摘要
据报道,高水平的活性氧 (ROS) 通过诱导细胞凋亡或坏死性凋亡发挥强大的抗肿瘤作用。基于芬顿反应或类芬顿反应,提出了一种治疗策略(即化学动力学疗法(CDT)),其中羟基自由基(·OH)是一种活性氧,可以通过一种内生刺激的自发激活来杀死肿瘤。此外,高水平的 ROS 还可以促进肿瘤相关抗原暴露,这有利于抗原呈递细胞(例如树突状细胞 (DC))对尸体和碎片的吞噬作用,并进一步激活系统免疫反应。在巨大的努力下,其中纳米技术领域的发展已经被跨学科社区所见证。为了全面了解 CDT,本研究详细讨论了基于纳米技术的 CDT 的最新策略。 特别是,CDT 与其针对肿瘤的增强免疫疗法的组合已被强调克服了单一 CDT 的不良结果。此外,还讨论了潜在的挑战。
关键词: 活性氧、化学动力学疗法、免疫疗法、纳米技术、协同疗法、树突状细胞 (DC)。
图形摘要
[http://dx.doi.org/10.1016/j.semcancer.2017.04.005] [PMID: 28445781]
[http://dx.doi.org/10.1002/anie.201805664] [PMID: 30048028]
[http://dx.doi.org/10.7150/thno.12691] [PMID: 26379793]
[http://dx.doi.org/10.1021/acsnano.5b07486] [PMID: 26800221]
[http://dx.doi.org/10.1002/advs.201800021] [PMID: 30250780]
[http://dx.doi.org/10.1002/adfm.201905124]
[http://dx.doi.org/10.1021/acsnano.7b08225] [PMID: 29236476]
[http://dx.doi.org/10.1021/acsnano.6b04921] [PMID: 28024356]
[http://dx.doi.org/10.1039/C7CS00471K] [PMID: 29417106]
[http://dx.doi.org/10.1002/anie.201510031] [PMID: 26836344]
[http://dx.doi.org/10.1021/acsami.9b02401] [PMID: 30874421]
[http://dx.doi.org/10.1016/j.semcancer.2019.12.016] [PMID: 31870940]
[http://dx.doi.org/10.1021/jacs.9b03457] [PMID: 31199131]
[PMID: 30536723]
[http://dx.doi.org/10.1002/anie.201712027] [PMID: 29488312]
[http://dx.doi.org/10.1016/j.it.2019.09.002] [PMID: 31668676]
[http://dx.doi.org/10.1021/acs.nanolett.9b02923] [PMID: 31409072]
[http://dx.doi.org/10.1038/s41573-018-0006-z] [PMID: 30622344]
[http://dx.doi.org/10.1038/s41467-019-11269-8] [PMID: 31350406]
[http://dx.doi.org/10.1038/s41467-019-09760-3] [PMID: 31048681]
[http://dx.doi.org/10.1158/1078-0432.CCR-09-2891] [PMID: 20421432]
[http://dx.doi.org/10.1002/adma.201905271]
[http://dx.doi.org/10.1016/j.jhazmat.2014.04.054] [PMID: 24857896]
[http://dx.doi.org/10.1038/s41422-018-0090-y] [PMID: 30287942]
[http://dx.doi.org/10.1073/pnas.1701976114] [PMID: 28484000]
[http://dx.doi.org/10.1016/j.canlet.2006.10.029] [PMID: 17150302]
[http://dx.doi.org/10.1021/acs.nanolett.6b04269] [PMID: 28139118]
[http://dx.doi.org/10.1039/C8CS00896E] [PMID: 31165801]
[http://dx.doi.org/10.1002/anie.201710144] [PMID: 29276823]
[http://dx.doi.org/10.1038/s41467-019-13115-3] [PMID: 31772164]
[http://dx.doi.org/10.1038/s41467-017-00424-8] [PMID: 28842577]
[http://dx.doi.org/10.1016/S0021-9258(19)77815-6] [PMID: 3053703]
[http://dx.doi.org/10.1021/acs.nanolett.8b03905] [PMID: 30592897]
[http://dx.doi.org/10.1002/adma.201901633] [PMID: 31250498]
[http://dx.doi.org/10.1136/esmoopen-2017-000213] [PMID: 28761757]
[http://dx.doi.org/10.1038/nrc3239] [PMID: 22437870]
[http://dx.doi.org/10.1016/S1521-6926(02)00084-1] [PMID: 12670466]
[http://dx.doi.org/10.3390/cancers3043856] [PMID: 24213115]
[http://dx.doi.org/10.1016/j.cell.2017.01.016] [PMID: 28187291]
[http://dx.doi.org/10.1038/nrc.2016.97] [PMID: 27550819]
[http://dx.doi.org/10.1111/j.1365-2249.2009.03912.x] [PMID: 19659765]
[http://dx.doi.org/10.4161/hv.26568] [PMID: 24064957]
[http://dx.doi.org/10.3390/vaccines3020344] [PMID: 26343191]
[http://dx.doi.org/10.1038/s41568-019-0186-9] [PMID: 31492927]
[http://dx.doi.org/10.1038/s41565-018-0319-4] [PMID: 30531990]
[http://dx.doi.org/10.1038/nbt.4181] [PMID: 29985479]
[http://dx.doi.org/10.1002/adma.201902542] [PMID: 31183900]
[http://dx.doi.org/10.1021/acs.nanolett.9b00584] [PMID: 31294571]
[http://dx.doi.org/10.1021/acs.nanolett.9b01807] [PMID: 31286779]
[http://dx.doi.org/10.1021/jacs.6b09538] [PMID: 27976881]
[http://dx.doi.org/10.1084/jem.20050915] [PMID: 16365148]
[http://dx.doi.org/10.1038/onc.2009.356] [PMID: 19881547]
[http://dx.doi.org/10.1002/adma.201902960] [PMID: 31423683]
[http://dx.doi.org/10.1002/adfm.201905213]
[http://dx.doi.org/10.1002/anie.201909729] [PMID: 31552695]
[http://dx.doi.org/10.1002/adfm.202000326]
[http://dx.doi.org/10.1016/j.nantod.2020.101009]