[1]
Louis, D.N.; Ohgaki, H.; Wiestler, O.D.; Cavenee, W.K.; Burger, P.C.; Jouvet, A.; Scheithauer, B.W.; Kleihues, P. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol., 2007, 114(2), 97-109.
[2]
Huse, J.T.; Holland, E.C. Targeting brain cancer: advances in the molecular pathology of malignant glioma and medulloblastoma. Nat. Rev. Cancer, 2010, 10(5), 319-331.
[3]
Arko, L.; Katsyv, I.; Park, G.E.; Luan, W.P.; Park, J.K. Experimental approaches for the treatment of malignant gliomas. Pharmacol. Ther., 2010, 128(1), 1-36.
[4]
Stupp, R.; Tonn, J.C.; Brada, M.; Pentheroudakis, G. High-grade malignant glioma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol., 2010, 21(Suppl. 5), v190-v193.
[5]
Wen, P.Y.; Kesari, S. Malignant gliomas in adults. N. Engl. J. Med., 2008, 359(5), 492-507.
[6]
Dolecek, T.A.; Propp, J.M.; Stroup, N.E.; Kruchko, C. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2005-2009. Neuro-oncol., 2012, 14(Suppl. 5), v1-v49.
[7]
Nagarajan, R.P.; Costello, J.F. Epigenetic mechanisms in glioblastoma multiforme. Semin. Cancer Biol., 2009, 19(3), 188-197.
[8]
Dahlback, H.S.; Brandal, P.; Meling, T.R.; Gorunova, L.; Scheie, D.; Heim, S. Genomic aberrations in 80 cases of primary glioblastoma multiforme: Pathogenetic heterogeneity and putative cytogenetic pathways. Genes Chromosomes Cancer, 2009, 48(10), 908-924.
[9]
Bonavia, R.; Inda, M.M.; Cavenee, W.K.; Furnari, F.B. Heterogeneity maintenance in glioblastoma: a social network. Cancer Res., 2011, 71(12), 4055-4060.
[10]
Karsy, M.; Gelbman, M.; Shah, P.; Balumbu, O.; Moy, F.; Arslan, E. Established and emerging variants of glioblastoma multiforme: review of morphological and molecular features. Folia Neuropathol., 2012, 50(4), 301-321.
[11]
Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature, 2008, 455(7216), 1061-1068.
[12]
Dudley, A.; Sater, M.; Le, P.U.; Trinh, G.; Sadr, M.S.; Bergeron, J.; Deleavey, G.F.; Bedell, B.; Damha, M.J.; Petrecca, K. DRR regulates AKT activation to drive brain cancer invasion. Oncogene, 2014, 33(41), 4952-4960.
[13]
Shete, S.; Hosking, F.J.; Robertson, L.B.; Dobbins, S.E.; Sanson, M.; Malmer, B.; Simon, M.; Marie, Y.; Boisselier, B.; Delattre, J.Y.; Hoang-Xuan, K.; El Hallani, S.; Idbaih, A.; Zelenika, D.; Andersson, U.; Henriksson, R.; Bergenheim, A.T.; Feychting, M.; Lonn, S.; Ahlbom, A.; Schramm, J.; Linnebank, M.; Hemminki, K.; Kumar, R.; Hepworth, S.J.; Price, A.; Armstrong, G.; Liu, Y.; Gu, X.; Yu, R.; Lau, C.; Schoemaker, M.; Muir, K.; Swerdlow, A.; Lathrop, M.; Bondy, M.; Houlston, R.S. Genome-wide association study identifies five susceptibility loci for glioma. Nat. Genet., 2009, 41(8), 899-904.
[14]
Hill, C.; Hunter, S.B.; Brat, D.J. Genetic markers in glioblastoma: prognostic significance and future therapeutic implications. Adv. Anat. Pathol., 2003, 10(4), 212-217.
[15]
Killela, P.J.; Reitman, Z.J.; Jiao, Y.; Bettegowda, C.; Agrawal, N.; Diaz, L.A., Jr; Friedman, A.H.; Friedman, H.; Gallia, G.L.; Giovanella, B.C.; Grollman, A.P.; He, T.C.; He, Y.; Hruban, R.H.; Jallo, G.I.; Mandahl, N.; Meeker, A.K.; Mertens, F.; Netto, G.J.; Rasheed, B.A.; Riggins, G.J.; Rosenquist, T.A.; Schiffman, M.; Shih Ie, M.; Theodorescu, D.; Torbenson, M.S.; Velculescu, V.E.; Wang, T.L.; Wentzensen, N.; Wood, L.D.; Zhang, M.; McLendon, R.E.; Bigner, D.D.; Kinzler, K.W.; Vogelstein, B.; Papadopoulos, N.; Yan, H. TERT promoter mutations occur frequently in gliomas and a subset of tumors derived from cells with low rates of self-renewal. Proc. Natl. Acad. Sci. USA, 2013, 110(15), 6021-6026.
[16]
Noushmehr, H.; Weisenberger, D.J.; Diefes, K.; Phillips, H.S.; Pujara, K.; Berman, B.P.; Pan, F.; Pelloski, C.E.; Sulman, E.P.; Bhat, K.P.; Verhaak, R.G.; Hoadley, K.A.; Hayes, D.N.; Perou, C.M.; Schmidt, H.K.; Ding, L.; Wilson, R.K.; Van Den Berg, D.; Shen, H.; Bengtsson, H.; Neuvial, P.; Cope, L.M.; Buckley, J.; Herman, J.G.; Baylin, S.B.; Laird, P.W.; Aldape, K. Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell, 2010, 17(5), 510-522.
[17]
Fujisawa, H.; Reis, R.M.; Nakamura, M.; Colella, S.; Yonekawa, Y.; Kleihues, P.; Ohgaki, H. Loss of heterozygosity on chromosome 10 is more extensive in primary (de novo) than in secondary glioblastomas. Lab. Invest., 2000, 80(1), 65-72.
[18]
Horbinski, C.; Nikiforova, M.N.; Hobbs, J.; Bortoluzzi, S.; Cieply, K.; Dacic, S.; Hamilton, R.L. The importance of 10q status in an outcomes-based comparison between 1p/19q fluorescence in situ hybridization and polymerase chain reaction-based microsatellite loss of heterozygosity analysis of oligodendrogliomas. J. Neuropathol. Exp. Neurol., 2012, 71(1), 73-82.
[19]
Yan, H.; Parsons, D.W.; Jin, G.; McLendon, R.; Rasheed, B.A.; Yuan, W.; Kos, I.; Batinic-Haberle, I.; Jones, S.; Riggins, G.J.; Friedman, H.; Friedman, A.; Reardon, D.; Herndon, J.; Kinzler, K.W.; Velculescu, V.E.; Vogelstein, B.; Bigner, D.D. IDH1 and IDH2 mutations in gliomas. N. Engl. J. Med., 2009, 360(8), 765-773.
[20]
Parsons, D.W.; Jones, S.; Zhang, X.; Lin, J.C.; Leary, R.J.; Angenendt, P.; Mankoo, P.; Carter, H.; Siu, I.M.; Gallia, G.L.; Olivi, A.; McLendon, R.; Rasheed, B.A.; Keir, S.; Nikolskaya, T.; Nikolsky, Y.; Busam, D.A.; Tekleab, H.; Diaz, L.A., Jr; Hartigan, J. Smith, D.R.; Strausberg, R.L.; Marie, S.K.; Shinjo, S.M.; Yan, H.; Riggins, G.J.; Bigner, D.D.; Karchin, R.; Papadopoulos, N.; Parmigiani, G.; Vogelstein, B.; Velculescu, V.E.; Kinzler, K.W. An integrated genomic analysis of human glioblastoma multiforme. Science, 2008, 321(5897), 1807-1812.
[21]
Bleeker, F.E.; Lamba, S.; Leenstra, S.; Troost, D.; Hulsebos, T.; Vandertop, W.P.; Frattini, M.; Molinari, F.; Knowles, M.; Cerrato, A.; Rodolfo, M.; Scarpa, A.; Felicioni, L.; Buttitta, F.; Malatesta, S.; Marchetti, A.; Bardelli, A. IDH1 mutations at residue p.R132 (IDH1(R132)) occur frequently in high-grade gliomas but not in other solid tumors. Hum. Mutat., 2009, 30(1), 7-11.
[22]
Kil, I.S.; Kim, S.Y.; Lee, S.J.; Park, J.W. Small interfering RNA-mediated silencing of mitochondrial NADP+-dependent isocitrate dehydrogenase enhances the sensitivity of HeLa cells toward tumor necrosis factor-alpha and anticancer drugs. Free Radic. Biol. Med., 2007, 43(8), 1197-1207.
[23]
Okita, Y.; Narita, Y.; Miyakita, Y.; Ohno, M.; Matsushita, Y.; Fukushima, S.; Sumi, M.; Ichimura, K.; Kayama, T.; Shibui, S. IDH1/2 mutation is a prognostic marker for survival and predicts response to chemotherapy for grade II gliomas concomitantly treated with radiation therapy. Int. J. Oncol., 2012, 41(4), 1325-1336.
[24]
Zhao, S.; Lin, Y.; Xu, W.; Jiang, W.; Zha, Z.; Wang, P.; Yu, W.; Li, Z.; Gong, L.; Peng, Y.; Ding, J.; Lei, Q.; Guan, K.L.; Xiong, Y. Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1alpha. Science, 2009, 324(5924), 261-265.
[25]
Mao, X.G.; Xue, X.Y.; Wang, L.; Zhang, X.; Yan, M.; Tu, Y.Y.; Lin, W.; Jiang, X.F.; Ren, H.G.; Zhang, W.; Song, S.J. CDH5 is specifically activated in glioblastoma stem like cells and contributes to vasculogenic mimicry induced by hypoxia. Neuro-oncol., 2013, 15(7), 865-879.
[26]
Marampon, F.; Gravina, G.L.; Zani, B.M.; Popov, V.M.; Fratticci, A.; Cerasani, M.; Di Genova, D.; Mancini, M.; Ciccarelli, C.; Ficorella, C.; Di Cesare, E.; Festuccia, C. Hypoxia sustains glioblastoma radioresistance through ERKs/DNA-PKcs/HIF-1alpha functional interplay. Int. J. Oncol., 2014, 44(6), 2121-2131.
[27]
Lee, S.M.; Koh, H.J.; Park, D.C.; Song, B.J.; Huh, T.L.; Park, J.W. Cytosolic NADP(+)-dependent isocitrate dehydrogenase status modulates oxidative damage to cells. Free Radic. Biol. Med., 2002, 32(11), 1185-1196.
[28]
Dolecek, T.A.; Propp, J.M.; Stroup, N.E.; Kruchko, C. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2005-2009. Neuro-oncol., 2012, 14(Suppl. 5), v1-v49.
[29]
Huse, J.T.; Aldape, K.D. The molecular landscape of diffuse glioma and prospects for biomarker development. Expert Opin. Med. Diagn., 2013, 7(6), 573-587.
[30]
Herman, S.T. Epilepsy after brain insult: targeting epileptogenesis. Neurology, 2002, 59(9)(Suppl. 5), S21-S26.
[31]
Glantz, M.J.; Cole, B.F.; Forsyth, P.A.; Recht, L.D.; Wen, P.Y.; Chamberlain, M.C.; Grossman, S.A.; Cairncross, J.G. Practice parameter: anticonvulsant prophylaxis in patients with newly diagnosed brain tumors. report of the quality standards subcommittee of the American academy of neurology. Neurology, 2000, 54(10), 1886-1893.
[32]
Neuroradiology, Pierot.L. J. Radiol., 2005, 86(7-8), 868-873.
[33]
Young, G.S. Advanced MRI of adult brain tumors. Neurol. Clin., 2007, 25(4), 947-973. [viii.].
[34]
Housni, A.; Boujraf, S. Multimodal magnetic resonance imaging in the diagnosis and therapeutical follow-up of brain tumors. Neurosciences, 2013, 18(1), 3-10.
[35]
Wen, P.Y.; Schiff, D.; Kesari, S.; Drappatz, J.; Gigas, D.C.; Doherty, L. Medical management of patients with brain tumors. J. Neurooncol., 2006, 80(3), 313-332.
[36]
Sanai, N.; Berger, M.S. Extent of resection influences outcomes for patients with gliomas. Rev. Neurol., 2011, 167(10), 648-654.
[37]
Lacroix, M.; Abi-Said, D.; Fourney, D.R.; Gokaslan, Z.L.; Shi, W.; DeMonte, F.; Lang, F.F.; McCutcheon, I.E.; Hassenbusch, S.J.; Holland, E.; Hess, K.; Michael, C.; Miller, D.; Sawaya, R. A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J. Neurosurg., 2001, 95(2), 190-198.
[38]
Stummer, W.; Pichlmeier, U.; Meinel, T.; Wiestler, O.D.; Zanella, F.; Reulen, H.J. Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol., 2006, 7(5), 392-401.
[39]
Asthagiri, A.R.; Pouratian, N.; Sherman, J.; Ahmed, G.; Shaffrey, M.E. Advances in brain tumor surgery. Neurol. Clin., 2007, 25(4), 975-1003. [viii-ix.].
[40]
Brastianos, P.K.; Batchelor, T.T. Vascular endothelial growth factor inhibitors in malignant gliomas. Target. Oncol., 2010, 5(3), 167-174.
[41]
Balana, C.; Gil, M.J.; Perez, P.; Reynes, G.; Gallego, O.; Ribalta, T.; Capellades, J.; Gonzalez, S.; Verger, E. Sunitinib administered prior to radiotherapy in patients with non-resectable glioblastoma: results of a Phase II study. Target. Oncol., 2014, 9(4), 321-329.
[42]
Caruso, C.; Carcaterra, M.; Donato, V. Role of radiotherapy for high grade gliomas management. J. Neurosurg. Sci., 2013, 57(2), 163-169.
[43]
Reardon, D.A.; Quinn, J.A.; Vredenburgh, J.; Rich, J.N.; Gururangan, S.; Badruddoja, M.; Herndon, J.E., II; Dowell, J.M.; Friedman, A.H.; Friedman, H.S. Phase II trial of irinotecan plus celecoxib in adults with recurrent malignant glioma. Cancer, 2005, 103(2), 329-338.
[44]
Franceschi, E.; Cavallo, G.; Scopece, L.; Paioli, A.; Pession, A.; Magrini, E.; Conforti, R.; Palmerini, E.; Bartolini, S.; Rimondini, S.; Esposti, R.D.; Crino, L. Phase II trial of carboplatin and etoposide for patients with recurrent high-grade glioma. Br. J. Cancer, 2004, 91(6), 1038-1044.
[45]
Barr, J.G.; Grundy, P.L. The effects of the NICE technology appraisal 121 (gliadel and temozolomide) on survival in high-grade glioma. Br. J. Neurosurg., 2012, 26(6), 818-822.
[46]
Roldan Urgoiti, G.B.; Singh, A.D.; Easaw, J.C. Extended adjuvant temozolomide for treatment of newly diagnosed glioblastoma multiforme. J. Neurooncol., 2012, 108(1), 173-177.
[47]
Juratli, T.A.; Schackert, G.; Krex, D. Current status of local therapy in malignant gliomas - A clinical review of three selected approaches. Pharmacol. Ther., 2013, 139(3), 341-358.
[48]
Brem, H.; Piantadosi, S.; Burger, P.C.; Walker, M.; Selker, R.; Vick, N.A.; Black, K.; Sisti, M.; Brem, S.; Mohr, G. Placebo-controlled trial of safety and efficacy of intraoperative controlled delivery by biodegradable polymers of chemotherapy for recurrent gliomas. The Polymer-brain Tumor Treatment Group. Lancet, 1995, 345(8956), 1008-1012.
[49]
Newton, H.B. Intra-arterial chemotherapy of primary brain tumors. Curr. Treat. Options Oncol., 2005, 6(6), 519-530.
[50]
French, J.D.; West, P.M.; Von Amerongen, F.K.; Magoun, H.W. Effects of intracarotid administration of nitrogen mustard on normal brain and brain tumors. J. Neurosurg., 1952, 9(4), 378-389.
[51]
Klopp, C.T.; Alford, T.C.; Bateman, J.; Berry, G.N.; Winship, T. Fractionated intra-arterial cancer; chemotherapy with methyl bis amine hydrochloride; a preliminary report. Ann. Surg., 1950, 132(4), 811-832.
[52]
Figueiredo, E.G.; Faria, J.W.; Teixeira, M.J. Treatment of recurrent glioblastoma with intra-arterial BCNU [1, 3-bis (2-chloroethyl)-1-nitrosourea]. Arq. Neuropsiquiatr., 2010, 68(5), 778-782.
[53]
Shin, B.J.; Burkhardt, J.K.; Riina, H.A.; Boockvar, J.A. Superselective intra-arterial cerebral infusion of novel agents after blood-brain disruption for the treatment of recurrent glioblastoma multiforme: a technical case series. Neurosurg. Clin. N. Am., 2012, 23(2), 323-329. [ix-x.].
[54]
Salacz, M.E.; Watson, K.R.; Schomas, D.A. Glioblastoma. Part II: Future directions. Mol. Med., 2011, 108(4), 289-291.
[55]
Cloughesy, T.F.; Gobin, Y.P.; Black, K.L.; Vinuela, F.; Taft, F.; Kadkhoda, B.; Kabbinavar, F. Intra-arterial carboplatin chemotherapy for brain tumors: a dose escalation study based on cerebral blood flow. J. Neurooncol., 1997, 35(2), 121-131.
[56]
Wu, E. Editorial: discovering new anticancer activities from old drugs. Curr. Med. Chem., 2013, 20(30), 4093-4094.
[57]
Bidros, D.S.; Vogelbaum, M.A. Novel drug delivery strategies in neuro-oncology. Neurotherapeutics, 2009, 6(3), 539-546.
[58]
Burkhardt, J.K.; Riina, H.A.; Shin, B.J.; Moliterno, J.A.; Hofstetter, C.P.; Boockvar, J.A. Intra-arterial chemotherapy for malignant gliomas: a critical analysis. Interv. Neuroradiol., 2011, 17(3), 286-295.
[59]
Boockvar, J.A.; Tsiouris, A.J.; Hofstetter, C.P.; Kovanlikaya, I.; Fralin, S.; Kesavabhotla, K.; Seedial, S.M.; Pannullo, S.C.; Schwartz, T.H.; Stieg, P.; Zimmerman, R.D.; Knopman, J.; Scheff, R.J.; Christos, P.; Vallabhajosula, S.; Riina, H.A. Safety and maximum tolerated dose of superselective intraarterial cerebral infusion of bevacizumab after osmotic blood-brain barrier disruption for recurrent malignant glioma. Clinical article. J. Neurosurg., 2011, 114(3), 624-632.
[60]
Burkhardt, J.K.; Riina, H.; Shin, B.J.; Christos, P.; Kesavabhotla, K.; Hofstetter, C.P.; Tsiouris, A.J.; Boockvar, J.A. Intra-arterial delivery of bevacizumab after blood-brain barrier disruption for the treatment of recurrent glioblastoma: progression-free survival and overall survival. World Neurosurg., 2012, 77(1), 130-134.
[61]
Riina, H.A.; Knopman, J.; Greenfield, J.P.; Fralin, S.; Gobin, Y.P.; Tsiouris, A.J.; Souweidane, M.M.; Boockvar, J.A. Balloon-assisted superselective intra-arterial cerebral infusion of bevacizumab for malignant brainstem glioma. A technical note. Interv. Neuroradiol., 2010, 16(1), 71-76.
[62]
Ammaya, A.K. Subcutaneous reservoir and pump for sterile access to ventricular cerebrospinal fluid. Lancet, 1963, 2(7315), 983-984.
[63]
Buonerba, C.; Di Lorenzo, G.; Marinelli, A.; Federico, P.; Palmieri, G.; Imbimbo, M.; Conti, P.; Peluso, G.; De Placido, S.; Sampson, J.H. A comprehensive outlook on intracerebral therapy of malignant gliomas. Crit. Rev. Oncol. Hematol., 2011, 80(1), 54-68.
[64]
Srikandarajah, N.; Patel, A.; Lee, M.K.; Brodbelt, A. Indications for intracranial reservoirs: A six-year study. Br. J. Neurosurg., 2014, 28(4), 475-477.
[65]
Walter, K.A.; Tamargo, R.J.; Olivi, A.; Burger, P.C.; Brem, H. Intratumoral chemotherapy. Neurosurgery, 1995, 37(6), 1128-1145.
[66]
Patchell, R.A.; Regine, W.F.; Ashton, P.; Tibbs, P.A.; Wilson, D.; Shappley, D.; Young, B. A phase I trial of continuously infused intratumoral bleomycin for the treatment of recurrent glioblastoma multiforme. J. Neurooncol., 2002, 60(1), 37-42.
[67]
Boiardi, A.; Silvani, A.; Eoli, M.; Lamperti, E.; Salmaggi, A.; Gaviani, P.; Fiumani, A.; Botturi, A.; Falcone, C.; Solari, A.; Filippini, G.; Di Meco, F.; Broggi, G. Treatment of recurrent glioblastoma: can local delivery of mitoxantrone improve survival? J. Neurooncol., 2008, 88(1), 105-113.
[68]
Dorner, L.; Ulmer, S.; Rohr, A.; Mehdorn, H.M.; Nabavi, A. Space-occupying cyst development in the resection cavity of malignant gliomas following Gliadel(R) implantation--incidence, therapeutic strategies, and outcome. J. Clin. Neurosci., 2011, 18(3), 347-351.
[69]
Zhang, S.; Xie, R.; Zhao, T.; Yang, X.; Han, L.; Ye, F.; Lei, T.; Wan, F. Neural stem cells preferentially migrate to glioma stem cells and reduce their stemness phenotypes. Int. J. Oncol., 2014, 45(5), 1989-1996.
[70]
Gutova, M.; Frank, J.A.; D’Apuzzo, M.; Khankaldyyan, V.; Gilchrist, M.M.; Annala, A.J.; Metz, M.Z.; Abramyants, Y.; Herrmann, K.A.; Ghoda, L.Y.; Najbauer, J.; Brown, C.E.; Blanchard, M.S.; Lesniak, M.S.; Kim, S.U.; Barish, M.E.; Aboody, K.S.; Moats, R.A. Magnetic resonance imaging tracking of ferumoxytol-labeled human neural stem cells: studies leading to clinical use. Stem Cells Transl. Med., 2013, 2(10), 766-775.
[71]
Allhenn, D.; Boushehri, M.A.; Lamprecht, A. Drug delivery strategies for the treatment of malignant gliomas. Int. J. Pharm., 2012, 436(1-2), 299-310.
[72]
Westphal, M.; Hilt, D.C.; Bortey, E.; Delavault, P.; Olivares, R.; Warnke, P.C.; Whittle, I.R.; Jaaskelainen, J.; Ram, Z. A phase 3 trial of local chemotherapy with biodegradable carmustine (BCNU) wafers (Gliadel wafers) in patients with primary malignant glioma. Neuro-oncol., 2003, 5(2), 79-88.
[73]
Nagpal, S. The role of BCNU polymer wafers (Gliadel) in the treatment of malignant glioma. Neurosurg. Clin. N. Am., 2012, 23(2), 289-295. [ix.].
[74]
Butt, A.M.; Jones, H.C.; Abbott, N.J. Electrical resistance across the blood-brain barrier in anaesthetized rats: a developmental study. J. Physiol., 1990, 429, 47-62.
[75]
Arifin, D.Y.; Lee, K.Y.; Wang, C.H.; Smith, K.A. Role of convective flow in carmustine delivery to a brain tumor. Pharm. Res., 2009, 26(10), 2289-2302.
[76]
Fung, L.K.; Ewend, M.G.; Sills, A.; Sipos, E.P.; Thompson, R.; Watts, M.; Colvin, O.M.; Brem, H.; Saltzman, W.M. Pharmacokinetics of interstitial delivery of carmustine, 4-hydropero-xycyclophosphamide, and paclitaxel from a biodegradable polymer implant in the monkey brain. Cancer Res., 1998, 58(4), 672-684.
[77]
Dorner, L.; Mustafa, A.; Rohr, A.; Mehdorn, H.M.; Nabavi, A. Growth pattern of tumor recurrence following bis-chloroethylnitrosourea (BCNU) wafer implantation in malignant glioma. J. Clin. Neurosci., 2013, 20(3), 429-434.
[78]
Panigrahi, M.; Das, P.K.; Parikh, P.M. Brain tumor and Gliadel wafer treatment. Indian J. Cancer, 2011, 48(1), 11-17.
[79]
Hart, M.G.; Grant, R.; Garside, R.; Rogers, G.; Somerville, M.; Stein, K. Chemotherapy wafers for high grade glioma. Cochrane Database Syst. Rev., 2011, 3, CD007294.
[80]
Sabel, M.; Giese, A. Safety profile of carmustine wafers in malignant glioma: a review of controlled trials and a decade of clinical experience. Curr. Med. Res. Opin., 2008, 24(11), 3239-3257.
[81]
Shah, R.S.; Homapour, B.; Casselden, E.; Barr, J.G.; Grundy, P.L.; Brydon, H.L. Delayed post-operative haemorrhage after carmustine wafer implantation: a case series from two UK centres. Br. J. Neurosurg., 2014, 28(4), 488-494.