMID: 27976881]
[51]
Casares, N.; Pequignot, M.O.; Tesniere, A.; Ghiringhelli, F.; Roux, S.; Chaput, N.; Schmitt, E.; Hamai, A.; Hervas-Stubbs, S.; Obeid, M.; Coutant, F.; Métivier, D.; Pichard, E.; Aucouturier, P.; Pierron, G.; Garrido, C.; Zitvogel, L.; Kroemer, G. Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death. J. Exp. Med., 2005, 202(12), 1691-1701.
[http://dx.doi.org/10.1084/jem.20050915] [PMID: 16365148]
[52]
Tesniere, A.; Schlemmer, F.; Boige, V.; Kepp, O.; Martins, I.; Ghiringhelli, F.; Aymeric, L.; Michaud, M.; Apetoh, L.; Barault, L.; Mendiboure, J.; Pignon, J.P.; Jooste, V.; van Endert, P.; Ducreux, M.; Zitvogel, L.; Piard, F.; Kroemer, G. Immunogenic death of colon cancer cells treated with oxaliplatin. Oncogene, 2010, 29(4), 482-491.
[http://dx.doi.org/10.1038/onc.2009.356] [PMID: 19881547]
[53]
Feng, B.; Hou, B.; Xu, Z.; Saeed, M.; Yu, H.; Li, Y. Self-amplified drug delivery with light-inducible nanocargoes to enhance cancer immunotherapy. Adv. Mater., 2019, 31(40), e1902960.
[http://dx.doi.org/10.1002/adma.201902960] [PMID: 31423683]
[54]
Xu, C.; Yu, Y.; Sun, Y.; Kong, L.; Yang, C.; Hu, M.; Yang, T.; Zhang, J.; Hu, Q.; Zhang, Z. Transformable nanoparticle-enabled synergistic elicitation and promotion of immunogenic cell death for triple-negative breast cancer immunotherapy. Adv. Funct. Mater., 2019, 29, 1905213.
[http://dx.doi.org/10.1002/adfm.201905213]
[55]
Wen, M.; Ouyang, J.; Wei, C.; Li, H.; Chen, W.; Liu, Y.N. Artificial enzyme catalyzed cascade reactions: Antitumor immunotherapy reinforced by NIR-II light. Angew. Chem. Int. Ed. Engl., 2019, 58(48), 17425-17432.
[http://dx.doi.org/10.1002/anie.201909729] [PMID: 31552695]
[56]
Guan, X.; Yin, H.H.; Xu, X.H.; Xu, G.; Zhang, Y.; Zhou, B.G.; Yue, W.W.; Liu, C.; Sun, L.P.; Xu, H.X.; Zhang, K. Tumor metabolism-engineered composite nanoplatforms potentiate sonodynamic therapy via reshaping tumor microenvironment and facilitating electron-hole pairs separation. Adv. Funct. Mater., 2020, 30, 2000326.
[http://dx.doi.org/10.1002/adfm.202000326]
[57]
Yin, Y.; Jiang, X.; Sun, L.; Li, H.; Su, C.; Zhang, Y.; Xu, G.; Li, X.; Zhao, C.; Chen, Y.; Xu, H.; Zhang, K. Continuous inertial cavitation evokes massive ROS for reinforcing sonodynamic therapy and immunogenic cell death against breast carcinoma. Nano Today, 2021, 36, 101009.
[http://dx.doi.org/10.1016/j.nantod.2020.101009]
[58]
Fang, Y.; Xu, C.; Zhang, K. Nanotechnology-assisted starvation treatment against malignant tumors. J. Nutr. Oncol., 2019, 4, 31-39.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy